Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Ptolemy's theorem. *) | |
(* ========================================================================= *) | |
needs "Multivariate/transcendentals.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Some 2-vector special cases. *) | |
(* ------------------------------------------------------------------------- *) | |
let DOT_VECTOR = prove | |
(`(vector [x1;y1] :real^2) dot (vector [x2;y2]) = x1 * x2 + y1 * y2`, | |
REWRITE_TAC[dot; DIMINDEX_2; SUM_2; VECTOR_2]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemma about distance between points with polar coordinates. *) | |
(* ------------------------------------------------------------------------- *) | |
let DIST_SEGMENT_LEMMA = prove | |
(`!a1 a2. &0 <= a1 /\ a1 <= a2 /\ a2 <= &2 * pi /\ &0 <= radius | |
==> dist(centre + radius % vector [cos(a1);sin(a1)] :real^2, | |
centre + radius % vector [cos(a2);sin(a2)]) = | |
&2 * radius * sin((a2 - a1) / &2)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[dist; vector_norm] THEN | |
MATCH_MP_TAC SQRT_UNIQUE THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC SIN_POS_PI_LE THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[VECTOR_ARITH `(c + r % x) - (c + r % y) = r % (x - y)`] THEN | |
REWRITE_TAC[VECTOR_ARITH `(r % x) dot (r % x) = (r pow 2) * (x dot x)`] THEN | |
REWRITE_TAC[DOT_LSUB; DOT_RSUB; DOT_VECTOR] THEN | |
SUBST1_TAC(REAL_ARITH `a1 = &2 * a1 / &2`) THEN | |
SUBST1_TAC(REAL_ARITH `a2 = &2 * a2 / &2`) THEN | |
REWRITE_TAC[REAL_ARITH `(&2 * x - &2 * y) / &2 = x - y`] THEN | |
REWRITE_TAC[SIN_SUB; SIN_DOUBLE; COS_DOUBLE] THEN | |
MP_TAC(SPEC `a1 / &2` SIN_CIRCLE) THEN MP_TAC(SPEC `a2 / &2` SIN_CIRCLE) THEN | |
CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the overall theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let PTOLEMY = prove | |
(`!A B C D:real^2 a b c d centre radius. | |
A = centre + radius % vector [cos(a);sin(a)] /\ | |
B = centre + radius % vector [cos(b);sin(b)] /\ | |
C = centre + radius % vector [cos(c);sin(c)] /\ | |
D = centre + radius % vector [cos(d);sin(d)] /\ | |
&0 <= radius /\ | |
&0 <= a /\ a <= b /\ b <= c /\ c <= d /\ d <= &2 * pi | |
==> dist(A,C) * dist(B,D) = | |
dist(A,B) * dist(C,D) + dist(A,D) * dist(B,C)`, | |
REPEAT STRIP_TAC THEN | |
REPEAT(FIRST_X_ASSUM(SUBST1_TAC o check (is_var o lhs o concl))) THEN | |
REPEAT | |
(W(fun (asl,w) -> | |
let t = find_term | |
(fun t -> can (PART_MATCH (lhs o rand) DIST_SEGMENT_LEMMA) t) w in | |
MP_TAC (PART_MATCH (lhs o rand) DIST_SEGMENT_LEMMA t) THEN | |
ANTS_TAC THENL | |
[ASM_REAL_ARITH_TAC; | |
DISCH_THEN SUBST1_TAC])) THEN | |
REWRITE_TAC[REAL_ARITH `(x - y) / &2 = x / &2 - y / &2`] THEN | |
MAP_EVERY (fun t -> MP_TAC(SPEC t SIN_CIRCLE)) | |
[`a / &2`; `b / &2`; `c / &2`; `d / &2`] THEN | |
REWRITE_TAC[SIN_SUB; SIN_ADD; COS_ADD; SIN_PI; COS_PI] THEN | |
CONV_TAC REAL_RING);; | |