Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.8 kB
(* ========================================================================= *)
(* A few extras to support proofs around elliptic curves. *)
(* ========================================================================= *)
needs "Library/pocklington.ml";;
needs "Library/primitive.ml";;
needs "Library/grouptheory.ml";;
needs "Library/ringtheory.ml";;
(* ------------------------------------------------------------------------- *)
(* Bounds on size of any curve of the form y^2 = f(x) over finite field. *)
(* ------------------------------------------------------------------------- *)
let FINITE_QUADRATIC_CURVE = prove
(`!(r:A ring) h.
integral_domain r /\ FINITE(ring_carrier r)
==> FINITE {x,y | x IN ring_carrier r /\ y IN ring_carrier r /\
ring_pow r y 2 = h x} /\
CARD {x,y | x IN ring_carrier r /\ y IN ring_carrier r /\
ring_pow r y 2 = h x}
<= 2 * CARD(ring_carrier r)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
MATCH_MP_TAC FINITE_CARD_LE_SUBSET THEN
EXISTS_TAC
`UNIONS {{x,y | y | y IN ring_carrier r /\ ring_pow r y 2 = h x} |x|
(x:A) IN ring_carrier r}` THEN
CONJ_TAC THENL
[REWRITE_TAC[UNIONS_GSPEC; SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
SET_TAC[];
MATCH_MP_TAC FINITE_CARD_LE_UNIONS THEN ASM_REWRITE_TAC[LE_REFL]] THEN
X_GEN_TAC `x:A` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
MATCH_MP_TAC FINITE_CARD_LE_IMAGE THEN
ONCE_REWRITE_TAC[TAUT `p /\ q <=> p /\ ~(p ==> ~q)`] THEN
REWRITE_TAC[ARITH_RULE `~(n <= 2) <=> 3 <= n`; CHOOSE_SUBSET_EQ] THEN
ASM_SIMP_TAC[FINITE_RESTRICT] THEN
CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN
DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN
FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
MP_TAC(INTEGRAL_DOMAIN_RULE
`!x y:A. integral_domain r
==> (ring_pow r x 2 = ring_pow r y 2 <=> x = y \/ x = ring_neg r y)`) THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN ASM METIS_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Try to dispose of ring characteristic side-conditions. This in general *)
(* requires external factorization tools for "multifactor" on large numbers. *)
(* ------------------------------------------------------------------------- *)
let NOT_RING_CHAR_DIVIDES_TAC =
let bops = list_mk_binop `( * ):num->num->num`
and patcheck = can (term_match [] `~(ring_char r divides NUMERAL n)`) in
W(fun (asl,w) ->
if not (patcheck w) then failwith "NOT_RING_CHAR_DIVIDES_TAC" else
let n = dest_numeral(rand(rand w)) in
let ns = multifactor n in
let ntm = bops(map mk_numeral ns) in
SUBST1_TAC(SYM(NUM_REDUCE_CONV ntm))) THEN
ASM_SIMP_TAC[RING_CHAR_DIVIDES_MUL];;
(* ------------------------------------------------------------------------- *)
(* Ad-hoc rewrites for equality versus divisibility of characteristic. *)
(* ------------------------------------------------------------------------- *)
let FIELD_CHAR_NOT2 = prove
(`!(f:A ring) P.
field f /\ ~(ring_char f = 2) /\ P <=>
field f /\ ~(ring_char f divides 2) /\ P`,
MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_2]);;
let FIELD_CHAR_NOT3 = prove
(`!(f:A ring) P.
field f /\ ~(ring_char f = 3) /\ P <=>
field f /\ ~(ring_char f divides 3) /\ P`,
MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_CONV `prime 3`]);;
let FIELD_CHAR_NOT23 = prove
(`!(f:A ring) P.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ P <=>
field f /\ ~(ring_char f divides 2) /\ ~(ring_char f divides 3) /\ P`,
MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_2; PRIME_CONV `prime 3`]);;
(* ------------------------------------------------------------------------- *)
(* An ad-hoc way of confirming the size of a group to be n when there is a *)
(* crude bound of < 3 * n and we also know there are no points of order 2. *)
(* ------------------------------------------------------------------------- *)
let CAUCHY_GROUP_THEOREM_2 = prove
(`!G:A group.
FINITE(group_carrier G) /\ EVEN(CARD(group_carrier G))
==> ?x. x IN group_carrier G /\ group_element_order G x = 2`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CAUCHY_GROUP_THEOREM THEN
ASM_REWRITE_TAC[PRIME_2; DIVIDES_2]);;
let GROUP_ADHOC_ORDER_UNIQUE_LEMMA = prove
(`!G (a:A) p.
FINITE(group_carrier G) /\ CARD(group_carrier G) < 3 * p /\
(!x. x IN group_carrier G /\ group_inv G x = x ==> x = group_id G) /\
a IN group_carrier G /\ group_element_order G a = p
==> (group_carrier G) HAS_SIZE p`,
SIMP_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN MP_TAC
(SPECL [`G:A group`; `a:A`] GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN
ASM_REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
ASM_CASES_TAC `d = 0` THEN
ASM_SIMP_TAC[CARD_EQ_0; MULT_CLAUSES; GROUP_CARRIER_NONEMPTY] THEN
ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
ASM_CASES_TAC `d = 2` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL
[MP_TAC(ISPEC `G:A group` CAUCHY_GROUP_THEOREM_2) THEN
ASM_REWRITE_TAC[EVEN_MULT; ARITH; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_2_ALT] THEN ASM_MESON_TAC[];
UNDISCH_TAC `CARD(group_carrier(G:A group)) < 3 * p` THEN
MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN ASM_REWRITE_TAC[NOT_LT] THEN
GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN
ASM_REWRITE_TAC[LE_MULT_RCANCEL] THEN ASM_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Use some symmetry to ease algebraic reduction of associativity *)
(* ------------------------------------------------------------------------- *)
let SYMMETRY_LEMMA = prove
(`!P eq add.
(!x y. P x /\ P y /\ eq x y ==> eq y x) /\
(!x y. P x /\ P y ==> P(add x y)) /\
(!x y. P x /\ P y ==> add x y = add y x) /\
(!x y z. P x /\ P y /\ P z /\ (eq x y \/ eq (add x y) z)
==> add x (add y z) = add (add x y) z) /\
(!x y z. P x /\ P y /\ P z /\
~(eq x y) /\ ~(eq y z) /\ ~(eq x z) /\
~(eq (add x y) z) /\ ~(eq (add y z) x)
==> add x (add y z) = add (add x y) z)
==> !x y z:A. P x /\ P y /\ P z ==> add x (add y z) = add (add x y) z`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `(eq:A->A->bool) x y` THEN ASM_SIMP_TAC[] THEN
ASM_CASES_TAC `(eq:A->A->bool) y z` THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `(eq:A->A->bool) x z` THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `(eq:A->A->bool) ((add:A->A->A) x y) z` THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `(eq:A->A->bool) ((add:A->A->A) y z) x` THEN
ASM_MESON_TAC[]);;
let ASSOCIATIVITY_LEMMA = prove
(`!P add neg (id:A).
P id /\
(!x. P x ==> P(neg x)) /\
(!x y. P x /\ P y ==> P(add x y)) /\
(!x. P x ==> add id x = x) /\
(!x. P x ==> add (neg x) x = id) /\
(!x y. P x /\ P y ==> add x y = add y x) /\
(!x. P x ==> neg(neg x) = x) /\
(!x y. P x /\ P y ==> neg(add x y) = add (neg x) (neg y)) /\
(!x y. P x /\ P y ==> add x (add x y) = add (add x x) y) /\
(!x y. P x /\ P y ==> add (neg x) (add x y) = y) /\
(!x y z u v.
P x /\ P y /\ P z /\ P u /\ P v
==> ~(x = id) /\ ~(y = id) /\ ~(z = id) /\
~(u = id) /\ ~(v = id) /\
~(y = x \/ y = neg x) /\
~(z = y \/ z = neg y) /\
~(z = x \/ z = neg x) /\
~(z = u \/ z = neg u) /\
~(x = v \/ x = neg v)
==> add x y = u /\ add y z = v
==> add x v = add u z)
==> !x y z. P x /\ P y /\ P z ==> add x (add y z) = add (add x y) z`,
ONCE_REWRITE_TAC[TAUT
`p ==> q ==> r /\ s ==> t <=> r ==> s ==> p /\ q ==> t`] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM1] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC SYMMETRY_LEMMA THEN
EXISTS_TAC `\x y. y:A = x \/ y = neg x` THEN
REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[];
ASM_MESON_TAC[];
ASM_MESON_TAC[];
ALL_TAC;
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN STRIP_TAC THEN
ASM_CASES_TAC `x:A = id` THENL
[ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `y:A = id` THENL
[ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `z:A = id` THENL
[ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[];
ASM_MESON_TAC[];
ALL_TAC;
TRANS_TAC EQ_TRANS `id:A` THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
TRANS_TAC EQ_TRANS `(add:A->A->A) x (neg x)` THEN
CONJ_TAC THENL [AP_TERM_TAC; ASM_MESON_TAC[]] THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]] THEN
TRANS_TAC EQ_TRANS
`add (x:A) (add (neg x) (add (add x y) (add x y)))` THEN
CONJ_TAC THENL [AP_TERM_TAC; ASM_MESON_TAC[]] THEN
TRANS_TAC EQ_TRANS `add (add (neg x) (add x y)) (add x y):A` THEN
CONJ_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!x y:A. P x /\ P y ==> add y (add x x) = add (add y x) x`
(fun th -> ASM_SIMP_TAC[th]) THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Formulate existence of roots in finite field as power residue over N. *)
(* This is intuitively completely trivial but fiddly in the fine details, *)
(* especially since we don't actually assume n is prime and so it's a field. *)
(* ------------------------------------------------------------------------- *)
let INTEGER_MOD_RING_ROOT_EXISTS = prove
(`!n a k. (?b. b IN ring_carrier (integer_mod_ring n) /\
ring_pow (integer_mod_ring n) b k = &a) <=>
(n = 0 \/ a < n) /\
(?b. (b EXP k == a) (mod n))`,
REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_REM; GSYM INT_OF_NUM_POW] THEN
REWRITE_TAC[INT_EXISTS_POS] THEN REPEAT GEN_TAC THEN
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_RING_CLAUSES; LE_1] THENL
[REWRITE_TAC[IN_UNIV; INT_REM_0; INT_CONG_MOD_0] THEN
EQ_TAC THENL [DISCH_THEN(X_CHOOSE_TAC `b:int`); MESON_TAC[]] THEN
EXISTS_TAC `abs b:int` THEN
ASM_REWRITE_TAC[INT_ABS_POS; GSYM INT_ABS_POW; INT_ABS_NUM];
REWRITE_TAC[IN_ELIM_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[GSYM INT_EXISTS_POS; INT_OF_NUM_CLAUSES; INT_OF_NUM_REM] THEN
REWRITE_TAC[GSYM num_congruent; CONG] THEN
ASM_MESON_TAC[MOD_LT; MOD_EXP_MOD; MOD_LT_EQ]]);;