Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Isabelle Light *) | |
(* Isabelle/Procedural style additions and other user-friendly shortcuts. *) | |
(* *) | |
(* Petros Papapanagiotou, Jacques Fleuriot *) | |
(* Center of Intelligent Systems and their Applications *) | |
(* University of Edinburgh *) | |
(* 2009-2015 *) | |
(* ========================================================================= *) | |
(* FILE : meta_rules.ml *) | |
(* DESCRIPTION : Meta rules is a formalisation used to accommodate *) | |
(* Isabelle's inference rules in HOL Light.The technical *) | |
(* details are described in the comments that follow. *) | |
(* Isabelle rule application tactics (rule, erule, etc.) have *) | |
(* been defined to work with meta rules. *) | |
(* We have not been able to accommodate first order rules *) | |
(* allI and exE. We also make use of metavariables which are *) | |
(* restricted by the limitations of term_unify *) | |
(* (ie. no HO unification and no type instantiation). *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* ----------------------- META-LEVEL IMPLICATION -------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* Emulation of meta-level implication at the object level. *) | |
(* This is purely for syntax and parsing purposes. It solves a number of *) | |
(* problems when parsing theorems as meta-rules (see below). *) | |
(* It is applied at the logic level only for transparency. *) | |
(* ------------------------------------------------------------------------- *) | |
(* Thanks to Phil Scott for the suggestion. *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* Syntax definition. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix ("===>",(4,"right"));; | |
let is_mimp = is_binary "===>";; | |
let dest_mimp = dest_binary "===>";; | |
(* ------------------------------------------------------------------------- *) | |
(* Logic definition: Equivalent to object-level implication. *) | |
(* ------------------------------------------------------------------------- *) | |
let MIMP_DEF = new_basic_definition | |
`(===>) = \p q. p ==> q`;; | |
(* ------------------------------------------------------------------------- *) | |
(* CONV, RULE and TACTIC to get rid of meta-level implication in proofs. *) | |
(* ------------------------------------------------------------------------- *) | |
let MIMP_TO_IMP_CONV = BETA_RULE o (PURE_REWRITE_CONV [MIMP_DEF]);; | |
let MIMP_TO_IMP_RULE = BETA_RULE o (PURE_REWRITE_RULE [MIMP_DEF]);; | |
let MIMP_TAC = (PURE_REWRITE_TAC [MIMP_DEF]) THEN BETA_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* Equivalent of TAUT after getting rid of meta-level implication. *) | |
(* Helps prove simple propositional meta-rules easily. *) | |
(* ------------------------------------------------------------------------- *) | |
let MTAUT tm = | |
let th = MIMP_TO_IMP_CONV tm in | |
EQ_MP (SYM th) ((TAUT o snd o dest_iff o concl) th);; | |
(* ------------------------------------------------------------------------- *) | |
(* RULE to replace implication by meta-level implication to easily create *) | |
(* meta-theorems from normal theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let MIMP_THM = MTAUT `(p==>q) <=> (p===>q)`;; | |
let MIMP_RULE = PURE_REWRITE_RULE[MIMP_THM];; | |
(* ------------------------------------------------------------------------- *) | |
(* DISCH and DISCH_TAC for meta-level implication. *) | |
(* ------------------------------------------------------------------------- *) | |
let MDISCH a th = | |
let mth = MATCH_MP EQ_IMP MIMP_THM in | |
MATCH_MP mth (DISCH a th);; | |
let (MDISCH_TAC: tactic) = | |
fun (asl,w) -> | |
try let ant,c = dest_mimp w in | |
let th1 = ASSUME ant in | |
null_meta,[("",th1)::asl,c], | |
fun i [th] -> MDISCH (instantiate i ant) th | |
with Failure _ -> failwith "MISCH_TAC";; | |
(* ------------------------------------------------------------------------- *) | |
(* UNDISCH for meta-level implication. *) | |
(* Also gets rid of meta-level implication in the undischarged term. *) | |
(* ------------------------------------------------------------------------- *) | |
let MUNDISCH th = | |
let mth = BETA_RULE (AP_THM (AP_THM MIMP_DEF `p:bool`) `q:bool`) in | |
let th = PURE_ONCE_REWRITE_RULE [mth] th in | |
try let undisch_tm = (rand o rator o concl) th in | |
PROVE_HYP ((UNDISCH o snd o EQ_IMP_RULE o MIMP_TO_IMP_CONV) undisch_tm) (UNDISCH th) | |
with Failure _ -> failwith "MUNDISCH";; | |
(* ------------------------------------------------------------------------- *) | |
(* -------------------------- HELPFUL FUNCTIONS ---------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* REV_PART_MATCH_I: term list -> (term -> term) -> thm -> term *) | |
(* -> instantiation *) | |
(* Does a reverse PART_MATCH and returns the resulting instantiation. *) | |
(* Avoids instantiating any of the given variables/constants. *) | |
(* Does not apply SPEC_ALL like PART_MATCH does. *) | |
(* ------------------------------------------------------------------------- *) | |
(* The original PART_MATCH matches a term to part of a theorem so that we can*) | |
(* instantiate that part with the term. *) | |
(* The reverse used here, matches the part of the theorem with the term so *) | |
(* that the term can be instantiated with the part of the theorem. *) | |
(* We use this in cases such as erule where we want (part of) an assumption *) | |
(* to match a premise of the rule. We need the instantiation of the rule when*) | |
(* matched to the assumption (thm) and not the other way around. *) | |
(* ------------------------------------------------------------------------- *) | |
let REV_PART_MATCH_I = | |
let rec match_bvs t1 t2 acc = | |
try let v1,b1 = dest_abs t1 | |
and v2,b2 = dest_abs t2 in | |
let n1 = fst(dest_var v1) and n2 = fst(dest_var v2) in | |
let newacc = if n1 = n2 then acc else insert (n1,n2) acc in | |
match_bvs b1 b2 newacc | |
with Failure _ -> try | |
let l1,r1 = dest_comb t1 | |
and l2,r2 = dest_comb t2 in | |
match_bvs l1 l2 (match_bvs r1 r2 acc) | |
with Failure _ -> acc in | |
fun avoids partfn th -> | |
let bod = concl th in | |
let pbod = partfn bod in | |
let lconsts = union avoids (intersect (frees (concl th)) (freesl(hyp th))) in | |
fun tm -> | |
let bvms = match_bvs pbod tm [] in | |
let atm = deep_alpha bvms tm in | |
term_match lconsts atm (partfn bod) ;; (* whereas in PART_MATCH we do it the other way around *) | |
(* ------------------------------------------------------------------------- *) | |
(* term_to_asm_match : term list -> term -> (string * thm) list -> *) | |
(* (string * thm) list * (thm * instantiation) *) | |
(* ------------------------------------------------------------------------- *) | |
(* term_to_asm_match tries to match key to one of the assumptions using *) | |
(* REV_PART_MATCH_I. Returns the new assumption list (with the matching *) | |
(* assumption removed), the matching assumption and the resulting *) | |
(* instantiation used. *) | |
(* ------------------------------------------------------------------------- *) | |
(* It is doubtful that this has practical use outside the Xrule_tac's. *) | |
(* It is used in erule, drule and frule to match the major premise to one of *) | |
(* the assumptions. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec (term_to_asm_match: term list -> term -> (string * thm) list -> (string * thm) list * (thm * instantiation)) = | |
fun avoids key asms -> | |
if (asms = []) then failwith ("No assumptions match `" ^ (string_of_term key) ^ "`!") | |
else try | |
let asm = (snd o hd) asms in | |
let i = REV_PART_MATCH_I avoids I asm key in | |
(tl asms),(asm,i) | |
with Failure _ -> let res,inst = term_to_asm_match avoids key (tl asms) in ((hd asms)::res),inst;; | |
(* ------------------------------------------------------------------------- *) | |
(* term_to_asm_n_match : term list -> term -> (string * thm) list -> int -> *) | |
(* (string * thm) list * (thm * instantiation) *) | |
(* ------------------------------------------------------------------------- *) | |
(* Same as term_to_asm_match but only tries to match nth assumption. *) | |
(* ------------------------------------------------------------------------- *) | |
(* It is doubtful that this has practical use outside the Xrulen_tac's. *) | |
(* It is used in erulen, drulen and frulen to match the major premise to one *) | |
(* of the assumptions. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec (term_to_asm_n_match: term list -> term -> (string * thm) list -> int -> (string * thm) list * (thm * instantiation)) = | |
fun avoids key asms n -> | |
if (asms = []) then failwith "No such assumption found!" | |
else try match n with | |
0 -> | |
let asm = (snd o hd) asms in | |
let i = REV_PART_MATCH_I avoids I asm key in | |
(tl asms),(asm,i) | |
| _ -> let re_asms,m = term_to_asm_n_match avoids key (tl asms) (n-1) in | |
(hd asms)::re_asms,m | |
with Failure _ -> failwith ("Assumption `" ^ ((string_of_term o concl o snd o hd) asms) ^ "` doesn't match `" ^ (string_of_term key) ^ "`!");; | |
(* gmm is not to be used until qed is updated *) | |
(* We need a MDISCH for that... *) | |
let gmm t = | |
let fvs = sort (<) (map (fst o dest_var) (frees t)) in | |
(if fvs <> [] then | |
let errmsg = end_itlist (fun s t -> s^", "^t) fvs in | |
warn true ("Free variables in goal: "^errmsg) | |
else ()); | |
let rec split_mimp = fun tm -> | |
if (is_mimp tm) | |
then | |
let (a,b) = dest_mimp tm in | |
let (asms, concl) = split_mimp b in | |
(a::asms,concl) | |
else ([],tm) in | |
set_goal (split_mimp t);; | |
(* ------------------------------------------------------------------------- *) | |
(* gm : term -> goalstack *) | |
(* This is used to set a term containing meta-level implication as a goal. *) | |
(* ------------------------------------------------------------------------- *) | |
(* (+) Uses g to set the goal then MIMP_TAC to get rid of meta-implication. *) | |
(* (+) Note that if the goal has normal implication it gets discharged as *) | |
(* well. This will be fixed when gmm is fixed. *) | |
(* ------------------------------------------------------------------------- *) | |
let gm t = ignore( g t ) ; e (REPEAT MDISCH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Isabelle's natural deduction rules as thms with meta-level implication. *) | |
(* ------------------------------------------------------------------------- *) | |
let conjI = MTAUT `p===>q===>p/\q`;; | |
let conjunct1 = MTAUT `p/\q===>p`;; | |
let conjunct2 = MTAUT `p/\q===>q`;; | |
let conjE = MTAUT `p/\q===>(p===>q===>r)===>r`;; | |
let disjI1 = MTAUT `p===>p\/q`;; | |
let disjI2 = MTAUT `q===>p\/q`;; | |
let disjE = MTAUT `p\/q===>(p===>r)===>(q===>r)===>r`;; | |
let impI = MTAUT `(p===>q)===>(p==>q)`;; | |
let impE = MTAUT `(p==>q)===>p===>(q===>r)===>r`;; | |
let mp = MTAUT `(p==>q)===>(p===>q)`;; | |
let iffI = MTAUT `(a===>b)===>(b===>a)===>(a<=>b)`;; | |
let iffE = MTAUT `(a<=>b)===>((a==>b) ===> (b==>a) ===> r) ===> r`;; | |
let allE = prove( `(!x:A. P x) ===> (P (a:A) ===> (r:bool)) ===> r` , | |
MIMP_TAC THEN MESON_TAC[]);; | |
let exI = prove (`P (a:A)===> ?x:A. P x`, | |
MIMP_TAC THEN | |
DISCH_TAC THEN | |
(EXISTS_TAC `a:A`) THEN | |
(FIRST_ASSUM ACCEPT_TAC));; | |
let notI = MTAUT `(p===>F)===> ~p`;; | |
let notE = MTAUT `~a ===> a ===> r`;; | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------ META-RULES START HERE!! ------------------------ *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* meta_rule (type) *) | |
(* The representation of an Isabelle inference rule in HOL Light. *) | |
(* ------------------------------------------------------------------------- *) | |
(* term = The conclusion of the inference rule. *) | |
(* goal list = The premises represented as "meta-subgoals". *) | |
(* thm = The representation of the rule as a theorem used for justification. *) | |
(* *) | |
(* (+) thm must be of the form H1,H2,...,Hn |- G *) | |
(* (+) H1--Hn must be represented as "meta-subgoals" in any order (1) *) | |
(* (+) [|P;Q|] ==> R (in Isabelle notation) is translated as "meta-subgoal" *) | |
(* P,Q ?- R and as P==>Q==>R in the justification theorem. *) | |
(* (+) The form of the premises (assumption order etc) must be kept in the *) | |
(* justification theorem (see example in (2)) *) | |
(* (+) Use "mk_meta_rule" to create proper meta rules from theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
(* (1) Since we use PROVE_HYP instead of MP to justify rule, erule etc, the *) | |
(* order of the subgoals is no longer essential. *) | |
(* (2) Example: conjE *) | |
(* In Isabelle: P/\Q [|P;Q|]==> R *) | |
(* ------------------ *) | |
(* R *) | |
(* *) | |
(* As a meta rule (briefly - see conjEm below for full notation): *) | |
(* `R`, - conclusion *) | |
(* [ - premises list *) | |
(* [ ], `P/\Q` ; *) | |
(* [`P`;`Q`], `R` *) | |
(* ], *) | |
(* `P/\Q, P==>Q==>R |- R` - justification theorem *) | |
(* *) | |
(* The form of the premises must be preserved in the justification theorem. *) | |
(* ie. using `P/\Q, Q==>P==>R |- R` or `Q/\P, P==>Q==>R |- R` as a *) | |
(* justification theorem would break the justification and result in an *) | |
(* "invalid tactic" exception. *) | |
(* ------------------------------------------------------------------------- *) | |
type meta_rule = term * goal list * thm;; | |
let print_meta_rule: meta_rule->unit = | |
fun (c,glist,j) -> | |
print_term c ; hd (map (print_newline () ; print_goal) glist) ; | |
print_newline () ; print_thm j ; print_newline ();; | |
(* ------------------------------------------------------------------------- *) | |
(* inst_meta_rule: instantiation -> meta_rule -> meta_rule *) | |
(* ------------------------------------------------------------------------- *) | |
(* Instantiates all parts of meta_rules based on an instantiation. *) | |
(* ------------------------------------------------------------------------- *) | |
let inst_meta_rule:instantiation->meta_rule->meta_rule = | |
fun inst (c,glist,j) -> | |
instantiate inst c, | |
map (inst_goal inst) glist, | |
INSTANTIATE_ALL inst j;; | |
(* ------------------------------------------------------------------------- *) | |
(* REWRITE_META_RULE: thm list -> meta_rule -> meta_rule *) | |
(* ------------------------------------------------------------------------- *) | |
(* Rewrites all parts of meta_rules using a list of theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let REWRITE_META_RULE:thm list->meta_rule->meta_rule = | |
fun thl (c,glist,j) -> | |
let rewr = rhs o concl o (REWRITE_CONV thl) | |
and rewrg = (hd o snd3 o (REWRITE_ASM_TAC thl THEN REWRITE_TAC thl)) in | |
rewr c, | |
map (rewrg) glist, | |
REWRITE_RULE thl j;;(* Theorem's hyp is not being rewritten! :/ *) | |
(* ------------------------------------------------------------------------- *) | |
(* meta_rule_frees: meta_rule -> term list *) | |
(* ------------------------------------------------------------------------- *) | |
(* Returns the list of free variables (or Isabelle ?metavariables) in a *) | |
(* meta_rule. *) | |
(* ------------------------------------------------------------------------- *) | |
let meta_rule_frees: meta_rule -> term list = | |
fun (c,glist,l) -> | |
itlist (union o gl_frees) glist (union (frees c) (thm_frees l));; | |
(* ------------------------------------------------------------------------- *) | |
(* meta_rule_mk_primed_vars_I: term_list -> meta_rule -> *) | |
(* meta_rule * instantiation *) | |
(* ------------------------------------------------------------------------- *) | |
(* Applies mk_primed_var to all the free variables in a meta_rule. *) | |
(* Returns the new meta_rule and the instantiation for the variable renaming.*) | |
(* ------------------------------------------------------------------------- *) | |
let meta_rule_mk_primed_vars_I: term list -> meta_rule -> meta_rule * instantiation = | |
fun avoids r -> | |
let fvars = meta_rule_frees r in | |
let rec mk_primed_l = fun avoids vars -> | |
match vars with | |
[] -> null_inst | |
| v::rest -> | |
let new_v = mk_primed_var avoids v in | |
compose_insts (term_match [] v new_v) (mk_primed_l (new_v::avoids) rest) | |
in | |
let inst = mk_primed_l avoids fvars in | |
(inst_meta_rule inst r),inst;; | |
(* ------------------------------------------------------------------------- *) | |
(* meta_rule_mk_primed_vars: term_list -> meta_rule -> meta_rule *) | |
(* ------------------------------------------------------------------------- *) | |
(* Applies mk_primed_var to all the free variables in a meta_rule. *) | |
(* ------------------------------------------------------------------------- *) | |
let meta_rule_mk_primed_vars: term list -> meta_rule -> meta_rule = | |
fun avoids r -> fst (meta_rule_mk_primed_vars_I avoids r);; | |
(* ------------------------------------------------------------------------- *) | |
(* inst_meta_rule_vars: *) | |
(* (term * term) list -> meta_rule -> term list -> meta_rule *) | |
(* ------------------------------------------------------------------------- *) | |
(* Instantiates the free variables in a meta_rule. Also renames the *) | |
(* uninstantiated variables so as to avoid clashes with free variables and *) | |
(* constants in the given goal. *) | |
(* Essentially it prepares the meta_rule for use with any of xrulem_tac. *) | |
(* ------------------------------------------------------------------------- *) | |
(* (+) By instlist we mean the list of variables and instantiation pairs *) | |
(* given by the user. *) | |
(* (+) First we check the terms given as variables in the instlist. We must *) | |
(* check if they are indeed variables and if they are free variables in the *) | |
(* given meta_rule. *) | |
(* (+) "match_var" is used to compare a variable with a free variable in the *) | |
(* meta_rule. *NOTE* that a variable is accepted as long as it can match a *) | |
(* free variable in the meta_rule allowing only type instantiation. *) | |
(* (+) "mcheck_var" does the is_var check and tries to find a match with the *) | |
(* meta_rule's free vars (rfrees) using match_var. *) | |
(* (+) "mcheck_gvar" tries to match variables on the rhs of each instlist *) | |
(* pair with the free variables in the goal so as to instantiate their types *) | |
(* properly. This is done to free the user from declaring the variable types.*) | |
(* (+) Given variables are replaced with the meta_rule variables (effectively*) | |
(* achieving type instantiation) and later recombined into the instlist. *) | |
(* (+) Secondly, we rename all the variables in the meta_rule using *) | |
(* "meta_rule_mk_primed_vars_I" so that they don't match any of the free *) | |
(* variables in the goal. *) | |
(* (+) We use the same instantiation to rename instlist variables so that *) | |
(* they properly match the new variables of the meta_rule. *) | |
(* (+) "new_instlist" should contain variables that fully match primed *) | |
(* variables in the meta_rule (new_r). *) | |
(* (+) For each instlist pair, we find the instantiation that allows the *) | |
(* variable to be substituted by the given term. *NOTE* that no check is *) | |
(* made on that term. It is the user's responsibility to give a sensible, *) | |
(* matching and correctly typed term. *) | |
(* (+) All the instantiations produced by the instlist are composed into one *) | |
(* which is then applied to new_r to give the result. *) | |
(* ------------------------------------------------------------------------- *) | |
let inst_meta_rule_vars: (term * term) list -> meta_rule -> term list -> meta_rule = | |
fun instlist r gfrees -> | |
let rfrees = meta_rule_frees r in | |
let vars,subs = List.split instlist in | |
let match_var = fun tm1 tm2 -> | |
let inst = try term_match [] tm1 tm2 with Failure _ -> [],[tm2,tm1],[] in | |
match inst with | |
[],[],_ -> tm2 | |
| _ -> failwith "match_var: no match" in | |
let mcheck_var = fun tm -> | |
if (not (is_var tm)) then failwith ("inst_meta_rule_vars: `" ^ string_of_term tm ^ "` is not a variable") | |
else try tryfind (match_var tm) rfrees | |
with Failure _ -> failwith ("inst_meta_rule_vars: `" ^ string_of_term tm ^ "` could not be found in the meta_rule") in | |
let mcheck_gvar = fun var -> | |
try let mvar = tryfind (match_var var) gfrees in | |
term_match [] var mvar | |
with Failure _ -> | |
warn true ("inst_meta_rule_vars: `" ^ string_of_term var ^ "` could not be found in the goal") ; | |
null_inst in | |
let new_r,prim_inst = meta_rule_mk_primed_vars_I gfrees r in | |
let new_vars = map ((instantiate prim_inst) o mcheck_var) vars in | |
let subs_vars = flat (map frees subs) in | |
let new_subs_inst = itlist compose_insts (map mcheck_gvar subs_vars) null_inst in | |
let new_subs = map (instantiate new_subs_inst) subs in | |
let new_instlist = List.combine new_vars new_subs in | |
let mk_inst = fun t1,t2 -> term_match [] t1 t2 in | |
let inst = itlist compose_insts (map mk_inst new_instlist) null_inst in | |
let result_r = inst_meta_rule inst new_r in | |
result_r;; | |
(* ------------------------------------------------------------------------- *) | |
(* mk_meta_rule: thm -> meta_rule *) | |
(* Creates a meta_rule out of a theorem. *) | |
(* Theorem must be of the form |- H1 ===> H2 ===> ...===> Hn ===> C *) | |
(* "===>" is the emulation of meta-level implication so this corresponds to *) | |
(* [|H1;H2;...;Hn|] ==> C in Isabelle) *) | |
(* For each Hi that is a meta-level implication, a "meta_subgoal" is created.*) | |
(* ------------------------------------------------------------------------- *) | |
(* (+) undisch_premises uses MUNDISCH to handle meta-level implication. All *) | |
(* the premises are undischarged. It returns the list of premises paired *) | |
(* with the resulting theorem. Note that MUNDISCH also removes meta-level *) | |
(* implication from the undischarged premises. *) | |
(* (+) "mk_meta_subgoal" creates a meta_subgoal from a term. If the term is *) | |
(* an implication, the lhs is added as an assumption/premise of the *) | |
(* meta_subgoal and mk_meta_subgoal is called recursively for the rhs. *) | |
(* (+) The conclusion of the undischarged theorem is the first part of the *) | |
(* produced meta_rule. *) | |
(* (+) mk_meta_subgoal creates the meta_subgoals for all the premises. They *) | |
(* form the second part of the meta_rule. *) | |
(* (+) The theorem itself is used as the justification theorem, after *) | |
(* eliminating any remaining meta-level implication in the conclusion. *) | |
(* In theory, the conclusion should never have any remaining meta-level *) | |
(* implications. We're just making sure because we don't want any meta-level *) | |
(* implications to appear in our new subgoals. *) | |
(* ------------------------------------------------------------------------- *) | |
let (mk_meta_rule: thm -> meta_rule) = | |
fun thm -> | |
let rec undisch_premises th = | |
if is_mimp (concl th) | |
then let rest,res_th = undisch_premises (MUNDISCH th) in | |
(rand(rator(concl th)))::rest,res_th | |
else [],th in | |
let (prems,thm) = undisch_premises thm in | |
let rec mk_meta_subgoal tm = ( | |
if (is_mimp(tm)) then | |
let (a,c) = dest_mimp tm in | |
let (prems,concl) = mk_meta_subgoal c in | |
("",ASSUME a)::prems,concl | |
else [],tm | |
) in | |
concl thm,map mk_meta_subgoal prems,MIMP_TO_IMP_RULE thm;; | |
(* ------------------------------------------------------------------------- *) | |
(* Isabelle's natural deduction inference rules as meta_rules. *) | |
(* ------------------------------------------------------------------------- *) | |
(* The trailing 'm' indicates they are represented as meta_rules as opposed *) | |
(* to theorems. *) | |
(* Use "mk_meta_rule" to create meta_rules from theorems. *) | |
(* Most of the following can be created using mk_meta_rule but are left here *) | |
(* as examples. *) | |
(* ------------------------------------------------------------------------- *) | |
(* Deprecated. New mk_meta_rule uses meta-level implication so now ALL of *) | |
(* these can be represented at the object-level and turned into meta_rules *) | |
(* using mk_meta_rule. They are left here for historical reasons and as *) | |
(* examples of raw meta rules. *) | |
(* ------------------------------------------------------------------------- *) | |
let conjIm:meta_rule = | |
(`p/\q`, | |
[ | |
[],`p:bool`; | |
[],`q:bool` | |
], | |
conjI);; | |
let conjEm:meta_rule = | |
(`r:bool`, | |
[ | |
[],`p/\q`; | |
[("",ASSUME `p:bool`);("",ASSUME `q:bool`)],`r:bool` | |
], | |
(UNDISCH o UNDISCH o TAUT) `p/\q==>(p==>q==>r)==>r` | |
);; | |
let notEm:meta_rule = | |
(`r:bool`, | |
[ | |
[],`~a`; | |
[],`a:bool` | |
], | |
(UNDISCH o UNDISCH o TAUT) `~a==>a==>r` | |
);; | |
let disjI1m:meta_rule = | |
(`p\/q`, | |
[ | |
[],`p:bool`; | |
], | |
UNDISCH ( TAUT `p==>p\/q` ));; | |
let disjI2m:meta_rule = | |
(`p\/q`, | |
[ | |
[],`q:bool`; | |
], | |
UNDISCH ( TAUT `q==>p\/q` ));; | |
let disjEm:meta_rule = | |
(`r:bool`, | |
[ | |
[],`p\/q`; | |
[("",ASSUME `p:bool`)],`r:bool`; | |
[("",ASSUME `q:bool`)],`r:bool` | |
], | |
(UNDISCH o UNDISCH o UNDISCH) ( TAUT `p\/q==>(p==>r)==>(q==>r)==>r`) | |
);; | |
let impIm:meta_rule = | |
(`p==>q`, | |
[ | |
[("",ASSUME `p:bool`)],`q:bool` | |
], | |
UNDISCH (TAUT `(p==>q)==>(p==>q)`) | |
);; | |
let impEm:meta_rule = | |
(`r:bool`, | |
[ | |
[],`p==>q`; | |
[],`p:bool`; | |
[("",ASSUME `q:bool`)],`r:bool` | |
], | |
(UNDISCH o UNDISCH o UNDISCH o TAUT) `(p==>q)==>p==>(q==>r)==>r` | |
);; | |
let mpm:meta_rule = | |
(`q:bool`, | |
[ | |
[],`p==>q`; | |
[],`p:bool` | |
], | |
(UNDISCH o UNDISCH o TAUT) `(p==>q)==>(p==>q)` | |
);; | |
(* Note from old mk_meta_rule: *) | |
(* This one cannot be expressed as a theorem because HOL Light insists on *) | |
(* ordering the assumptions of the theorem so the major premise is `p` *) | |
(* instead of `~p`. *) | |
let notEm:meta_rule = | |
(`r:bool`, | |
[ | |
[],`~a`; | |
[],`a:bool` | |
], | |
(UNDISCH o UNDISCH o TAUT) `~a==>a==>r` | |
);; | |
(* ------------------------------------------------------------------------- *) | |
(* rulem_tac: ((term * term) list -> meta_rule -> tactic): *) | |
(* Isabelle's rule as a HOL Light meta_rule tactic. *) | |
(* Uses a rule of the form H1,H2,...,Hn |- C represented as a meta_rule *) | |
(* to solve A1,A2,...,Am ?- G *) | |
(* Matches C to the goal G, then splits the goal to *) | |
(* A1,A2,...,Am ?- H1 *) | |
(* A1,A2,...,Am ?- H2 *) | |
(* ... *) | |
(* A1,A2,...,Am ?- Hn *) | |
(* Hi can be of the form Hi1,Hi2,...,Hik ?- HiC then the goal produced is *) | |
(* A1,A2,...,Am,Hi1,Hi2,...,Hik ?- HiC *) | |
(* ------------------------------------------------------------------------- *) | |
(* (+) "avoids" lists all the free variables in the assumptions and goal so *) | |
(* as to avoid instantiating those (as in variable conflicts with the rule *) | |
(* or partly instantiated rule in the case of erule) *) | |
(* (+) First we check if C matches G. If it does we keep the resulting *) | |
(* instantiation (ins). *) | |
(* (+) We instantiate the "meta-subgoals" of the meta_rule using ins. *) | |
(* In essence we're instantiating the premises of the rule. (new_hyps) *) | |
(* (+) The "create_goal" function creates the new goals by adding the *) | |
(* assumption list A1--Am to the instantiated "meta-subgoal". *) | |
(* (+) create_goal is mapped on new_hyps to create the new subgoal list. *) | |
(* (+) The "create_dischl" function creates the list of the terms involved *) | |
(* in the premises of each instantiated meta-subgoal. In order to create the *) | |
(* justification of the tactic, we need to convert Hi1,Hi2,...,Hik |- HiC *) | |
(* into |- Hi1==>Hi2==>...==>Hik==>HiC. That is the only way we can capture *) | |
(* the notion of a "subgoal" within a HOL Light object-level theorem. *) | |
(* We will then use PROVE_HYP to eliminate each of the proven subgoals from *) | |
(* the rule's justification theorem. In order to achieve this conversion we *) | |
(* need to keep a list of the instantiated premises of the rule (dischls) *) | |
(* for each meta_subgoal so as to avoid discharging the original goal's *) | |
(* assumptions or _FALSITY_. *) | |
(* (+) "disch_pair" is used for convenience. dishls is combined with the *) | |
(* list of proven subgoals so that each subgoal is attached to its *) | |
(* corresponding premises list (dischl). disch_pair then does the discharges.*) | |
(* It also takes care of instantiating the meta-variables in those premises *) | |
(* for proper justification. *) | |
(* (+) normalfrees is used to calculate the list of metavariables that will *) | |
(* end up in the new subgoals. It contains all the free variables in the *) | |
(* goal and instlist. *) | |
(* (+) The newly introduced metavariables are found by subtracting *) | |
(* normalfrees from the set of all free variables in all new goals. *) | |
(* ------------------------------------------------------------------------- *) | |
let (rulem_tac: (term*term) list->meta_rule->tactic) = | |
fun instlist r ((asl,w) as g) -> | |
let (c,hyps,thm) = inst_meta_rule_vars instlist r (gl_frees g) in | |
let ins = try ( term_match (gl_frees g) c w ) with Failure _ -> failwith "Rule doesn't match!" in | |
let new_hyps = map (inst_goal ins) hyps in | |
let new_goals = map (fun (hs,gl) -> (hs@asl,gl)) new_hyps in | |
let rec create_dischl (asms,g) = | |
if (asms = []) then [] else ((concl o snd o hd) asms)::(create_dischl ((tl asms),g)) in | |
let dischls = map create_dischl new_hyps in | |
let disch_pair = fun i (dischl,thm) -> DISCHL (map (instantiate i) dischl) thm in | |
let normalfrees = itlist union (map ( fun (_,y) -> frees y ) instlist ) (gl_frees g) in | |
let mvs = subtract (itlist union (map gl_frees new_goals) []) normalfrees in | |
(mvs,null_inst),new_goals,fun i l -> | |
List.fold_left (fun t1 t2 -> PROVE_HYP (INSTANTIATE_ALL i t2) t1) (INSTANTIATE_ALL (compose_insts ins i) thm) (map (disch_pair i) (zip dischls l));; | |
(* Debugging prints: | |
print_string "i:" ; print_thm (INSTANTIATE_ALL i thm) ; print_newline(); | |
print_string "---" ; print_newline (); | |
print_thl (map (disch_pair i) (zip dischls l)) ; print_string "----" ; | |
print_int (length l) ; print_newline(); | |
print_string "r:" ; print_thm res ; print_newline(); res;; | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* erulem_tac: ((term * term) list -> meta_rule -> tactic): *) | |
(* Isabelle's erule as a HOL Light meta_rule tactic. *) | |
(* Works like rulem but also matches the first hypothesis H1 with one of the *) | |
(* assumptions A1--Am and instantiates accordingly. *) | |
(* A "proper" elimination rule H1 is of the form ?- H1 (ie. has no premises) *) | |
(* ------------------------------------------------------------------------- *) | |
(* Same as rulem with some added stuff. *) | |
(* (+) If there are no "meta_subgoals" (no new subgoals to create) we fail. *) | |
(* (+) Otherwise we use the first "meta_subgoal" as our primary hypothesis *) | |
(* (the one that will be eliminated - prim_hyp). *) | |
(* (+) If prim_hyp has premises then this is not a "proper" elimination rule.*) | |
(* (+) Otherwise try to match any of the assumptions with prim_hyp. The *) | |
(* resulting instantiation is elim_inst. *) | |
(* (+) Instantiate all generated meta_subgoals with elim_inst. Retrieve the *) | |
(* (now instantiated) prim_hyp and remove it from the new subgoals (it is *) | |
(* trivially proven). We get a "pattern-matching is not exhaustive" warning *) | |
(* here, but we have already checked that new_hyps is non-empty. *) | |
(* (+) prim_thm is a trivial theorem that proves the subgoal corresponding *) | |
(* to prim_hyp. *) | |
(* (+) Instantiate the justification theorem with elim_thm. *) | |
(* (+) Add prim_hyp to the justification (pretending its a proven subgoal). *) | |
(* (+) Use a hack to add the eliminated assumption to the proven subgoals so *) | |
(* that we pass the validity check properly. *) | |
(* ------------------------------------------------------------------------- *) | |
let (erulem_tac: (term * term) list -> meta_rule->tactic) = | |
fun instlist r ((asl,w) as g) -> | |
let (c,hyps,thm) = inst_meta_rule_vars instlist r (gl_frees g) in | |
let ins = try ( term_match (gl_frees g) c w ) | |
with Failure _ -> failwith "Rule doesn't match!" in | |
let new_hyps = map (inst_goal ins) hyps in | |
let (prems,prim_hyp) = | |
if (new_hyps = []) then failwith "erule: Not a proper elimination rule: no premises!" | |
else hd new_hyps in | |
let avoids = gl_frees g in | |
let asl,(prim_thm,elim_inst) = | |
if (prems = []) | |
then try term_to_asm_match avoids prim_hyp asl with Failure s -> failwith ("erule: " ^ s) | |
else failwith "erule: Not a proper elimination rule: major premise has assumptions!" in | |
let (_,prim_hyp)::new_hyps = map (inst_goal elim_inst) new_hyps in | |
let thm = INSTANTIATE_ALL elim_inst thm in | |
let create_goal = fun asms (hs,gl) -> (hs@asms,gl) in | |
let new_goals = map (create_goal asl) new_hyps in | |
let rec create_dischl = | |
fun (asms,g) -> | |
if (asms = []) then [] | |
else ((concl o snd o hd) asms)::(create_dischl ((tl asms),g)) in | |
let dischls = map create_dischl new_hyps in | |
let disch_pair = fun i (dischl,thm) -> DISCHL (map (instantiate i) dischl) thm in | |
let normalfrees = itlist union (map ( fun (_,y) -> frees y ) instlist ) (gl_frees g) in | |
let mvs = subtract (itlist union (map gl_frees new_goals) []) normalfrees in | |
(mvs,null_inst),new_goals,fun i l -> | |
let major_thmi = INSTANTIATE_ALL i prim_thm in | |
List.fold_left (fun t1 t2 -> PROVE_HYP (INSTANTIATE_ALL i t2) t1) (INSTANTIATE_ALL (compose_insts ins i) thm) | |
(major_thmi :: map (ADD_HYP major_thmi) (map (disch_pair i) (zip dischls l)));; | |
(* ------------------------------------------------------------------------- *) | |
(* drulem_tac: ((term * term) list -> meta_rule -> tactic): *) | |
(* Isabelle's drule as a HOL Light meta_rule tactic. *) | |
(* Uses rules as shown in "rule". *) | |
(* Matches the first hypothesis H1 with one of the *) | |
(* assumptions A1--Am and instantiates accordingly. *) | |
(* The assumption is removed from the list and the trivial goal is proven *) | |
(* automatically. *) | |
(* A "proper" destructio rule H1 is of the form ?- H1 (ie. has no premises) *) | |
(* The goal A1,A2,...,Am,G ?- C is also added. *) | |
(* ------------------------------------------------------------------------- *) | |
(* Same as erulem with a few differences. *) | |
(* [+] Does not try to match the goal c. *) | |
(* [+] Adds an extra goal c ?- w after instantiating c. *) | |
(* [+] The new goal is treated slightly different in the justification. *) | |
(* It is the one whose premises must be proven so as to get to the final *) | |
(* goal. So it gets proven using PROVE_HYP by the result of the *) | |
(* justification on the original rule. *) | |
(* ------------------------------------------------------------------------- *) | |
let (drulem_tac: (term * term) list -> meta_rule->tactic) = | |
fun instlist r ((asl,w) as g) -> | |
let (c,hyps,thm) = inst_meta_rule_vars instlist r (gl_frees g) in | |
let (prems,major_prem) = | |
if (hyps = []) then failwith "drule: Not a proper destruction rule: no premises!" | |
else hd hyps in | |
let avoids = gl_frees g in | |
let asl,(major_thm,elim_inst) = | |
if (prems = []) | |
then try term_to_asm_match avoids major_prem asl with Failure s -> failwith ("drule: " ^ s) | |
else failwith "drule: not a proper destruction rule: major premise has assumptions!" in | |
let (_,major_asm)::new_hyps = map (inst_goal elim_inst) hyps in | |
let thm = INSTANTIATE_ALL elim_inst thm in | |
let create_goal = fun asms (hs,gl) -> (hs@asms,gl) in | |
let new_goals = (map (create_goal asl) new_hyps) @ [create_goal asl (["",ASSUME (instantiate elim_inst c)],w)] in | |
let rec create_dischl = | |
fun (asms,g) -> | |
if (asms = []) then [] | |
else ((concl o snd o hd) asms)::(create_dischl ((tl asms),g)) in | |
(* We add an empty discharge list at the end for the extra goal. *) | |
let dischls = map create_dischl new_hyps @ [[]] in | |
let disch_pair = fun i (dischl,thm) -> DISCHL (map (instantiate i) dischl) thm in | |
let normalfrees = itlist union (map ( fun (_,y) -> frees y ) instlist ) (gl_frees g) in | |
let mvs = subtract (itlist union (map gl_frees new_goals) []) normalfrees in | |
(mvs,null_inst),new_goals,fun i l -> | |
let major_thmi = INSTANTIATE_ALL i major_thm in | |
let l = (major_thmi :: map (ADD_HYP major_thmi) (map (disch_pair i) (zip dischls l))) in | |
PROVE_HYP (List.fold_left (fun t1 t2 -> PROVE_HYP (INSTANTIATE_ALL i t2) t1) (INSTANTIATE_ALL i thm) ((butlast) l)) (last l);; | |
(* ------------------------------------------------------------------------- *) | |
(* frulem_tac: ((term * term) list -> meta_rule -> tactic): *) | |
(* Isabelle's frule as a HOL Light meta_rule tactic. *) | |
(* Same as drule, but does not remove the matching assumption from the list. *) | |
(* ------------------------------------------------------------------------- *) | |
(* Same as drulem only skipping the parts that eat up the assumption and *) | |
(* re-add it to the proven subgoals. *) | |
(* ------------------------------------------------------------------------- *) | |
let (frulem_tac: (term * term) list -> meta_rule->tactic) = | |
fun instlist r ((asl,w) as g) -> | |
let (c,hyps,thm) = inst_meta_rule_vars instlist r (gl_frees g) in | |
let (prems,major_prem) = | |
if (hyps = []) then failwith "frule: Not a proper destruction rule: no premises!" | |
else hd hyps in | |
let avoids = gl_frees g in | |
let _,(major_thm,elim_inst) = | |
if (prems = []) | |
then try term_to_asm_match avoids major_prem asl with Failure s -> failwith ("frule: " ^ s) | |
else failwith "frule: Not a proper destruction rule: major premise has assumptions!" in | |
let (_,major_asm)::new_hyps = map (inst_goal elim_inst) hyps in | |
let thm = INSTANTIATE_ALL elim_inst thm in | |
let create_goal = fun asms (hs,gl) -> (hs@asms,gl) in | |
let new_goals = (map (create_goal asl) new_hyps) @ [create_goal asl (["",ASSUME (instantiate elim_inst c)],w)] in | |
let rec create_dischl = | |
fun (asms,g) -> | |
if (asms = []) then [] | |
else ((concl o snd o hd) asms)::(create_dischl ((tl asms),g)) in | |
let dischls = map create_dischl new_hyps @ [[]] in | |
let disch_pair = fun i (dischl,thm) -> DISCHL (map (instantiate i) dischl) thm in | |
let normalfrees = itlist union (map ( fun (_,y) -> frees y ) instlist ) (gl_frees g) in | |
let mvs = subtract (itlist union (map gl_frees new_goals) []) normalfrees in | |
(mvs,null_inst),new_goals,fun i l -> | |
let major_thmi = INSTANTIATE_ALL i major_thm in | |
let l = (major_thmi :: ((map (disch_pair i)) o (zip dischls)) l) in | |
PROVE_HYP (List.fold_left (fun t1 t2 -> PROVE_HYP (INSTANTIATE_ALL i t2) t1) (INSTANTIATE_ALL i thm) ((butlast) l)) (last l);; | |
(* ------------------------------------------------------------------------- *) | |
(* cutm_tac: ((term * term) list -> meta_rule -> tactic): *) | |
(* Isabelle's cut_tac as a HOL Light meta_rule tactic. *) | |
(* Inserts a theorem in the assumptions. *) | |
(* ------------------------------------------------------------------------- *) | |
(* (+) WARNING: It does not introduce metavariables like the other tactics *) | |
(* do! In the TODO list... *) | |
(* ------------------------------------------------------------------------- *) | |
let (cutm_tac: (term * term) list -> meta_rule->tactic) = | |
fun instlist r g -> | |
let (_,_,thm) = inst_meta_rule_vars instlist r (gl_frees g) in | |
(ASSUME_TAC thm) g;; | |
(* ------------------------------------------------------------------------- *) | |
(* erulenm_tac : (term * term) list -> int -> meta_rule->tactic) *) | |
(* drulenm_tac : (term * term) list -> int -> meta_rule->tactic) *) | |
(* frulenm_tac : (term * term) list -> int -> meta_rule->tactic) *) | |
(* Identical to their counterparts, the only difference being that they try *) | |
(* to match a particular assumption given by number. *) | |
(* ------------------------------------------------------------------------- *) | |
let (erulenm_tac: (term * term) list -> int -> meta_rule->tactic) = | |
fun instlist n r ((asl,w) as g) -> | |
let (c,hyps,thm) = inst_meta_rule_vars instlist r (gl_frees g) in | |
let ins = try ( term_match [] c w ) | |
with Failure _ -> failwith "Rule doesn't match!" in | |
let new_hyps = map (inst_goal ins) hyps in | |
let (prems,prim_hyp) = | |
if (new_hyps = []) then failwith "erule: Not a proper elimination rule: no premises!" | |
else hd new_hyps in | |
let avoids = gl_frees g in | |
let asl,(prim_thm,elim_inst) = | |
if (prems = []) | |
then try term_to_asm_n_match avoids prim_hyp (rev asl) n with Failure s -> failwith ("erule: " ^ s) | |
else failwith "erule: Not a proper elimination rule: major premise has assumptions!" in | |
let (_,prim_hyp)::new_hyps = map (inst_goal elim_inst) new_hyps in | |
let thm = INSTANTIATE_ALL elim_inst thm in | |
let create_goal = fun asms (hs,gl) -> (hs@asms,gl) in | |
let new_goals = map (create_goal asl) new_hyps in | |
let rec create_dischl = | |
fun (asms,g) -> | |
if (asms = []) then [] | |
else ((concl o snd o hd) asms)::(create_dischl ((tl asms),g)) in | |
let dischls = map create_dischl new_hyps in | |
let disch_pair = fun i (dischl,thm) -> DISCHL (map (instantiate i) dischl) thm in | |
let normalfrees = itlist union (map ( fun (_,y) -> frees y ) instlist ) (gl_frees g) in | |
let mvs = subtract (itlist union (map gl_frees new_goals) []) normalfrees in | |
(mvs,null_inst),new_goals,fun i l -> | |
let major_thmi = INSTANTIATE_ALL i prim_thm in | |
List.fold_left (fun t1 t2 -> PROVE_HYP (INSTANTIATE_ALL i t2) t1) (INSTANTIATE_ALL (compose_insts ins i) thm) | |
(major_thmi :: map (ADD_HYP major_thmi) (map (disch_pair i) (List.combine dischls l)));; | |
let (drulenm_tac: (term * term) list -> int -> meta_rule->tactic) = | |
fun instlist n r ((asl,w) as g) -> | |
let (c,hyps,thm) = inst_meta_rule_vars instlist r (gl_frees g) in | |
let (prems,major_prem) = | |
if (hyps = []) then failwith "drule: Not a proper destruction rule: no premises!" | |
else hd hyps in | |
let avoids = gl_frees g in | |
let asl,(major_thm,elim_inst) = | |
if (prems = []) | |
then try term_to_asm_n_match avoids major_prem (rev asl) n with Failure s -> failwith ("drule: " ^ s) | |
else failwith "drule: not a proper destruction rule: major premise has assumptions!" in | |
let (_,major_asm)::new_hyps = map (inst_goal elim_inst) hyps in | |
let thm = INSTANTIATE_ALL elim_inst thm in | |
let create_goal = fun asms (hs,gl) -> (hs@asms,gl) in | |
let new_goals = (map (create_goal asl) new_hyps) @ [create_goal asl (["",ASSUME (instantiate elim_inst c)],w)] in | |
let rec create_dischl = | |
fun (asms,g) -> | |
if (asms = []) then [] | |
else ((concl o snd o hd) asms)::(create_dischl ((tl asms),g)) in | |
(* We add an empty discharge list at the end for the extra goal. *) | |
let dischls = map create_dischl new_hyps @ [[]] in | |
let disch_pair = fun i (dischl,thm) -> DISCHL (map (instantiate i) dischl) thm in | |
let normalfrees = itlist union (map ( fun (_,y) -> frees y ) instlist ) (gl_frees g) in | |
let mvs = subtract (itlist union (map gl_frees new_goals) []) normalfrees in | |
(mvs,null_inst),new_goals,fun i l -> | |
let major_thmi = INSTANTIATE_ALL i major_thm in | |
let l = (major_thmi :: map (ADD_HYP major_thmi) (map (disch_pair i) (List.combine dischls l))) in | |
PROVE_HYP (List.fold_left (fun t1 t2 -> PROVE_HYP (INSTANTIATE_ALL i t2) t1) (INSTANTIATE_ALL i thm) ((butlast) l)) (last l);; | |
let (frulenm_tac: (term * term) list -> int -> meta_rule->tactic) = | |
fun instlist n r ((asl,w) as g) -> | |
let (c,hyps,thm) = inst_meta_rule_vars instlist r (gl_frees g) in | |
let (prems,major_prem) = | |
if (hyps = []) then failwith "frule: Not a proper destruction rule: no premises!" | |
else hd hyps in | |
let avoids = gl_frees g in | |
let _,(major_thm,elim_inst) = | |
if (prems = []) | |
then try term_to_asm_n_match avoids major_prem (rev asl) n with Failure s -> failwith ("frule: " ^ s) | |
else failwith "frule: Not a proper destruction rule: major premise has assumptions!" in | |
let (_,major_asm)::new_hyps = map (inst_goal elim_inst) hyps in | |
let thm = INSTANTIATE_ALL elim_inst thm in | |
let create_goal = fun asms (hs,gl) -> (hs@asms,gl) in | |
let new_goals = (map (create_goal asl) new_hyps) @ [create_goal asl (["",ASSUME (instantiate elim_inst c)],w)] in | |
let rec create_dischl = | |
fun (asms,g) -> | |
if (asms = []) then [] | |
else ((concl o snd o hd) asms)::(create_dischl ((tl asms),g)) in | |
let dischls = map create_dischl new_hyps @ [[]] in | |
let disch_pair = fun i (dischl,thm) -> DISCHL (map (instantiate i) dischl) thm in | |
let normalfrees = itlist union (map ( fun (_,y) -> frees y ) instlist ) (gl_frees g) in | |
let mvs = subtract (itlist union (map gl_frees new_goals) []) normalfrees in | |
(mvs,null_inst),new_goals,fun i l -> | |
let major_thmi = INSTANTIATE_ALL i major_thm in | |
let l = (major_thmi :: ((map (disch_pair i)) o (List.combine dischls)) l) in | |
PROVE_HYP (List.fold_left (fun t1 t2 -> PROVE_HYP (INSTANTIATE_ALL i t2) t1) (INSTANTIATE_ALL i thm) ((butlast) l)) (last l);; | |
(* ------------------------------------------------------------------------- *) | |
(* Xrulem versions for empty instlist. *) | |
(* ------------------------------------------------------------------------- *) | |
let rulem: meta_rule -> tactic = rulem_tac [];; | |
let erulem: meta_rule -> tactic = erulem_tac [];; | |
let drulem: meta_rule -> tactic = drulem_tac [];; | |
let frulem: meta_rule -> tactic = frulem_tac [];; | |
let erulenm: int -> meta_rule -> tactic = erulenm_tac [];; | |
let drulenm: int -> meta_rule -> tactic = drulenm_tac [];; | |
let frulenm: int -> meta_rule -> tactic = frulenm_tac [];; | |
(* For consistency with HOL Light capitalized tactics: *) | |
let RULEM,ERULEM,DRULEM,FRULEM = rulem,erulem,drulem,frulem;; | |
let ERULENM,DRULENM,FRULENM = erulenm,drulenm,frulenm;; | |
(* ------------------------------------------------------------------------- *) | |
(* Xrule and Xrule_tac using arbitrary inference rules in the form of thms. *) | |
(* (see mk_meta_rule and meta_rule type) *) | |
(* ------------------------------------------------------------------------- *) | |
let rule_tac: (term * term) list -> thm -> tactic = | |
fun instlist thm -> | |
rulem_tac instlist (mk_meta_rule thm);; | |
let erule_tac: (term * term) list -> thm -> tactic = | |
fun instlist thm -> | |
erulem_tac instlist (mk_meta_rule thm);; | |
let drule_tac: (term * term) list -> thm -> tactic = | |
fun instlist thm -> | |
drulem_tac instlist (mk_meta_rule thm);; | |
let frule_tac: (term * term) list -> thm -> tactic = | |
fun instlist thm -> | |
frulem_tac instlist (mk_meta_rule thm);; | |
let cut_tac: (term * term) list -> thm -> tactic = | |
fun instlist thm -> | |
cutm_tac instlist (mk_meta_rule thm);; | |
let RULE_TAC,ERULE_TAC,DRULE_TAC,FRULE_TAC,CUT_TAC = rule_tac,erule_tac,drule_tac,frule_tac,cut_tac;; | |
let erulen_tac: (term * term) list -> int -> thm -> tactic = | |
fun instlist n thm -> | |
erulenm_tac instlist n (mk_meta_rule thm);; | |
let drulen_tac: (term * term) list -> int -> thm -> tactic = | |
fun instlist n thm -> | |
drulenm_tac instlist n (mk_meta_rule thm);; | |
let frulen_tac: (term * term) list -> int -> thm -> tactic = | |
fun instlist n thm -> | |
frulenm_tac instlist n (mk_meta_rule thm);; | |
let ERULEN_TAC,DRULEN_TAC,FRULEN_TAC = erulen_tac,drulen_tac,frulen_tac;; | |
let rule: (thm -> tactic) = rule_tac [];; | |
let erule: (thm -> tactic) = erule_tac [];; | |
let drule: (thm -> tactic) = drule_tac [];; | |
let frule: (thm -> tactic) = frule_tac [];; | |
let RULE,ERULE,DRULE,FRULE = rule,erule,drule,frule;; | |
let erulen: (int -> thm -> tactic) = erulen_tac [];; | |
let drulen: (int -> thm -> tactic) = drulen_tac [];; | |
let frulen: (int -> thm -> tactic) = frulen_tac [];; | |
let ERULEN,DRULEN,FRULEN = erulen,drulen,frulen;; | |
(* ------------------------------------------------------------------------- *) | |
(* The following are extensions of the assumption tactics found in *) | |
(* new_tactics.ml. *) | |
(* These treat meta-level implication in the assumption as a subgoal and *) | |
(* perform 1 backwards inference step to try and match its *) | |
(* (meta-)assumptions. *) | |
(* ------------------------------------------------------------------------- *) | |
(* Jacques Fleuriot pointed out this is Isabelle's behaviour. *) | |
(* ------------------------------------------------------------------------- *) | |
let assumption = | |
let const_rule thm = (* we don't want to refresh any variables in the theorem *) | |
let fs = thm_frees thm in | |
rule_tac (zip fs fs) thm THEN assumption in | |
assumption ORELSE (FIRST_ASSUM const_rule);; | |
let meta_assumption mvs = | |
let const_rule thm = (* we don't want to refresh any variables in the theorem *) | |
let fs = thm_frees thm in | |
rule_tac (zip fs fs) thm THEN meta_assumption mvs in | |
meta_assumption mvs ORELSE (FIRST_ASSUM const_rule);; | |
let ema () = (e o meta_assumption o top_metas o p) () ;; | |