Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Library /multiplicative.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
21.5 kB
(* ========================================================================= *)
(* Multiplicative functions into N or R (could add Z, C etc.) *)
(* ========================================================================= *)
needs "Library/products.ml";;
needs "Library/prime.ml";;
needs "Library/pocklington.ml";;
(* ------------------------------------------------------------------------- *)
(* Definition of multiplicativity of functions into N. *)
(* ------------------------------------------------------------------------- *)
let multiplicative = new_definition
`multiplicative f <=>
f(1) = 1 /\ !m n. coprime(m,n) ==> f(m * n) = f(m) * f(n)`;;
let MULTIPLICATIVE_1 = prove
(`!f. multiplicative f ==> f(1) = 1`,
SIMP_TAC[multiplicative]);;
(* ------------------------------------------------------------------------- *)
(* We can really ignore the value at zero. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE = prove
(`multiplicative f <=>
f(1) = 1 /\
!m n. ~(m = 0) /\ ~(n = 0) /\ coprime(m,n) ==> f(m * n) = f(m) * f(n)`,
REWRITE_TAC[multiplicative] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_SIMP_TAC[] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN
ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
ASM_MESON_TAC[COPRIME_SYM; COPRIME_0; DIVIDES_ONE; MULT_CLAUSES]);;
let MULTIPLICATIVE_IGNOREZERO = prove
(`!f g. (!n. ~(n = 0) ==> g(n) = f(n)) /\ multiplicative f
==> multiplicative g`,
REPEAT GEN_TAC THEN SIMP_TAC[MULTIPLICATIVE; ARITH_EQ] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_EQ_0]);;
(* ------------------------------------------------------------------------- *)
(* Expanding a multiplicative function in terms of values on prime powers. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE_EXPAND = prove
(`!f n.
multiplicative f /\ ~(n = 0)
==> f n = nproduct {p | prime p /\ p divides n}
(\p. f(p EXP index p n))`,
REWRITE_TAC[multiplicative] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `n = 1` THENL
[ASM_REWRITE_TAC[MESON[PRIME_1; DIVIDES_ONE]
`~(prime p /\ p divides 1)`] THEN
ASM_REWRITE_TAC[EMPTY_GSPEC; NPRODUCT_CLAUSES];
MAP_EVERY UNDISCH_TAC [`~(n = 1)`; `~(n = 0)`] THEN
REWRITE_TAC[IMP_IMP; ARITH_RULE `~(n = 0) /\ ~(n = 1) <=> 1 < n`]] THEN
SPEC_TAC(`n:num`,`n:num`) THEN
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`a:num`; `b:num`] THEN ASM_SIMP_TAC[] THEN
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(CONJUNCTS_THEN SUBST1_TAC) THEN
REWRITE_TAC[MESON[PRIME_DIVPROD_EQ]
`prime p /\ p divides a * b <=>
prime p /\ p divides a \/ prime p /\ p divides b`] THEN
REWRITE_TAC[SET_RULE `{x | P x \/ Q x} = {x | P x} UNION {x | Q x}`] THEN
W(MP_TAC o PART_MATCH (lhand o rand) NPRODUCT_UNION o rand o snd) THEN
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; ARITH_RULE `1 < p ==> ~(p = 0)`] THEN
ANTS_TAC THENL
[REWRITE_TAC[DISJOINT; EXTENSION; IN_ELIM_THM;
IN_INTER; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[COPRIME_PRIME_EQ];
DISCH_THEN SUBST1_TAC] THEN
BINOP_TAC THEN MATCH_MP_TAC NPRODUCT_EQ THEN
X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
ASM_SIMP_TAC[INDEX_MUL; ARITH_RULE `1 < p ==> ~(p = 0)`] THEN
REWRITE_TAC[EQ_ADD_LCANCEL_0; EQ_ADD_RCANCEL_0] THEN
REWRITE_TAC[INDEX_EQ_0] THEN ASM_MESON_TAC[COPRIME_PRIME_EQ];
SIMP_TAC[MESON[PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME]
`prime p ==> (prime q /\ q divides p EXP k <=> q = p /\ ~(k = 0))`] THEN
REWRITE_TAC[SING_GSPEC; NPRODUCT_SING] THEN
SIMP_TAC[INDEX_EXP; INDEX_REFL] THEN
REWRITE_TAC[ARITH_RULE `p <= 1 <=> p = 0 \/ p = 1`] THEN
ASM_MESON_TAC[PRIME_0; PRIME_1; MULT_CLAUSES]]);;
(* ------------------------------------------------------------------------- *)
(* A key "building block" theorem. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE_CONVOLUTION = prove
(`!f g. multiplicative f /\ multiplicative g
==> multiplicative (\n. nsum {d | d divides n}
(\d. f(d) * g(n DIV d)))`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [multiplicative] THEN
REWRITE_TAC[MULTIPLICATIVE; GSYM NSUM_LMUL] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[DIVIDES_ONE; DIV_1; SING_GSPEC; NSUM_SING; MULT_CLAUSES] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
ASM_SIMP_TAC[GSYM NSUM_LMUL; NSUM_NSUM_PRODUCT; FINITE_DIVISORS] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC NSUM_EQ_GENERAL THEN
EXISTS_TAC `\(a:num,b). a * b` THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN
REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[IN_ELIM_THM] THEN
REWRITE_TAC[PAIR_EQ] THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP DIVISION_DECOMP) THEN
CONJ_TAC THENL [ASM_MESON_TAC[MULT_SYM]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN
STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN REPEAT CONJ_TAC THEN
MATCH_MP_TAC COPRIME_DIVPROD THENL
(map EXISTS_TAC [`b2:num`; `b1:num`; `a2:num`; `a1:num`]) THEN
ASM_MESON_TAC[COPRIME_DIVISORS; DIVIDES_REFL;
DIVIDES_RMUL; COPRIME_SYM; MULT_SYM];
MAP_EVERY X_GEN_TAC [`d:num`; `e:num`] THEN STRIP_TAC THEN
CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL2; MULT_SYM]; ALL_TAC] THEN
MP_TAC(REWRITE_RULE[divides] (ASSUME `(d:num) divides n`)) THEN
DISCH_THEN(X_CHOOSE_THEN `d':num` SUBST_ALL_TAC) THEN
MP_TAC(REWRITE_RULE[divides] (ASSUME `(e:num) divides m`)) THEN
DISCH_THEN(X_CHOOSE_THEN `e':num` SUBST_ALL_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
ONCE_REWRITE_TAC[AC MULT_AC
`(e * e') * d * d':num = (d * e) * (d' * e')`] THEN
ASM_SIMP_TAC[DIV_MULT; MULT_EQ_0] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (NUMBER_RULE
`coprime(a * b:num,c * d) ==> coprime(c,a) /\ coprime(d,b)`)) THEN
ASM_SIMP_TAC[] THEN ARITH_TAC]);;
let MULTIPLICATIVE_CONST = prove
(`!c. multiplicative(\n. c) <=> c = 1`,
GEN_TAC THEN REWRITE_TAC[multiplicative] THEN
ASM_CASES_TAC `c = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES]);;
let MULTIPLICATIVE_DELTA = prove
(`multiplicative(\n. if n = 1 then 1 else 0)`,
REWRITE_TAC[MULTIPLICATIVE; MULT_EQ_1] THEN ARITH_TAC);;
let MULTIPLICATIVE_DIVISORSUM = prove
(`!f. multiplicative f ==> multiplicative (\n. nsum {d | d divides n} f)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:num->num`; `\n:num. 1`] MULTIPLICATIVE_CONVOLUTION) THEN
ASM_REWRITE_TAC[MULT_CLAUSES; MULTIPLICATIVE_CONST; ETA_AX]);;
(* ------------------------------------------------------------------------- *)
(* Some particular multiplicative functions. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE_ID = prove
(`multiplicative(\n. n)`,
REWRITE_TAC[multiplicative]);;
let MULTIPLICATIVE_POWERSUM = prove
(`!k. multiplicative(\n. nsum {d | d divides n} (\d. d EXP k))`,
GEN_TAC THEN MATCH_MP_TAC MULTIPLICATIVE_DIVISORSUM THEN
REWRITE_TAC[MULTIPLICATIVE; EXP_ONE; MULT_EXP]);;
let sigma = new_definition
`sigma(n) = if n = 0 then 0 else nsum {d | d divides n} (\i. i)`;;
let tau = new_definition
`tau(n) = if n = 0 then 0 else CARD {d | d divides n}`;;
let MULTIPLICATIVE_SIGMA = prove
(`multiplicative(sigma)`,
MP_TAC(SPEC `1` MULTIPLICATIVE_POWERSUM) THEN
MATCH_MP_TAC(REWRITE_RULE[GSYM IMP_IMP] MULTIPLICATIVE_IGNOREZERO) THEN
SIMP_TAC[sigma; EXP_1]);;
let MULTIPLICATIVE_TAU = prove
(`multiplicative(tau)`,
MP_TAC(SPEC `0` MULTIPLICATIVE_POWERSUM) THEN
MATCH_MP_TAC(REWRITE_RULE[GSYM IMP_IMP] MULTIPLICATIVE_IGNOREZERO) THEN
SIMP_TAC[tau; EXP; NSUM_CONST; MULT_CLAUSES; FINITE_DIVISORS]);;
let MULTIPLICATIVE_PHI = prove
(`multiplicative(phi)`,
REWRITE_TAC[multiplicative; PHI_MULTIPLICATIVE; PHI_1]);;
let MULTIPLICATIVE_GCD = prove
(`!n. multiplicative(\m. gcd(n,m))`,
REWRITE_TAC[multiplicative; ONCE_REWRITE_RULE[GCD_SYM] GCD_1] THEN
ONCE_REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN NUMBER_TAC);;
let PHI_EXPAND = prove
(`!n. phi n = if n = 0 then 0
else nproduct {p | prime p /\ p divides n}
(\p. p EXP (index p n - 1) * (p - 1))`,
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PHI_0] THEN
MP_TAC(SPECL [`phi`; `n:num`] MULTIPLICATIVE_EXPAND) THEN
ASM_REWRITE_TAC[MULTIPLICATIVE_PHI] THEN DISCH_THEN SUBST1_TAC THEN
MATCH_MP_TAC NPRODUCT_EQ THEN SIMP_TAC[IN_ELIM_THM; PHI_PRIMEPOW_ALT] THEN
ASM_SIMP_TAC[INDEX_EQ_0] THEN MESON_TAC[PRIME_1]);;
(* ------------------------------------------------------------------------- *)
(* Uniqueness of multiplicative functions if equal on prime powers. *)
(* ------------------------------------------------------------------------- *)
let MULTIPLICATIVE_UNIQUE = prove
(`!f g. multiplicative f /\ multiplicative g /\
(!p k. prime p ==> f(p EXP k) = g(p EXP k))
==> !n. ~(n = 0) ==> f n = g n`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN
X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC o MATCH_MP (ARITH_RULE
`~(n = 0) ==> n = 1 \/ 1 < n`))
THENL [ASM_MESON_TAC[multiplicative]; ALL_TAC] THEN
SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN
ASM_MESON_TAC[multiplicative]);;
(* ------------------------------------------------------------------------- *)
(* Derive the divisor-sum identity for phi from this. *)
(* ------------------------------------------------------------------------- *)
let PHI_DIVISORSUM = prove
(`!n. ~(n = 0) ==> nsum {d | d divides n} (\d. phi(d)) = n`,
MATCH_MP_TAC MULTIPLICATIVE_UNIQUE THEN REWRITE_TAC[MULTIPLICATIVE_ID] THEN
SIMP_TAC[MULTIPLICATIVE_DIVISORSUM; ETA_AX; MULTIPLICATIVE_PHI] THEN
SIMP_TAC[DIVIDES_PRIMEPOW; SET_RULE
`{d | ?i. i <= k /\ d = p EXP i} = IMAGE (\i. p EXP i) {i | i <= k}`] THEN
SIMP_TAC[NSUM_IMAGE; EQ_PRIMEPOW; o_DEF; PHI_PRIMEPOW] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THEN REWRITE_TAC[LE; NOT_SUC] THEN
REWRITE_TAC[CONJUNCT1 EXP; SET_RULE `{x | x = 0} = {0}`; NSUM_SING] THEN
REWRITE_TAC[SET_RULE
`{i:num | i = a \/ i <= b} = a INSERT {i | i <= b}`] THEN
ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_NUMSEG_LE; NOT_SUC] THEN
REWRITE_TAC[IN_ELIM_THM; SUC_SUB1; ARITH_RULE `~(SUC k <= k)`] THEN
MATCH_MP_TAC(ARITH_RULE `a:num <= b ==> b - a + a = b`) THEN
ASM_SIMP_TAC[LE_EXP; PRIME_IMP_NZ] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Now the real analog. *)
(* ------------------------------------------------------------------------- *)
let real_multiplicative = new_definition
`real_multiplicative (f:num->real) <=>
f(1) = &1 /\ !m n. coprime(m,n) ==> f(m * n) = f(m) * f(n)`;;
let REAL_MULTIPLICATIVE = prove
(`real_multiplicative f <=>
f(1) = &1 /\
!m n. ~(m = 0) /\ ~(n = 0) /\ coprime(m,n) ==> f(m * n) = f(m) * f(n)`,
REWRITE_TAC[real_multiplicative] THEN EQ_TAC THEN
STRIP_TAC THEN ASM_SIMP_TAC[] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
ASM_CASES_TAC `n = 0` THEN
ASM_SIMP_TAC[COPRIME_0; MULT_CLAUSES; REAL_MUL_LID] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN
ASM_CASES_TAC `m = 0` THEN
ASM_SIMP_TAC[COPRIME_0; MULT_CLAUSES; REAL_MUL_RID] THEN
ASM_MESON_TAC[COPRIME_SYM; COPRIME_0; DIVIDES_ONE; MULT_CLAUSES]);;
let REAL_MULTIPLICATIVE_CONST = prove
(`!c. real_multiplicative(\n. c) <=> c = &1`,
GEN_TAC THEN REWRITE_TAC[real_multiplicative] THEN
ASM_CASES_TAC `c:real = &1` THEN ASM_REWRITE_TAC[REAL_MUL_LID]);;
let REAL_MULTIPLICATIVE_DELTA = prove
(`real_multiplicative(\n. if n = 1 then &1 else &0)`,
REWRITE_TAC[REAL_MULTIPLICATIVE; MULT_EQ_1] THEN REAL_ARITH_TAC);;
let REAL_MULTIPLICATIVE_IGNOREZERO = prove
(`!f g. (!n. ~(n = 0) ==> g(n) = f(n)) /\ real_multiplicative f
==> real_multiplicative g`,
REPEAT GEN_TAC THEN SIMP_TAC[REAL_MULTIPLICATIVE; ARITH_EQ] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_EQ_0]);;
let REAL_MULTIPLICATIVE_CONVOLUTION = prove
(`!f g. real_multiplicative f /\ real_multiplicative g
==> real_multiplicative (\n. sum {d | d divides n}
(\d. f(d) * g(n DIV d)))`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [real_multiplicative] THEN
REWRITE_TAC[REAL_MULTIPLICATIVE; GSYM SUM_LMUL] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[DIVIDES_ONE; DIV_1; SING_GSPEC; SUM_SING; REAL_MUL_LID] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM SUM_LMUL; SUM_SUM_PRODUCT; FINITE_DIVISORS] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN
EXISTS_TAC `\(a:num,b). a * b` THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN
REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP DIVISION_DECOMP) THEN
CONJ_TAC THENL [ASM_MESON_TAC[MULT_SYM]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN
STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN REPEAT CONJ_TAC THEN
MATCH_MP_TAC COPRIME_DIVPROD THENL
(map EXISTS_TAC [`b2:num`; `b1:num`; `a2:num`; `a1:num`]) THEN
ASM_MESON_TAC[COPRIME_DIVISORS; DIVIDES_REFL;
DIVIDES_RMUL; COPRIME_SYM; MULT_SYM];
MAP_EVERY X_GEN_TAC [`d:num`; `e:num`] THEN STRIP_TAC THEN
CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL2; MULT_SYM]; ALL_TAC] THEN
MP_TAC(REWRITE_RULE[divides] (ASSUME `(d:num) divides n`)) THEN
DISCH_THEN(X_CHOOSE_THEN `d':num` SUBST_ALL_TAC) THEN
MP_TAC(REWRITE_RULE[divides] (ASSUME `(e:num) divides m`)) THEN
DISCH_THEN(X_CHOOSE_THEN `e':num` SUBST_ALL_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
ONCE_REWRITE_TAC[AC MULT_AC
`(e * e') * d * d':num = (d * e) * (d' * e')`] THEN
ASM_SIMP_TAC[DIV_MULT; MULT_EQ_0] THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (NUMBER_RULE
`coprime(a * b:num,c * d) ==> coprime(c,a) /\ coprime(d,b)`)) THEN
ASM_SIMP_TAC[] THEN REAL_ARITH_TAC]);;
let REAL_MULTIPLICATIVE_DIVISORSUM = prove
(`!f. real_multiplicative f
==> real_multiplicative (\n. sum {d | d divides n} f)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`f:num->real`; `(\n. &1):num->real`]
REAL_MULTIPLICATIVE_CONVOLUTION) THEN
ASM_REWRITE_TAC[REAL_MUL_RID; REAL_MULTIPLICATIVE_CONST; ETA_AX]);;
(* ------------------------------------------------------------------------- *)
(* The Mobius function (into the reals). *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
let mobius = new_definition
`mobius(n) = if squarefree n then --(&1) pow CARD {p | prime p /\ p divides n}
else &0:real`;;
let MOBIUS_ALT = prove
(`!n. mobius(n) = if ?p. prime p /\ (p EXP 2) divides n then &0
else --(&1) pow CARD {p | prime p /\ p divides n}`,
ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN
REWRITE_TAC[MESON[] `~(?x. P x /\ Q x) <=> !x. P x ==> ~Q x`] THEN
REWRITE_TAC[GSYM SQUAREFREE_PRIME; GSYM mobius]);;
let MOBIUS_0 = prove
(`mobius 0 = &0`,
REWRITE_TAC[mobius; SQUAREFREE_0]);;
let MOBIUS_1 = prove
(`mobius 1 = &1`,
REWRITE_TAC[mobius; SQUAREFREE_1; DIVIDES_ONE] THEN
SUBGOAL_THEN `{p | prime p /\ p = 1} = {}`
(fun th -> SIMP_TAC[th; CARD_CLAUSES; real_pow]) THEN SET_TAC[PRIME_1]);;
let REAL_ABS_MOBIUS = prove
(`!n. abs(mobius n) <= &1`,
GEN_TAC THEN REWRITE_TAC[mobius] THEN COND_CASES_TAC THEN
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NEG; REAL_POW_ONE; REAL_ABS_NUM] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let MOBIUS_MULT = prove
(`!a b. coprime(a,b) ==> mobius(a * b) = mobius a * mobius b`,
REPEAT STRIP_TAC THEN REWRITE_TAC[mobius; SQUAREFREE_MUL] THEN
MAP_EVERY ASM_CASES_TAC [`squarefree a`; `squarefree b`] THEN
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
REWRITE_TAC[GSYM REAL_POW_ADD] THEN AP_TERM_TAC THEN
ASM_CASES_TAC `a = 0` THENL [ASM_MESON_TAC[SQUAREFREE_0]; ALL_TAC] THEN
ASM_CASES_TAC `b = 0` THENL [ASM_MESON_TAC[SQUAREFREE_0]; ALL_TAC] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; MULT_EQ_0] THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o MATCH_MP COPRIME_PRIME) THEN SET_TAC[];
MP_TAC PRIME_DIVPROD_EQ THEN ASM SET_TAC[]]);;
let REAL_MULTIPLICATIVE_MOBIUS = prove
(`real_multiplicative mobius`,
SIMP_TAC[real_multiplicative; MOBIUS_1; MOBIUS_MULT]);;
let MOBIUS_PRIME = prove
(`!p. prime p ==> mobius(p) = -- &1`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[mobius; PRIME_IMP_SQUAREFREE] THEN
SUBGOAL_THEN `{q | prime q /\ q divides p} = {p}` SUBST1_TAC THENL
[ASM SET_TAC[DIVIDES_PRIME_PRIME]; ALL_TAC] THEN
REWRITE_TAC[CARD_SING] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let MOBIUS_PRIMEPOW = prove
(`!p k. prime p ==> mobius(p EXP k) = if k = 0 then &1
else if k = 1 then -- &1
else &0`,
REPEAT STRIP_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MOBIUS_1; EXP] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[MOBIUS_PRIME; EXP_1] THEN
ASM_REWRITE_TAC[mobius; SQUAREFREE_EXP] THEN ASM_MESON_TAC[PRIME_1]);;
let DIVISORSUM_MOBIUS = prove
(`!n. 1 <= n
==> sum {d | d divides n} (\d. mobius d) = if n = 1 then &1 else &0`,
REWRITE_TAC[ARITH_RULE `1 <= n <=> n = 1 \/ 1 < n`] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[DIVIDES_ONE; SET_RULE `{x | x = a} = {a}`; SUM_SING; MOBIUS_1] THEN
SIMP_TAC[ARITH_RULE `1 < n ==> ~(n = 1)`] THEN
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL
[MP_TAC(MATCH_MP REAL_MULTIPLICATIVE_DIVISORSUM
REAL_MULTIPLICATIVE_MOBIUS) THEN
SIMP_TAC[real_multiplicative; ETA_AX; REAL_MUL_LZERO];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN STRIP_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum {1,p} (\d. mobius d)` THEN
CONJ_TAC THENL
[ALL_TAC;
ASM_SIMP_TAC[SUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; IN_SING;
MOBIUS_PRIME; MOBIUS_1; REAL_ADD_RID; REAL_ADD_RINV] THEN
ASM_MESON_TAC[PRIME_1]] THEN
MATCH_MP_TAC SUM_SUPERSET THEN ASM_SIMP_TAC[DIVIDES_PRIMEPOW] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[EXP; LE_0];
ASM_MESON_TAC[EXP_1; LE_1];
ASM_SIMP_TAC[MOBIUS_PRIMEPOW] THEN ASM_MESON_TAC[EXP; EXP_1]]);;
let MOBIUS_INVERSION = prove
(`!f g. (!n. 1 <= n ==> g(n) = sum {d | d divides n} f)
==> !n. 1 <= n
==> f(n) = sum {d | d divides n} (\d. mobius(d) * g(n DIV d))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `!d. d divides n ==> ~(n DIV d = 0)` ASSUME_TAC THENL
[GEN_TAC THEN ASM_CASES_TAC `d = 0` THEN
ASM_SIMP_TAC[DIVIDES_ZERO; LE_1] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_SIMP_TAC[LE_1; NOT_LT; DIV_EQ_0];
ALL_TAC] THEN
ASM_SIMP_TAC[LE_1] THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`sum {d | d divides n} (\d. f(d) * (if n DIV d = 1 then &1 else &0))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `sum {n} (\d. f(d) * (if n DIV d = 1 then &1 else &0))` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[SUM_SING; DIV_REFL; LE_1; REAL_MUL_RID]; ALL_TAC] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_SUPERSET THEN
SIMP_TAC[SUBSET; IN_SING; IN_ELIM_THM; DIVIDES_REFL] THEN
X_GEN_TAC `d:num` THEN REWRITE_TAC[DIVIDES_DIV_MULT] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES; REAL_MUL_RZERO];
ASM_SIMP_TAC[GSYM DIVISORSUM_MOBIUS; LE_1] THEN
REWRITE_TAC[GSYM SUM_LMUL] THEN
ASM_SIMP_TAC[SUM_SUM_PRODUCT; FINITE_DIVISORS; LE_1; IN_ELIM_THM] THEN
MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
REPEAT(EXISTS_TAC `\(m:num,n:num). (n,m)`) THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
CONJ_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_MESON_TAC[DIVIDES_DIVIDES_DIV; MULT_SYM;
NUMBER_RULE `(a * b:num) divides c ==> b divides c`]]);;