Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Multiplicative functions into N or R (could add Z, C etc.) *) | |
(* ========================================================================= *) | |
needs "Library/products.ml";; | |
needs "Library/prime.ml";; | |
needs "Library/pocklington.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of multiplicativity of functions into N. *) | |
(* ------------------------------------------------------------------------- *) | |
let multiplicative = new_definition | |
`multiplicative f <=> | |
f(1) = 1 /\ !m n. coprime(m,n) ==> f(m * n) = f(m) * f(n)`;; | |
let MULTIPLICATIVE_1 = prove | |
(`!f. multiplicative f ==> f(1) = 1`, | |
SIMP_TAC[multiplicative]);; | |
(* ------------------------------------------------------------------------- *) | |
(* We can really ignore the value at zero. *) | |
(* ------------------------------------------------------------------------- *) | |
let MULTIPLICATIVE = prove | |
(`multiplicative f <=> | |
f(1) = 1 /\ | |
!m n. ~(m = 0) /\ ~(n = 0) /\ coprime(m,n) ==> f(m * n) = f(m) * f(n)`, | |
REWRITE_TAC[multiplicative] THEN EQ_TAC THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[] THEN | |
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN | |
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN | |
ONCE_REWRITE_TAC[COPRIME_SYM] THEN | |
ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN | |
ASM_MESON_TAC[COPRIME_SYM; COPRIME_0; DIVIDES_ONE; MULT_CLAUSES]);; | |
let MULTIPLICATIVE_IGNOREZERO = prove | |
(`!f g. (!n. ~(n = 0) ==> g(n) = f(n)) /\ multiplicative f | |
==> multiplicative g`, | |
REPEAT GEN_TAC THEN SIMP_TAC[MULTIPLICATIVE; ARITH_EQ] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_EQ_0]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Expanding a multiplicative function in terms of values on prime powers. *) | |
(* ------------------------------------------------------------------------- *) | |
let MULTIPLICATIVE_EXPAND = prove | |
(`!f n. | |
multiplicative f /\ ~(n = 0) | |
==> f n = nproduct {p | prime p /\ p divides n} | |
(\p. f(p EXP index p n))`, | |
REWRITE_TAC[multiplicative] THEN REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `n = 1` THENL | |
[ASM_REWRITE_TAC[MESON[PRIME_1; DIVIDES_ONE] | |
`~(prime p /\ p divides 1)`] THEN | |
ASM_REWRITE_TAC[EMPTY_GSPEC; NPRODUCT_CLAUSES]; | |
MAP_EVERY UNDISCH_TAC [`~(n = 1)`; `~(n = 0)`] THEN | |
REWRITE_TAC[IMP_IMP; ARITH_RULE `~(n = 0) /\ ~(n = 1) <=> 1 < n`]] THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN | |
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`a:num`; `b:num`] THEN ASM_SIMP_TAC[] THEN | |
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(CONJUNCTS_THEN SUBST1_TAC) THEN | |
REWRITE_TAC[MESON[PRIME_DIVPROD_EQ] | |
`prime p /\ p divides a * b <=> | |
prime p /\ p divides a \/ prime p /\ p divides b`] THEN | |
REWRITE_TAC[SET_RULE `{x | P x \/ Q x} = {x | P x} UNION {x | Q x}`] THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) NPRODUCT_UNION o rand o snd) THEN | |
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; ARITH_RULE `1 < p ==> ~(p = 0)`] THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[DISJOINT; EXTENSION; IN_ELIM_THM; | |
IN_INTER; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[COPRIME_PRIME_EQ]; | |
DISCH_THEN SUBST1_TAC] THEN | |
BINOP_TAC THEN MATCH_MP_TAC NPRODUCT_EQ THEN | |
X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN | |
ASM_SIMP_TAC[INDEX_MUL; ARITH_RULE `1 < p ==> ~(p = 0)`] THEN | |
REWRITE_TAC[EQ_ADD_LCANCEL_0; EQ_ADD_RCANCEL_0] THEN | |
REWRITE_TAC[INDEX_EQ_0] THEN ASM_MESON_TAC[COPRIME_PRIME_EQ]; | |
SIMP_TAC[MESON[PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME] | |
`prime p ==> (prime q /\ q divides p EXP k <=> q = p /\ ~(k = 0))`] THEN | |
REWRITE_TAC[SING_GSPEC; NPRODUCT_SING] THEN | |
SIMP_TAC[INDEX_EXP; INDEX_REFL] THEN | |
REWRITE_TAC[ARITH_RULE `p <= 1 <=> p = 0 \/ p = 1`] THEN | |
ASM_MESON_TAC[PRIME_0; PRIME_1; MULT_CLAUSES]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A key "building block" theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let MULTIPLICATIVE_CONVOLUTION = prove | |
(`!f g. multiplicative f /\ multiplicative g | |
==> multiplicative (\n. nsum {d | d divides n} | |
(\d. f(d) * g(n DIV d)))`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [multiplicative] THEN | |
REWRITE_TAC[MULTIPLICATIVE; GSYM NSUM_LMUL] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[DIVIDES_ONE; DIV_1; SING_GSPEC; NSUM_SING; MULT_CLAUSES] THEN | |
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN | |
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN | |
ASM_SIMP_TAC[GSYM NSUM_LMUL; NSUM_NSUM_PRODUCT; FINITE_DIVISORS] THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC NSUM_EQ_GENERAL THEN | |
EXISTS_TAC `\(a:num,b). a * b` THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN | |
REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
REWRITE_TAC[PAIR_EQ] THEN CONJ_TAC THENL | |
[GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP DIVISION_DECOMP) THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[MULT_SYM]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN | |
STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN | |
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN REPEAT CONJ_TAC THEN | |
MATCH_MP_TAC COPRIME_DIVPROD THENL | |
(map EXISTS_TAC [`b2:num`; `b1:num`; `a2:num`; `a1:num`]) THEN | |
ASM_MESON_TAC[COPRIME_DIVISORS; DIVIDES_REFL; | |
DIVIDES_RMUL; COPRIME_SYM; MULT_SYM]; | |
MAP_EVERY X_GEN_TAC [`d:num`; `e:num`] THEN STRIP_TAC THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL2; MULT_SYM]; ALL_TAC] THEN | |
MP_TAC(REWRITE_RULE[divides] (ASSUME `(d:num) divides n`)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `d':num` SUBST_ALL_TAC) THEN | |
MP_TAC(REWRITE_RULE[divides] (ASSUME `(e:num) divides m`)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `e':num` SUBST_ALL_TAC) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN | |
ONCE_REWRITE_TAC[AC MULT_AC | |
`(e * e') * d * d':num = (d * e) * (d' * e')`] THEN | |
ASM_SIMP_TAC[DIV_MULT; MULT_EQ_0] THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (NUMBER_RULE | |
`coprime(a * b:num,c * d) ==> coprime(c,a) /\ coprime(d,b)`)) THEN | |
ASM_SIMP_TAC[] THEN ARITH_TAC]);; | |
let MULTIPLICATIVE_CONST = prove | |
(`!c. multiplicative(\n. c) <=> c = 1`, | |
GEN_TAC THEN REWRITE_TAC[multiplicative] THEN | |
ASM_CASES_TAC `c = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES]);; | |
let MULTIPLICATIVE_DELTA = prove | |
(`multiplicative(\n. if n = 1 then 1 else 0)`, | |
REWRITE_TAC[MULTIPLICATIVE; MULT_EQ_1] THEN ARITH_TAC);; | |
let MULTIPLICATIVE_DIVISORSUM = prove | |
(`!f. multiplicative f ==> multiplicative (\n. nsum {d | d divides n} f)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`f:num->num`; `\n:num. 1`] MULTIPLICATIVE_CONVOLUTION) THEN | |
ASM_REWRITE_TAC[MULT_CLAUSES; MULTIPLICATIVE_CONST; ETA_AX]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some particular multiplicative functions. *) | |
(* ------------------------------------------------------------------------- *) | |
let MULTIPLICATIVE_ID = prove | |
(`multiplicative(\n. n)`, | |
REWRITE_TAC[multiplicative]);; | |
let MULTIPLICATIVE_POWERSUM = prove | |
(`!k. multiplicative(\n. nsum {d | d divides n} (\d. d EXP k))`, | |
GEN_TAC THEN MATCH_MP_TAC MULTIPLICATIVE_DIVISORSUM THEN | |
REWRITE_TAC[MULTIPLICATIVE; EXP_ONE; MULT_EXP]);; | |
let sigma = new_definition | |
`sigma(n) = if n = 0 then 0 else nsum {d | d divides n} (\i. i)`;; | |
let tau = new_definition | |
`tau(n) = if n = 0 then 0 else CARD {d | d divides n}`;; | |
let MULTIPLICATIVE_SIGMA = prove | |
(`multiplicative(sigma)`, | |
MP_TAC(SPEC `1` MULTIPLICATIVE_POWERSUM) THEN | |
MATCH_MP_TAC(REWRITE_RULE[GSYM IMP_IMP] MULTIPLICATIVE_IGNOREZERO) THEN | |
SIMP_TAC[sigma; EXP_1]);; | |
let MULTIPLICATIVE_TAU = prove | |
(`multiplicative(tau)`, | |
MP_TAC(SPEC `0` MULTIPLICATIVE_POWERSUM) THEN | |
MATCH_MP_TAC(REWRITE_RULE[GSYM IMP_IMP] MULTIPLICATIVE_IGNOREZERO) THEN | |
SIMP_TAC[tau; EXP; NSUM_CONST; MULT_CLAUSES; FINITE_DIVISORS]);; | |
let MULTIPLICATIVE_PHI = prove | |
(`multiplicative(phi)`, | |
REWRITE_TAC[multiplicative; PHI_MULTIPLICATIVE; PHI_1]);; | |
let MULTIPLICATIVE_GCD = prove | |
(`!n. multiplicative(\m. gcd(n,m))`, | |
REWRITE_TAC[multiplicative; ONCE_REWRITE_RULE[GCD_SYM] GCD_1] THEN | |
ONCE_REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN NUMBER_TAC);; | |
let PHI_EXPAND = prove | |
(`!n. phi n = if n = 0 then 0 | |
else nproduct {p | prime p /\ p divides n} | |
(\p. p EXP (index p n - 1) * (p - 1))`, | |
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PHI_0] THEN | |
MP_TAC(SPECL [`phi`; `n:num`] MULTIPLICATIVE_EXPAND) THEN | |
ASM_REWRITE_TAC[MULTIPLICATIVE_PHI] THEN DISCH_THEN SUBST1_TAC THEN | |
MATCH_MP_TAC NPRODUCT_EQ THEN SIMP_TAC[IN_ELIM_THM; PHI_PRIMEPOW_ALT] THEN | |
ASM_SIMP_TAC[INDEX_EQ_0] THEN MESON_TAC[PRIME_1]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Uniqueness of multiplicative functions if equal on prime powers. *) | |
(* ------------------------------------------------------------------------- *) | |
let MULTIPLICATIVE_UNIQUE = prove | |
(`!f g. multiplicative f /\ multiplicative g /\ | |
(!p k. prime p ==> f(p EXP k) = g(p EXP k)) | |
==> !n. ~(n = 0) ==> f n = g n`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN | |
X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC o MATCH_MP (ARITH_RULE | |
`~(n = 0) ==> n = 1 \/ 1 < n`)) | |
THENL [ASM_MESON_TAC[multiplicative]; ALL_TAC] THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN | |
ASM_MESON_TAC[multiplicative]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Derive the divisor-sum identity for phi from this. *) | |
(* ------------------------------------------------------------------------- *) | |
let PHI_DIVISORSUM = prove | |
(`!n. ~(n = 0) ==> nsum {d | d divides n} (\d. phi(d)) = n`, | |
MATCH_MP_TAC MULTIPLICATIVE_UNIQUE THEN REWRITE_TAC[MULTIPLICATIVE_ID] THEN | |
SIMP_TAC[MULTIPLICATIVE_DIVISORSUM; ETA_AX; MULTIPLICATIVE_PHI] THEN | |
SIMP_TAC[DIVIDES_PRIMEPOW; SET_RULE | |
`{d | ?i. i <= k /\ d = p EXP i} = IMAGE (\i. p EXP i) {i | i <= k}`] THEN | |
SIMP_TAC[NSUM_IMAGE; EQ_PRIMEPOW; o_DEF; PHI_PRIMEPOW] THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN | |
INDUCT_TAC THEN REWRITE_TAC[LE; NOT_SUC] THEN | |
REWRITE_TAC[CONJUNCT1 EXP; SET_RULE `{x | x = 0} = {0}`; NSUM_SING] THEN | |
REWRITE_TAC[SET_RULE | |
`{i:num | i = a \/ i <= b} = a INSERT {i | i <= b}`] THEN | |
ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_NUMSEG_LE; NOT_SUC] THEN | |
REWRITE_TAC[IN_ELIM_THM; SUC_SUB1; ARITH_RULE `~(SUC k <= k)`] THEN | |
MATCH_MP_TAC(ARITH_RULE `a:num <= b ==> b - a + a = b`) THEN | |
ASM_SIMP_TAC[LE_EXP; PRIME_IMP_NZ] THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now the real analog. *) | |
(* ------------------------------------------------------------------------- *) | |
let real_multiplicative = new_definition | |
`real_multiplicative (f:num->real) <=> | |
f(1) = &1 /\ !m n. coprime(m,n) ==> f(m * n) = f(m) * f(n)`;; | |
let REAL_MULTIPLICATIVE = prove | |
(`real_multiplicative f <=> | |
f(1) = &1 /\ | |
!m n. ~(m = 0) /\ ~(n = 0) /\ coprime(m,n) ==> f(m * n) = f(m) * f(n)`, | |
REWRITE_TAC[real_multiplicative] THEN EQ_TAC THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[] THEN | |
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN | |
ASM_CASES_TAC `n = 0` THEN | |
ASM_SIMP_TAC[COPRIME_0; MULT_CLAUSES; REAL_MUL_LID] THEN | |
ONCE_REWRITE_TAC[COPRIME_SYM] THEN | |
ASM_CASES_TAC `m = 0` THEN | |
ASM_SIMP_TAC[COPRIME_0; MULT_CLAUSES; REAL_MUL_RID] THEN | |
ASM_MESON_TAC[COPRIME_SYM; COPRIME_0; DIVIDES_ONE; MULT_CLAUSES]);; | |
let REAL_MULTIPLICATIVE_CONST = prove | |
(`!c. real_multiplicative(\n. c) <=> c = &1`, | |
GEN_TAC THEN REWRITE_TAC[real_multiplicative] THEN | |
ASM_CASES_TAC `c:real = &1` THEN ASM_REWRITE_TAC[REAL_MUL_LID]);; | |
let REAL_MULTIPLICATIVE_DELTA = prove | |
(`real_multiplicative(\n. if n = 1 then &1 else &0)`, | |
REWRITE_TAC[REAL_MULTIPLICATIVE; MULT_EQ_1] THEN REAL_ARITH_TAC);; | |
let REAL_MULTIPLICATIVE_IGNOREZERO = prove | |
(`!f g. (!n. ~(n = 0) ==> g(n) = f(n)) /\ real_multiplicative f | |
==> real_multiplicative g`, | |
REPEAT GEN_TAC THEN SIMP_TAC[REAL_MULTIPLICATIVE; ARITH_EQ] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_EQ_0]);; | |
let REAL_MULTIPLICATIVE_CONVOLUTION = prove | |
(`!f g. real_multiplicative f /\ real_multiplicative g | |
==> real_multiplicative (\n. sum {d | d divides n} | |
(\d. f(d) * g(n DIV d)))`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [real_multiplicative] THEN | |
REWRITE_TAC[REAL_MULTIPLICATIVE; GSYM SUM_LMUL] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[DIVIDES_ONE; DIV_1; SING_GSPEC; SUM_SING; REAL_MUL_LID] THEN | |
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN | |
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN | |
ASM_SIMP_TAC[GSYM SUM_LMUL; SUM_SUM_PRODUCT; FINITE_DIVISORS] THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN | |
EXISTS_TAC `\(a:num,b). a * b` THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN | |
REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN CONJ_TAC THENL | |
[GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP DIVISION_DECOMP) THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[MULT_SYM]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`a1:num`; `b1:num`; `a2:num`; `b2:num`] THEN | |
STRIP_TAC THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN | |
REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN REPEAT CONJ_TAC THEN | |
MATCH_MP_TAC COPRIME_DIVPROD THENL | |
(map EXISTS_TAC [`b2:num`; `b1:num`; `a2:num`; `a1:num`]) THEN | |
ASM_MESON_TAC[COPRIME_DIVISORS; DIVIDES_REFL; | |
DIVIDES_RMUL; COPRIME_SYM; MULT_SYM]; | |
MAP_EVERY X_GEN_TAC [`d:num`; `e:num`] THEN STRIP_TAC THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL2; MULT_SYM]; ALL_TAC] THEN | |
MP_TAC(REWRITE_RULE[divides] (ASSUME `(d:num) divides n`)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `d':num` SUBST_ALL_TAC) THEN | |
MP_TAC(REWRITE_RULE[divides] (ASSUME `(e:num) divides m`)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `e':num` SUBST_ALL_TAC) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN | |
ONCE_REWRITE_TAC[AC MULT_AC | |
`(e * e') * d * d':num = (d * e) * (d' * e')`] THEN | |
ASM_SIMP_TAC[DIV_MULT; MULT_EQ_0] THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP (NUMBER_RULE | |
`coprime(a * b:num,c * d) ==> coprime(c,a) /\ coprime(d,b)`)) THEN | |
ASM_SIMP_TAC[] THEN REAL_ARITH_TAC]);; | |
let REAL_MULTIPLICATIVE_DIVISORSUM = prove | |
(`!f. real_multiplicative f | |
==> real_multiplicative (\n. sum {d | d divides n} f)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`f:num->real`; `(\n. &1):num->real`] | |
REAL_MULTIPLICATIVE_CONVOLUTION) THEN | |
ASM_REWRITE_TAC[REAL_MUL_RID; REAL_MULTIPLICATIVE_CONST; ETA_AX]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The Mobius function (into the reals). *) | |
(* ------------------------------------------------------------------------- *) | |
prioritize_real();; | |
let mobius = new_definition | |
`mobius(n) = if squarefree n then --(&1) pow CARD {p | prime p /\ p divides n} | |
else &0:real`;; | |
let MOBIUS_ALT = prove | |
(`!n. mobius(n) = if ?p. prime p /\ (p EXP 2) divides n then &0 | |
else --(&1) pow CARD {p | prime p /\ p divides n}`, | |
ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN | |
REWRITE_TAC[MESON[] `~(?x. P x /\ Q x) <=> !x. P x ==> ~Q x`] THEN | |
REWRITE_TAC[GSYM SQUAREFREE_PRIME; GSYM mobius]);; | |
let MOBIUS_0 = prove | |
(`mobius 0 = &0`, | |
REWRITE_TAC[mobius; SQUAREFREE_0]);; | |
let MOBIUS_1 = prove | |
(`mobius 1 = &1`, | |
REWRITE_TAC[mobius; SQUAREFREE_1; DIVIDES_ONE] THEN | |
SUBGOAL_THEN `{p | prime p /\ p = 1} = {}` | |
(fun th -> SIMP_TAC[th; CARD_CLAUSES; real_pow]) THEN SET_TAC[PRIME_1]);; | |
let REAL_ABS_MOBIUS = prove | |
(`!n. abs(mobius n) <= &1`, | |
GEN_TAC THEN REWRITE_TAC[mobius] THEN COND_CASES_TAC THEN | |
REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NEG; REAL_POW_ONE; REAL_ABS_NUM] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let MOBIUS_MULT = prove | |
(`!a b. coprime(a,b) ==> mobius(a * b) = mobius a * mobius b`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[mobius; SQUAREFREE_MUL] THEN | |
MAP_EVERY ASM_CASES_TAC [`squarefree a`; `squarefree b`] THEN | |
ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO] THEN | |
REWRITE_TAC[GSYM REAL_POW_ADD] THEN AP_TERM_TAC THEN | |
ASM_CASES_TAC `a = 0` THENL [ASM_MESON_TAC[SQUAREFREE_0]; ALL_TAC] THEN | |
ASM_CASES_TAC `b = 0` THENL [ASM_MESON_TAC[SQUAREFREE_0]; ALL_TAC] THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN | |
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; MULT_EQ_0] THEN CONJ_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o MATCH_MP COPRIME_PRIME) THEN SET_TAC[]; | |
MP_TAC PRIME_DIVPROD_EQ THEN ASM SET_TAC[]]);; | |
let REAL_MULTIPLICATIVE_MOBIUS = prove | |
(`real_multiplicative mobius`, | |
SIMP_TAC[real_multiplicative; MOBIUS_1; MOBIUS_MULT]);; | |
let MOBIUS_PRIME = prove | |
(`!p. prime p ==> mobius(p) = -- &1`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[mobius; PRIME_IMP_SQUAREFREE] THEN | |
SUBGOAL_THEN `{q | prime q /\ q divides p} = {p}` SUBST1_TAC THENL | |
[ASM SET_TAC[DIVIDES_PRIME_PRIME]; ALL_TAC] THEN | |
REWRITE_TAC[CARD_SING] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let MOBIUS_PRIMEPOW = prove | |
(`!p k. prime p ==> mobius(p EXP k) = if k = 0 then &1 | |
else if k = 1 then -- &1 | |
else &0`, | |
REPEAT STRIP_TAC THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[MOBIUS_1; EXP] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[MOBIUS_PRIME; EXP_1] THEN | |
ASM_REWRITE_TAC[mobius; SQUAREFREE_EXP] THEN ASM_MESON_TAC[PRIME_1]);; | |
let DIVISORSUM_MOBIUS = prove | |
(`!n. 1 <= n | |
==> sum {d | d divides n} (\d. mobius d) = if n = 1 then &1 else &0`, | |
REWRITE_TAC[ARITH_RULE `1 <= n <=> n = 1 \/ 1 < n`] THEN | |
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[DIVIDES_ONE; SET_RULE `{x | x = a} = {a}`; SUM_SING; MOBIUS_1] THEN | |
SIMP_TAC[ARITH_RULE `1 < n ==> ~(n = 1)`] THEN | |
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL | |
[MP_TAC(MATCH_MP REAL_MULTIPLICATIVE_DIVISORSUM | |
REAL_MULTIPLICATIVE_MOBIUS) THEN | |
SIMP_TAC[real_multiplicative; ETA_AX; REAL_MUL_LZERO]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN STRIP_TAC THEN | |
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum {1,p} (\d. mobius d)` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
ASM_SIMP_TAC[SUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; IN_SING; | |
MOBIUS_PRIME; MOBIUS_1; REAL_ADD_RID; REAL_ADD_RINV] THEN | |
ASM_MESON_TAC[PRIME_1]] THEN | |
MATCH_MP_TAC SUM_SUPERSET THEN ASM_SIMP_TAC[DIVIDES_PRIMEPOW] THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL | |
[ASM_MESON_TAC[EXP; LE_0]; | |
ASM_MESON_TAC[EXP_1; LE_1]; | |
ASM_SIMP_TAC[MOBIUS_PRIMEPOW] THEN ASM_MESON_TAC[EXP; EXP_1]]);; | |
let MOBIUS_INVERSION = prove | |
(`!f g. (!n. 1 <= n ==> g(n) = sum {d | d divides n} f) | |
==> !n. 1 <= n | |
==> f(n) = sum {d | d divides n} (\d. mobius(d) * g(n DIV d))`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `!d. d divides n ==> ~(n DIV d = 0)` ASSUME_TAC THENL | |
[GEN_TAC THEN ASM_CASES_TAC `d = 0` THEN | |
ASM_SIMP_TAC[DIVIDES_ZERO; LE_1] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN | |
ASM_SIMP_TAC[LE_1; NOT_LT; DIV_EQ_0]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[LE_1] THEN | |
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC | |
`sum {d | d divides n} (\d. f(d) * (if n DIV d = 1 then &1 else &0))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `sum {n} (\d. f(d) * (if n DIV d = 1 then &1 else &0))` THEN | |
CONJ_TAC THENL | |
[ASM_SIMP_TAC[SUM_SING; DIV_REFL; LE_1; REAL_MUL_RID]; ALL_TAC] THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_SUPERSET THEN | |
SIMP_TAC[SUBSET; IN_SING; IN_ELIM_THM; DIVIDES_REFL] THEN | |
X_GEN_TAC `d:num` THEN REWRITE_TAC[DIVIDES_DIV_MULT] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES; REAL_MUL_RZERO]; | |
ASM_SIMP_TAC[GSYM DIVISORSUM_MOBIUS; LE_1] THEN | |
REWRITE_TAC[GSYM SUM_LMUL] THEN | |
ASM_SIMP_TAC[SUM_SUM_PRODUCT; FINITE_DIVISORS; LE_1; IN_ELIM_THM] THEN | |
MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN | |
REPEAT(EXISTS_TAC `\(m:num,n:num). (n,m)`) THEN | |
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
CONJ_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[REAL_MUL_SYM] THEN | |
ASM_MESON_TAC[DIVIDES_DIVIDES_DIV; MULT_SYM; | |
NUMBER_RULE `(a * b:num) divides c ==> b divides c`]]);; | |