Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Some general material about ordered sets of various kinds including WQOs. *) | |
(* Proof of some useful AC equivalents like wellordering and Zorn's Lemma. *) | |
(* ========================================================================= *) | |
let PBETA_TAC = CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV);; | |
let SUBSET_PRED = prove | |
(`!P Q. P SUBSET Q <=> !x. P x ==> Q x`, | |
REWRITE_TAC[SUBSET; IN]);; | |
let UNIONS_PRED = prove | |
(`UNIONS P = \x. ?p. P p /\ p x`, | |
REWRITE_TAC[UNIONS; FUN_EQ_THM; IN_ELIM_THM; IN]);; | |
(* ======================================================================== *) | |
(* (1) Definitions and general lemmas. *) | |
(* ======================================================================== *) | |
(* ------------------------------------------------------------------------ *) | |
(* Field of an uncurried binary relation *) | |
(* ------------------------------------------------------------------------ *) | |
let fld = new_definition | |
`fld R = {x:A | ?y. R x y \/ R y x}`;; | |
let IN_FLD = prove | |
(`!l x:A. x IN fld l <=> ?y. l x y \/ l y x`, | |
REWRITE_TAC[fld; IN_ELIM_THM]);; | |
let FLD_EQ_EMPTY = prove | |
(`!R:A->A->bool. fld R = {} <=> R = (\x y. F)`, | |
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [EXTENSION] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[fld] THEN SET_TAC[]);; | |
let FLD_SUBSET = prove | |
(`!l r. (!x y. l x y ==> r x y) ==> fld l SUBSET fld r`, | |
REWRITE_TAC[fld] THEN SET_TAC[]);; | |
let FINITE_FLD = prove | |
(`!l:A->A->bool. FINITE(fld l) <=> FINITE {(x,y) | l x y}`, | |
GEN_TAC THEN EQ_TAC THENL | |
[DISCH_THEN(MP_TAC o MATCH_MP FINITE_CROSS o W CONJ); | |
DISCH_THEN((fun th -> | |
MP_TAC(ISPEC `FST:A#A->A` th) THEN MP_TAC(ISPEC `SND:A#A->A` th)) o | |
MATCH_MP FINITE_IMAGE) THEN | |
REWRITE_TAC[IMP_IMP; GSYM FINITE_UNION]] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN | |
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
REWRITE_TAC[IN_CROSS; fld; IN_IMAGE; IN_ELIM_THM; IN_UNION] THEN | |
REWRITE_TAC[EXISTS_PAIR_THM; PAIR_EQ] THEN SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Various kinds of order *) | |
(* ------------------------------------------------------------------------- *) | |
let qoset = new_definition | |
`qoset (l:A->A->bool) <=> | |
(!x. x IN fld l ==> l x x) /\ | |
(!x y z. l x y /\ l y z ==> l x z)`;; | |
let poset = new_definition | |
`poset (l:A->A->bool) <=> | |
(!x. x IN fld l ==> l x x) /\ | |
(!x y z. l x y /\ l y z ==> l x z) /\ | |
(!x y. l x y /\ l y x ==> x = y)`;; | |
let toset = new_definition | |
`toset (l:A->A->bool) <=> | |
(!x. x IN fld l ==> l x x) /\ | |
(!x y z. l x y /\ l y z ==> l x z) /\ | |
(!x y. l x y /\ l y x ==> x = y) /\ | |
(!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x)`;; | |
let woset = new_definition | |
`woset (l:A->A->bool) <=> | |
(!x. x IN fld l ==> l x x) /\ | |
(!x y z. l x y /\ l y z ==> l x z) /\ | |
(!x y. l x y /\ l y x ==> x = y) /\ | |
(!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x) /\ | |
(!s. s SUBSET fld l /\ ~(s = {}) | |
==> ?x. x IN s /\ !y. y IN s ==> l x y)`;; | |
let wqoset = new_definition | |
`wqoset (l:A->A->bool) <=> | |
(!x. x IN fld l ==> l x x) /\ | |
(!x y z. l x y /\ l y z ==> l x z) /\ | |
(!s. s SUBSET fld l | |
==> ?t. FINITE t /\ t SUBSET s /\ | |
!y. y IN s ==> ?x. x IN t /\ l x y)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Chains and antichains (subsets of the carrier, not the ordering) *) | |
(* ------------------------------------------------------------------------- *) | |
let chain = new_definition | |
`chain (l:A->A->bool) s <=> | |
!x y. x IN s /\ y IN s ==> l x y \/ l y x`;; | |
let antichain = new_definition | |
`antichain (l:A->A->bool) s <=> | |
s SUBSET fld l /\ pairwise (\x y. ~(l x y)) s`;; | |
let CHAIN = prove | |
(`!l s:A->bool. | |
chain l s <=> | |
s SUBSET fld l /\ | |
!x y. x IN s /\ y IN s ==> l x y \/ l y x`, | |
REWRITE_TAC[chain; fld] THEN SET_TAC[]);; | |
let ANTICHAIN = prove | |
(`!l s:A->bool. | |
antichain l s <=> | |
s SUBSET fld l /\ | |
!x y. x IN s /\ y IN s /\ ~(x = y) ==> ~(l x y)`, | |
REWRITE_TAC[antichain; pairwise; fld] THEN SET_TAC[]);; | |
let CHAIN_SUBSET = prove | |
(`!(l:A->A->bool) s t. chain l s /\ t SUBSET s ==> chain l t`, | |
REWRITE_TAC[chain] THEN SET_TAC[]);; | |
let ANTICHAIN_SUBSET = prove | |
(`!(l:A->A->bool) s t. antichain l s /\ t SUBSET s ==> antichain l t`, | |
REWRITE_TAC[ANTICHAIN] THEN SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The trivial implications. *) | |
(* ------------------------------------------------------------------------- *) | |
let QOSET_REFL = prove | |
(`!l (x:A). qoset l ==> (l x x <=> x IN fld l)`, | |
REWRITE_TAC[qoset; fld; IN_ELIM_THM] THEN MESON_TAC[]);; | |
let QOSET_FLD = prove | |
(`!l:A->A->bool. qoset l ==> fld l = {x | l x x}`, | |
SIMP_TAC[QOSET_REFL] THEN SET_TAC[]);; | |
let WOSET_IMP_TOSET = prove | |
(`!l:A->A->bool. woset l ==> toset l`, | |
GEN_TAC THEN REWRITE_TAC[woset; toset] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[]);; | |
let WOSET_IMP_POSET = prove | |
(`!l:A->A->bool. woset l ==> poset l`, | |
GEN_TAC THEN REWRITE_TAC[woset; poset] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[]);; | |
let WOSET_IMP_QOSET = prove | |
(`!l:A->A->bool. woset l ==> qoset l`, | |
GEN_TAC THEN REWRITE_TAC[woset; qoset] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[]);; | |
let TOSET_IMP_POSET = prove | |
(`!l:A->A->bool. toset l ==> poset l`, | |
GEN_TAC THEN REWRITE_TAC[toset; poset] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[]);; | |
let TOSET_IMP_QOSET = prove | |
(`!l:A->A->bool. toset l ==> qoset l`, | |
GEN_TAC THEN REWRITE_TAC[toset; qoset] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[]);; | |
let POSET_IMP_QOSET = prove | |
(`!l:A->A->bool. poset l ==> qoset l`, | |
GEN_TAC THEN REWRITE_TAC[poset; qoset] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[]);; | |
let WQOSET_IMP_QOSET = prove | |
(`!l:A->A->bool. wqoset l ==> qoset l`, | |
GEN_TAC THEN REWRITE_TAC[wqoset; qoset] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* In general, these need to be distinguished, but not for partial orders. *) | |
(* ------------------------------------------------------------------------- *) | |
let strictly = new_definition | |
`strictly R = \x y:A. R x y /\ ~(R y x)`;; | |
let properly = new_definition | |
`properly R = \x y:A. R x y /\ ~(x = y)`;; | |
let PROPERLY_EQ_STRICTLY = prove | |
(`!l:A->A->bool. poset l ==> properly l = strictly l`, | |
REWRITE_TAC[poset; properly; strictly; FUN_EQ_THM] THEN MESON_TAC[]);; | |
let STRICTLY_EQ_PROPERLY = prove | |
(`!l:A->A->bool. poset l ==> strictly l = properly l`, | |
REWRITE_TAC[poset; properly; strictly; FUN_EQ_THM] THEN MESON_TAC[]);; | |
let STRICTLY_IMP_PROPERLY = prove | |
(`!l x y:A. qoset l /\ strictly l x y ==> properly l x y`, | |
REWRITE_TAC[qoset; properly; strictly; FUN_EQ_THM] THEN MESON_TAC[]);; | |
let STRICTLY_STRICTLY = prove | |
(`!R:A->A->bool. strictly(strictly R) = strictly R`, | |
REWRITE_TAC[FUN_EQ_THM; strictly] THEN MESON_TAC[]);; | |
let PROPERLY_PROPERLY = prove | |
(`!R:A->A->bool. properly(properly R) = properly R`, | |
REWRITE_TAC[FUN_EQ_THM; properly] THEN MESON_TAC[]);; | |
let STRICTLY_PROPERLY = prove | |
(`!R:A->A->bool. strictly(properly R) = strictly R`, | |
REWRITE_TAC[FUN_EQ_THM; strictly; properly] THEN MESON_TAC[]);; | |
let PROPERLY_STRICTLY = prove | |
(`!R:A->A->bool. properly(strictly R) = strictly R`, | |
REWRITE_TAC[FUN_EQ_THM; strictly; properly] THEN MESON_TAC[]);; | |
let PROPERLY_MONO = prove | |
(`!R S. (!x y. R x y ==> S x y) | |
==> (!x y. properly R x y ==> properly S x y)`, | |
REWRITE_TAC[properly] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Various interrelations and alternative forms of definitions. *) | |
(* ------------------------------------------------------------------------- *) | |
let POSET_QOSET = prove | |
(`!l:A->A->bool. | |
poset l <=> qoset l /\ (!x y. l x y /\ l y x ==> x = y)`, | |
REWRITE_TAC[poset; qoset; GSYM CONJ_ASSOC]);; | |
let TOSET = prove | |
(`!l:A->A->bool. | |
toset l <=> | |
(!x y z. l x y /\ l y z ==> l x z) /\ | |
(!x y. l x y /\ l y x ==> x = y) /\ | |
(!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x)`, | |
REWRITE_TAC[toset] THEN MESON_TAC[]);; | |
let TOSET_POSET = prove | |
(`!l:A->A->bool. | |
toset l <=> | |
poset l /\ (!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x)`, | |
REWRITE_TAC[toset; poset; GSYM CONJ_ASSOC]);; | |
let WOSET_TOSET = prove | |
(`!l:A->A->bool. | |
woset l <=> | |
toset l /\ | |
!s. s SUBSET fld l /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> l x y`, | |
REWRITE_TAC[woset; toset; GSYM CONJ_ASSOC]);; | |
let WQOSET = prove | |
(`!l:A->A->bool. | |
wqoset l <=> | |
(!x y z. l x y /\ l y z ==> l x z) /\ | |
(!s. s SUBSET fld l | |
==> ?t. FINITE t /\ | |
t SUBSET s /\ | |
!y. y IN s ==> ?x. x IN t /\ l x y)`, | |
GEN_TAC THEN REWRITE_TAC[wqoset] THEN | |
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `x:A` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `{x:A}`) THEN ASM SET_TAC[]);; | |
let WQOSET_QOSET = prove | |
(`!l:A->A->bool. | |
wqoset l <=> | |
qoset l /\ | |
!s. s SUBSET fld l | |
==> ?t. FINITE t /\ t SUBSET s /\ | |
!y. y IN s ==> ?x. x IN t /\ l x y`, | |
REWRITE_TAC[wqoset; qoset; GSYM CONJ_ASSOC]);; | |
let WOSET_POSET = prove | |
(`!l:A->A->bool. | |
woset l <=> | |
poset l /\ | |
!s. s SUBSET fld l /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> l x y`, | |
GEN_TAC THEN REWRITE_TAC[woset; poset] THEN | |
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `{x:A,y}`) THEN ASM SET_TAC[]);; | |
let WOSET = prove | |
(`!l:A->A->bool. | |
woset l <=> | |
(!x y. l x y /\ l y x ==> x = y) /\ | |
!s. s SUBSET fld l /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> l x y`, | |
GEN_TAC THEN REWRITE_TAC[woset] THEN | |
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(TAUT `(r ==> p) /\ r /\ q ==> p /\ q /\ r`) THEN | |
REPEAT CONJ_TAC THENL | |
[MESON_TAC[]; | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `{x:A,y}`) THEN ASM SET_TAC[]; | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `{x:A,y,z}`) THEN | |
REWRITE_TAC[fld] THEN ASM SET_TAC[]]);; | |
let WOSET_WF = prove | |
(`!l:A->A->bool. | |
woset l <=> | |
(!x y. x IN fld l /\ y IN fld l ==> l x y \/ l y x) /\ | |
WF(properly l)`, | |
GEN_TAC THEN | |
MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> (p <=> r)) ==> (p <=> q /\ r)`) THEN | |
CONJ_TAC THENL [SIMP_TAC[woset]; DISCH_TAC THEN REWRITE_TAC[WOSET]] THEN | |
MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> (p <=> r)) ==> (q /\ r <=> p)`) THEN | |
REWRITE_TAC[properly] THEN CONJ_TAC THENL | |
[DISCH_THEN(MP_TAC o MATCH_MP WF_ANTISYM) THEN MESON_TAC[]; DISCH_TAC] THEN | |
REWRITE_TAC[WF] THEN EQ_TAC THEN DISCH_TAC THENL | |
[X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `\x:A. x IN s`) THEN ASM SET_TAC[]; | |
X_GEN_TAC `P:A->bool` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `{x:A | x IN fld l /\ P x}`) THEN | |
REWRITE_TAC[fld] THEN RULE_ASSUM_TAC(REWRITE_RULE[fld]) THEN | |
ASM SET_TAC[]]);; | |
let WOSET_IMP_WQOSET = prove | |
(`!l:A->A->bool. woset l ==> wqoset l`, | |
GEN_TAC THEN REWRITE_TAC[woset; wqoset] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THENL | |
[ASM_MESON_TAC[FINITE_EMPTY; SUBSET_EMPTY]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `{x:A}` THEN ASM_REWRITE_TAC[FINITE_SING] THEN ASM SET_TAC[]);; | |
let WQOSET_SUPERSET = prove | |
(`!l m:A->A->bool. | |
wqoset l /\ | |
qoset m /\ | |
fld m SUBSET fld l /\ | |
(!x y. l x y ==> m x y) | |
==> wqoset m`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[WQOSET_QOSET] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `s:A->bool` THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM SET_TAC[]);; | |
let [WQOSET_NOBAD; WQOSET_NOBAD_SUBSEQ; WQOSET_ANTICHAIN] = | |
(CONJUNCTS o prove) | |
(`(!l:A->A->bool. | |
wqoset l <=> | |
qoset l /\ | |
!x. (!n:num. x n IN fld l) ==> ?i j. i < j /\ l (x i) (x j)) /\ | |
(!l:A->A->bool. | |
wqoset l <=> | |
qoset l /\ | |
!x. (!n. x n IN fld l) | |
==> ?r:num->num. | |
(!m n. m < n ==> r(m) < r(n)) /\ | |
(!i j. i <= j ==> l (x(r i)) (x(r j)))) /\ | |
(!l:A->A->bool. | |
wqoset l <=> | |
qoset l /\ | |
WF(strictly l) /\ | |
!s. antichain l s ==> FINITE s)`, | |
REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `l:A->A->bool` THEN | |
REWRITE_TAC[wqoset; qoset; antichain; FORALL_AND_THM] THEN | |
ASM_CASES_TAC `!x:A. x IN fld l ==> l x x` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `!x y z:A. l x y /\ l y z ==> l x z` THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT | |
`(p ==> q) /\ (q ==> r) /\ (r ==> s) /\ (s ==> p) | |
==> (p <=> q) /\ (p <=> r) /\ (p <=> s)`) THEN | |
REPEAT CONJ_TAC THENL | |
[DISCH_TAC THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (x:num->A) (:num)`) THEN ANTS_TAC THENL | |
[ASM SET_TAC[]; REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE]] THEN | |
REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_IN_IMAGE; SUBSET_UNIV; IN_UNIV] THEN | |
REWRITE_TAC[num_FINITE] THEN ASM_MESON_TAC[LT_SUC_LE]; | |
DISCH_TAC THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `~INFINITE {n | !p. n < p ==> ~l ((x:num->A) n) (x p)}` | |
MP_TAC THENL | |
[REWRITE_TAC[INFINITE_ENUMERATE_EQ; NOT_EXISTS_THM] THEN | |
X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `(x:num->A) o (r:num->num)`) THEN | |
ASM_REWRITE_TAC[o_THM] THEN ASM SET_TAC[]; | |
REWRITE_TAC[INFINITE; num_FINITE; IN_ELIM_THM]] THEN | |
DISCH_THEN(X_CHOOSE_TAC `p:num`) THEN | |
SUBGOAL_THEN | |
`?t:num->num. | |
(!n:num. T) /\ | |
(!n. t n < t (SUC n) /\ | |
(l:A->A->bool) (x(t n + p + 1)) (x(t(SUC n) + p + 1)))` | |
MP_TAC THENL | |
[MATCH_MP_TAC DEPENDENT_CHOICE THEN REWRITE_TAC[] THEN | |
X_GEN_TAC `n:num` THEN FIRST_X_ASSUM(MP_TAC o | |
GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] o SPEC `n + p + 1`) THEN | |
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; ARITH_RULE `~(n + p + 1 <= p)`] THEN | |
MATCH_MP_TAC(MESON[] | |
`!p. (!m. P m ==> Q(m - (p + 1))) ==> (?m. P m) ==> (?m. Q m)`) THEN | |
EXISTS_TAC `p:num` THEN X_GEN_TAC `q:num` THEN MATCH_MP_TAC(TAUT | |
`(p ==> q) /\ (p ==> (r <=> s)) ==> p /\ r ==> q /\ s`) THEN | |
REPEAT STRIP_TAC THENL [ALL_TAC; AP_TERM_TAC THEN AP_TERM_TAC] THEN | |
ASM_ARITH_TAC; | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `t:num->num` THEN | |
STRIP_TAC THEN EXISTS_TAC `\i. (t:num->num) i + p + 1` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN | |
ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN ARITH_TAC; | |
MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[]]]; | |
DISCH_TAC THEN CONJ_TAC THENL | |
[REWRITE_TAC[WF_DCHAIN; strictly; NOT_EXISTS_THM; FORALL_AND_THM] THEN | |
X_GEN_TAC `x:num->A` THEN STRIP_TAC THEN | |
SUBGOAL_THEN | |
`!m n:num. m < n ==> (l:A->A->bool) (x n) (x m) /\ ~l (x m) (x n)` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN ASM_MESON_TAC[]; | |
FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN | |
REWRITE_TAC[fld; IN_ELIM_THM; NOT_IMP] THEN | |
ASM_MESON_TAC[ARITH_RULE `n < SUC n`; LT_IMP_LE]]; | |
X_GEN_TAC `s:A->bool` THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN | |
REWRITE_TAC[REWRITE_RULE[INFINITE] INFINITE_ENUMERATE_SUBSET] THEN | |
REWRITE_TAC[INJECTIVE_ALT; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `x:num->A` THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN | |
REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:num->num` | |
(CONJUNCTS_THEN(MP_TAC o SPECL [`n:num`; `SUC n`]))) THEN | |
REPEAT(ANTS_TAC THENL [ARITH_TAC; DISCH_TAC]) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN | |
DISCH_THEN(MP_TAC o SPECL | |
[`(x:num->A)(r(n:num))`; `(x:num->A)(r(SUC n))`]) THEN | |
ASM_SIMP_TAC[LT_IMP_NE]]; | |
STRIP_TAC THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN | |
ONCE_REWRITE_TAC[MESON[] | |
`(?x. P x /\ Q x /\ R x) <=> ~(!x. P x /\ Q x ==> ~R x)`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o TOP_DEPTH_CONV) | |
[NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN | |
`?x:num->A. | |
!n. x n IN s DIFF UNIONS {{y | l (x m) y} | m < n} /\ | |
!z. z IN s DIFF UNIONS {{y | l (x m) y} | m < n} | |
==> ~(l z (x n) /\ ~(l (x n) z))` | |
MP_TAC THENL | |
[MATCH_MP_TAC(MATCH_MP WF_REC_EXISTS WF_num) THEN | |
REWRITE_TAC[UNIONS_GSPEC] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x:num->A`; `n:num`] THEN | |
REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN DISCH_THEN(LABEL_TAC "*") THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (x:num->A) {m | m < n}`) THEN | |
SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG_LT] THEN | |
REWRITE_TAC[SUBSET; TAUT `~(p /\ q) <=> p ==> ~q`] THEN | |
ASM_SIMP_TAC[FORALL_IN_IMAGE; IN_ELIM_THM] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC | |
`\y. y IN s /\ !m:num. m < n ==> ~((l:A->A->bool) (x m) y)` o | |
GEN_REWRITE_RULE I [WF]) THEN | |
ASM_REWRITE_TAC[strictly] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
ASM SET_TAC[]; | |
REWRITE_TAC[IN_DIFF; UNIONS_GSPEC; IN_ELIM_THM] THEN | |
REWRITE_TAC[FORALL_AND_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `x:num->A` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `FINITE(IMAGE (x:num->A) (:num))` MP_TAC THENL | |
[FIRST_X_ASSUM MATCH_MP_TAC THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[PAIRWISE_IMAGE] THEN REWRITE_TAC[pairwise; IN_UNIV]; | |
REWRITE_TAC[GSYM INFINITE] THEN MATCH_MP_TAC INFINITE_IMAGE THEN | |
REWRITE_TAC[num_INFINITE; IN_UNIV]] THEN | |
MATCH_MP_TAC WLOG_LT THEN ASM SET_TAC[]]]);; | |
let WQOSET_IMP_WF = prove | |
(`!l:A->A->bool. wqoset l ==> WF(strictly l)`, | |
SIMP_TAC[WQOSET_ANTICHAIN]);; | |
let WQOSET_WF_SUPERSET = prove | |
(`!l m:A->A->bool. | |
wqoset l /\ qoset m /\ fld m SUBSET fld l /\ (!x y. l x y ==> m x y) | |
==> WF(strictly m)`, | |
MESON_TAC[WQOSET_SUPERSET; WQOSET_IMP_WF]);; | |
let WQOSET_WF_SUPERSET_EQ = prove | |
(`!l:A->A->bool. | |
wqoset l <=> | |
qoset l /\ | |
!m. qoset m /\ fld m = fld l /\ (!x y. l x y ==> m x y) | |
==> WF(strictly m)`, | |
GEN_TAC THEN EQ_TAC THENL | |
[MESON_TAC[WQOSET_WF_SUPERSET; WQOSET_IMP_QOSET; SUBSET_REFL]; | |
STRIP_TAC THEN ASM_REWRITE_TAC[WQOSET_NOBAD]] THEN | |
X_GEN_TAC `a:num->A` THEN DISCH_TAC THEN MATCH_MP_TAC(MESON[] | |
`~(!i j. P i j ==> ~Q i j) ==> ?i j. P i j /\ Q i j`) THEN | |
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC | |
`\x y:A. l x y \/ ?i j:num. i < j /\ l x (a j) /\ l (a i) y`) THEN | |
REWRITE_TAC[qoset; NOT_IMP; GSYM CONJ_ASSOC] THEN SIMP_TAC[] THEN | |
MATCH_MP_TAC(TAUT `r /\ (r ==> p /\ q /\ s) ==> p /\ q /\ r /\ s`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[fld] THEN RULE_ASSUM_TAC(REWRITE_RULE[fld]) THEN ASM SET_TAC[]; | |
DISCH_THEN SUBST1_TAC] THEN | |
FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [qoset]) THEN | |
ASM_SIMP_TAC[] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[LT_TRANS; LT_CASES]; ALL_TAC] THEN | |
REWRITE_TAC[WF_DCHAIN; strictly] THEN EXISTS_TAC `a:num->A` THEN | |
X_GEN_TAC `n:num` THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[ARITH_RULE `n < SUC n`]; ALL_TAC] THEN | |
ASM_SIMP_TAC[ARITH_RULE `n < SUC n`; NOT_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`k:num`; `l:num`] THEN STRIP_TAC THEN | |
ASM_MESON_TAC[ARITH_RULE `~(n < l) /\ ~(k < SUC n) ==> ~(k < l)`]);; | |
let WOSET_WQOSET = prove | |
(`!l:A->A->bool. woset l <=> toset l /\ wqoset l`, | |
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[WOSET_IMP_TOSET; WOSET_IMP_WQOSET] THEN | |
SIMP_TAC[WOSET_WF; PROPERLY_EQ_STRICTLY; WQOSET_IMP_WF; TOSET_IMP_POSET] THEN | |
REWRITE_TAC[toset] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Restrictions of ordered sets. *) | |
(* ------------------------------------------------------------------------- *) | |
let FLD_RESTRICT_QOSET = prove | |
(`!(l:A->A->bool) P. | |
qoset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, | |
REWRITE_TAC[qoset; fld] THEN SET_TAC[]);; | |
let FLD_RESTRICT_POSET = prove | |
(`!(l:A->A->bool) P. | |
poset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, | |
SIMP_TAC[FLD_RESTRICT_QOSET; POSET_IMP_QOSET]);; | |
let FLD_RESTRICT_TOSET = prove | |
(`!(l:A->A->bool) P. | |
toset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, | |
SIMP_TAC[FLD_RESTRICT_QOSET; TOSET_IMP_QOSET]);; | |
let FLD_RESTRICT_WOSET = prove | |
(`!(l:A->A->bool) P. | |
woset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, | |
SIMP_TAC[FLD_RESTRICT_QOSET; WOSET_IMP_QOSET]);; | |
let FLD_RESTRICT_WQOSET = prove | |
(`!(l:A->A->bool) P. | |
wqoset l ==> fld (\x y. P x /\ P y /\ l x y) = {x | x IN fld l /\ P x}`, | |
SIMP_TAC[FLD_RESTRICT_QOSET; WQOSET_IMP_QOSET]);; | |
let QOSET_RESTRICT = prove | |
(`!(l:A->A->bool) P. qoset l ==> qoset (\x y. P x /\ P y /\ l x y)`, | |
REWRITE_TAC[qoset; fld] THEN SET_TAC[]);; | |
let POSET_RESTRICT = prove | |
(`!(l:A->A->bool) P. poset l ==> poset (\x y. P x /\ P y /\ l x y)`, | |
REWRITE_TAC[poset; fld] THEN SET_TAC[]);; | |
let TOSET_RESTRICT = prove | |
(`!(l:A->A->bool) P. toset l ==> toset (\x y. P x /\ P y /\ l x y)`, | |
REWRITE_TAC[toset; fld] THEN SET_TAC[]);; | |
let WOSET_RESTRICT = prove | |
(`!(l:A->A->bool) P. woset l ==> woset (\x y. P x /\ P y /\ l x y)`, | |
REPEAT GEN_TAC THEN | |
SIMP_TAC[WOSET_POSET; FLD_RESTRICT_POSET; POSET_RESTRICT] THEN | |
SET_TAC[]);; | |
let WQOSET_RESTRICT = prove | |
(`!(l:A->A->bool) P. wqoset l ==> wqoset (\x y. P x /\ P y /\ l x y)`, | |
REPEAT GEN_TAC THEN | |
SIMP_TAC[WQOSET_NOBAD_SUBSEQ; FLD_RESTRICT_QOSET; QOSET_RESTRICT] THEN | |
SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Finite sets have maximal/minimal/greatest/least in various senses. *) | |
(* ------------------------------------------------------------------------- *) | |
let QOSET_MIN,QOSET_MAX = (CONJ_PAIR o prove) | |
(`(!l s:A->bool. | |
qoset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l | |
==> ?a. a IN s /\ !x. x IN s ==> ~(strictly l x a)) /\ | |
(!l s:A->bool. | |
qoset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l | |
==> ?a. a IN s /\ !x. x IN s ==> ~(strictly l a x))`, | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
CONJ_TAC THEN GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[IMP_IMP; NOT_INSERT_EMPTY] THEN | |
REWRITE_TAC[FORALL_IN_INSERT; EXISTS_IN_INSERT; INSERT_SUBSET] THEN | |
MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN | |
ASM_CASES_TAC `s:A->bool = {}` THEN | |
ASM_REWRITE_TAC[NOT_IN_EMPTY; strictly; TAUT `~(p /\ ~p)`] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[qoset; SUBSET; fld; IN_ELIM_THM]) THEN | |
ASM METIS_TAC[]);; | |
let POSET_MIN,POSET_MAX = (CONJ_PAIR o prove) | |
(`(!l s:A->bool. | |
poset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l | |
==> ?a. a IN s /\ !x. x IN s ==> ~(properly l x a)) /\ | |
(!l s:A->bool. | |
poset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l | |
==> ?a. a IN s /\ !x. x IN s ==> ~(properly l a x))`, | |
SIMP_TAC[PROPERLY_EQ_STRICTLY; QOSET_MIN; QOSET_MAX; POSET_IMP_QOSET]);; | |
let TOSET_MIN,TOSET_MAX = (CONJ_PAIR o prove) | |
(`(!l s:A->bool. | |
toset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l | |
==> ?a. a IN s /\ !x. x IN s ==> l a x) /\ | |
(!l s:A->bool. | |
toset l /\ FINITE s /\ ~(s = {}) /\ s SUBSET fld l | |
==> ?a. a IN s /\ !x. x IN s ==> l x a)`, | |
CONJ_TAC THENL [MP_TAC POSET_MIN; MP_TAC POSET_MAX] THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_SIMP_TAC[TOSET_IMP_POSET] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
REWRITE_TAC[properly] THEN RULE_ASSUM_TAC(REWRITE_RULE[toset]) THEN | |
ASM SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The trivial relation is every kind of ordered set. *) | |
(* ------------------------------------------------------------------------- *) | |
let FLD_TRIVIAL = prove | |
(`fld(\x y:A. F) = {}`, | |
REWRITE_TAC[FLD_EQ_EMPTY]);; | |
let WOSET_TRIVIAL = prove | |
(`woset(\x y:A. F)`, | |
REWRITE_TAC[woset; FLD_TRIVIAL; NOT_IN_EMPTY] THEN SET_TAC[]);; | |
let WQOSET_TRIVIAL = prove | |
(`wqoset(\x y:A. F)`, | |
SIMP_TAC[WOSET_IMP_WQOSET; WOSET_TRIVIAL]);; | |
let TOSET_TRIVIAL = prove | |
(`toset(\x y:A. F)`, | |
SIMP_TAC[WOSET_IMP_TOSET; WOSET_TRIVIAL]);; | |
let POSET_TRIVIAL = prove | |
(`poset(\x y:A. F)`, | |
SIMP_TAC[WOSET_IMP_POSET; WOSET_TRIVIAL]);; | |
let QOSET_TRIVIAL = prove | |
(`qoset(\x y:A. F)`, | |
SIMP_TAC[WOSET_IMP_QOSET; WOSET_TRIVIAL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The natural numbers with the usual <= are every kind of ordered set. *) | |
(* ------------------------------------------------------------------------- *) | |
let FLD_num = prove | |
(`fld(<=) = (:num)`, | |
REWRITE_TAC[fld; IN_ELIM_THM; LE_CASES] THEN SET_TAC[]);; | |
let WOSET_num = prove | |
(`woset((<=):num->num->bool)`, | |
REWRITE_TAC[WOSET_WF; fld; IN_ELIM_THM; LE_CASES; properly] THEN | |
REWRITE_TAC[GSYM LT_LE; ETA_AX; WF_num]);; | |
let WQOSET_num = prove | |
(`wqoset((<=):num->num->bool)`, | |
SIMP_TAC[WOSET_IMP_WQOSET; WOSET_num]);; | |
let TOSET_num = prove | |
(`toset((<=):num->num->bool)`, | |
SIMP_TAC[WOSET_IMP_TOSET; WOSET_num]);; | |
let POSET_num = prove | |
(`poset((<=):num->num->bool)`, | |
SIMP_TAC[WOSET_IMP_POSET; WOSET_num]);; | |
let QOSET_num = prove | |
(`qoset((<=):num->num->bool)`, | |
SIMP_TAC[WOSET_IMP_QOSET; WOSET_num]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Pointwise orders (no domain restriction, a quasi-order in general). *) | |
(* Hence Dickson's lemma in the general WQO setting and common special case. *) | |
(* ------------------------------------------------------------------------- *) | |
let QOSET_POINTWISE = prove | |
(`!l s. qoset(\x y:K->A. !i. i IN s ==> l (x i) (y i)) <=> | |
s = {} \/ qoset l`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:K->bool = {}` THENL | |
[ASM_REWRITE_TAC[NOT_IN_EMPTY; qoset]; ASM_REWRITE_TAC[]] THEN | |
ASM_REWRITE_TAC[qoset; fld; IN_ELIM_THM] THEN | |
EQ_TAC THENL [ALL_TAC; SET_TAC[]] THEN | |
MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN | |
REPEAT(MATCH_MP_TAC(MESON[] | |
`(!a. P (\i. a) ==> Q a) ==> (!a. P a) ==> !b. Q b`) THEN GEN_TAC) | |
THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC MONO_IMP THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
DISCH_THEN(X_CHOOSE_TAC `y:A`) THEN EXISTS_TAC `(\i. y):K->A` THEN | |
ASM SET_TAC[]);; | |
let FLD_POINTWISE = prove | |
(`!l s. qoset l | |
==> fld(\x y:K->A. !i. i IN s ==> l (x i) (y i)) = | |
{x | !i. i IN s ==> x i IN fld l}`, | |
SIMP_TAC[QOSET_FLD; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) QOSET_FLD o lhand o snd) THEN | |
REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN | |
POP_ASSUM MP_TAC THEN ASM_SIMP_TAC[QOSET_POINTWISE]);; | |
let WQOSET_POINTWISE = prove | |
(`!l s. wqoset l /\ FINITE s | |
==> wqoset(\x y:K->A. !i. i IN s ==> l (x i) (y i))`, | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; WQOSET_NOBAD_SUBSEQ] THEN | |
GEN_TAC THEN STRIP_TAC THEN DISCH_TAC THEN | |
ASM_SIMP_TAC[QOSET_POINTWISE; FLD_POINTWISE; IN_UNIV; IN_ELIM_THM] THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL | |
[REWRITE_TAC[NOT_IN_EMPTY] THEN EXISTS_TAC `\n:num. n` THEN REWRITE_TAC[]; | |
MAP_EVERY X_GEN_TAC [`a:K`; `s:K->bool`]] THEN | |
REWRITE_TAC[FORALL_IN_INSERT; FORALL_AND_THM] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(fun th -> | |
X_GEN_TAC `x:num->K->A` THEN STRIP_TAC THEN | |
MP_TAC(SPEC `x:num->K->A` th)) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `l:num->num` THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `\i:num. (x:num->K->A) (l i) a`) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `(l:num->num) o (r:num->num)` THEN | |
ASM_SIMP_TAC[o_THM] THEN ASM_MESON_TAC[LE_LT]);; | |
let DICKSON = prove | |
(`!n x:num->num->num. ?i j. i < j /\ (!k. k < n ==> x i k <= x j k)`, | |
GEN_TAC THEN | |
MP_TAC(ISPECL [`(<=):num->num->bool`; `{m:num | m < n}`] | |
WQOSET_POINTWISE) THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [WQOSET_NOBAD] THEN | |
SIMP_TAC[FLD_POINTWISE; WQOSET_IMP_QOSET; QOSET_POINTWISE] THEN | |
SIMP_TAC[WOSET_IMP_WQOSET; WOSET_num; FLD_num; IN_UNIV; IN_ELIM_THM] THEN | |
SIMP_TAC[FINITE_NUMSEG_LT]);; | |
(* ------------------------------------------------------------------------ *) | |
(* General (reflexive) notion of initial segment. *) | |
(* ------------------------------------------------------------------------ *) | |
parse_as_infix("inseg",(12,"right"));; | |
let inseg = new_definition | |
`(l:A->A->bool) inseg m <=> !x y. l x y <=> m x y /\ fld(l) y`;; | |
let INSEG_ANTISYM = prove | |
(`!l m:A->A->bool. l inseg m /\ m inseg l ==> l = m`, | |
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[inseg] THEN MESON_TAC[]);; | |
let INSEG_REFL = prove | |
(`!l:A->A->bool. l inseg l`, | |
REWRITE_TAC[inseg; REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[]);; | |
let INSEG_TRANS = prove | |
(`!l m n:A->A->bool. l inseg m /\ m inseg n ==> l inseg n`, | |
REWRITE_TAC[inseg; REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------ *) | |
(* Specific form of initial segment: `all elements in fld(l) less than a`. *) | |
(* ------------------------------------------------------------------------ *) | |
let linseg = new_definition | |
`linseg (l:A->A->bool) a = \ x y. l x y /\ (properly l) y a`;; | |
(* ------------------------------------------------------------------------ *) | |
(* `Ordinals`, i.e. canonical wosets using choice operator. *) | |
(* ------------------------------------------------------------------------ *) | |
let ordinal = new_definition | |
`ordinal(l:A->A->bool) <=> | |
woset(l) /\ (!x. fld(l) x ==> (x = (@) (\y. ~(properly l) y x)))`;; | |
(* ------------------------------------------------------------------------ *) | |
(* Now useful things about the orderings *) | |
(* ------------------------------------------------------------------------ *) | |
let [POSET_REFL; POSET_TRANS; POSET_ANTISYM] = | |
map (GEN `l:A->A->bool` o DISCH_ALL) | |
(CONJUNCTS(REWRITE_RULE[poset; IN] (ASSUME `poset (l:A->A->bool)`)));; | |
let POSET_FLDEQ = prove | |
(`!l:A->A->bool. poset l ==> (!x. fld(l) x <=> l x x)`, | |
MESON_TAC[POSET_REFL; REWRITE_RULE[IN] IN_FLD]);; | |
let [WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; WOSET_TOTAL; WOSET_WELL] = | |
map (GEN `l:A->A->bool` o DISCH_ALL) | |
(CONJUNCTS(REWRITE_RULE[woset; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] | |
(ASSUME `woset (l:A->A->bool)`)));; | |
let WOSET_FLDEQ = prove | |
(`!l:A->A->bool. woset l ==> (!x. fld(l) x <=> l x x)`, | |
MESON_TAC[WOSET_IMP_POSET; POSET_FLDEQ]);; | |
let WOSET_TRANS_LESS = prove | |
(`!l:A->A->bool. woset l ==> | |
!x y z. (properly l) x y /\ l y z ==> (properly l) x z`, | |
REWRITE_TAC[woset; properly] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------ *) | |
(* Misc lemmas. *) | |
(* ------------------------------------------------------------------------ *) | |
let PAIRED_EXT = prove | |
(`!(l:A->B->C) m. (!x y. l x y = m x y) <=> (l = m)`, | |
REWRITE_TAC[FUN_EQ_THM]);; | |
let WOSET_TRANS_LE = prove | |
(`!l:A->A->bool. woset l ==> | |
!x y z. l x y /\ (properly l) y z ==> (properly l) x z`, | |
REWRITE_TAC[properly] THEN MESON_TAC[WOSET_TRANS; WOSET_ANTISYM]);; | |
let WOSET_WELL_CONTRAPOS = prove | |
(`!l:A->A->bool. woset l ==> | |
(!P. (!x. P x ==> fld(l) x) /\ (?x. P x) ==> | |
(?y. P y /\ (!z. (properly l) z y ==> ~P z)))`, | |
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `P:A->bool` o MATCH_MP WOSET_WELL) THEN | |
ASM_MESON_TAC[WOSET_TRANS_LE; properly]);; | |
let WOSET_TOTAL_LE = prove | |
(`!l:A->A->bool. woset l | |
==> !x y. fld(l) x /\ fld(l) y ==> l x y \/ (properly l) y x`, | |
REWRITE_TAC[properly] THEN MESON_TAC[WOSET_REFL; WOSET_TOTAL]);; | |
let WOSET_TOTAL_LT = prove | |
(`!l:A->A->bool. woset l ==> | |
!x y. fld(l) x /\ fld(l) y | |
==> x = y \/ (properly l) x y \/ (properly l) y x`, | |
REWRITE_TAC[properly] THEN MESON_TAC[WOSET_TOTAL]);; | |
let ORDINAL_IMP_WOSET = prove | |
(`!l:A->A->bool. ordinal l ==> woset l`, | |
SIMP_TAC[ordinal]);; | |
let WOSET_FINITE_TOSET = prove | |
(`!l:A->A->bool. toset l /\ FINITE {(x,y) | l x y} ==> woset l`, | |
ONCE_REWRITE_TAC[GSYM FINITE_FLD] THEN | |
SIMP_TAC[TOSET_POSET; WOSET_WF; properly; poset; IN] THEN | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC WF_FINITE THEN REWRITE_TAC[] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[]; X_GEN_TAC `a:A`] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] | |
FINITE_SUBSET)) THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN | |
REWRITE_TAC[REWRITE_RULE[IN] IN_FLD; IN] THEN | |
ASM_MESON_TAC[]);; | |
(* ======================================================================== *) | |
(* (2) AXIOM OF CHOICE ==> CANTOR-ZERMELO WELLORDERING THEOREM *) | |
(* ======================================================================== *) | |
(* ------------------------------------------------------------------------ *) | |
(* UNIONS of initial segments is an initial segment. *) | |
(* ------------------------------------------------------------------------ *) | |
let UNION_FLD = prove | |
(`!P. fld(\x y:A. ?l. P l /\ l x y) x <=> ?l. P l /\ fld(l) x`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[]);; | |
let UNION_INSEG = prove | |
(`!P (l:A->A->bool). | |
(!m. P m ==> m inseg l) | |
==> (\x y. ?l. P l /\ l x y) inseg l`, | |
REWRITE_TAC[inseg; UNION_FLD; UNIONS_PRED] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------ *) | |
(* Initial segment of a woset is a woset. *) | |
(* ------------------------------------------------------------------------ *) | |
let INSEG_SUBSET = prove | |
(`!(l:A->A->bool) m. m inseg l ==> !x y. m x y ==> l x y`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[inseg] THEN MESON_TAC[]);; | |
let INSEG_SUBSET_FLD = prove | |
(`!(l:A->A->bool) m. m inseg l ==> !x. fld(m) x ==> fld(l) x`, | |
REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[INSEG_SUBSET]);; | |
let INSEG_FLD_SUBSET = prove | |
(`!l m:A->A->bool. l inseg m ==> fld l SUBSET fld m`, | |
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INSEG_SUBSET_FLD) THEN | |
SET_TAC[]);; | |
let INSEG_WOSET = prove | |
(`!(l:A->A->bool) m. m inseg l /\ woset l ==> woset m`, | |
REWRITE_TAC[inseg] THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[WOSET; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[WOSET_ANTISYM]; | |
X_GEN_TAC `P:A->bool` THEN | |
FIRST_ASSUM(MP_TAC o SPEC `P:A->bool` o MATCH_MP WOSET_WELL) THEN | |
REWRITE_TAC[fld; SUBSET; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]]);; | |
let INSEG_ORDINAL = prove | |
(`!l m:A->A->bool. m inseg l /\ ordinal l ==> ordinal m`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[INSEG_WOSET]; ALL_TAC] THEN | |
X_GEN_TAC `x:A` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP INSEG_SUBSET_FLD) THEN | |
ASM_SIMP_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN | |
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[properly]);; | |
(* ------------------------------------------------------------------------ *) | |
(* Properties of segments of the `linseg` form. *) | |
(* ------------------------------------------------------------------------ *) | |
let LINSEG_INSEG = prove | |
(`!(l:A->A->bool) a. woset l ==> (linseg l a) inseg l`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[inseg; linseg; REWRITE_RULE[IN] IN_FLD] THEN PBETA_TAC THEN | |
ASM_MESON_TAC[WOSET_TRANS_LE]);; | |
let LINSEG_WOSET = prove | |
(`!(l:A->A->bool) a. woset l ==> woset(linseg l a)`, | |
MESON_TAC[INSEG_WOSET; LINSEG_INSEG]);; | |
let LINSEG_FLD = prove | |
(`!(l:A->A->bool) a x. woset l ==> (fld (linseg l a) x <=> (properly l) x a)`, | |
REWRITE_TAC[REWRITE_RULE[IN] IN_FLD; linseg; properly] THEN PBETA_TAC THEN | |
MESON_TAC[WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; REWRITE_RULE[IN] IN_FLD]);; | |
(* ------------------------------------------------------------------------ *) | |
(* Key fact: a proper initial segment is of the special form. *) | |
(* ------------------------------------------------------------------------ *) | |
let INSEG_PROPER_SUBSET = prove | |
(`!(l:A->A->bool) m. m inseg l /\ ~(l = m) ==> | |
?x y. l x y /\ ~m x y`, | |
REWRITE_TAC[GSYM PAIRED_EXT] THEN MESON_TAC[INSEG_SUBSET]);; | |
let INSEG_PROPER_SUBSET_FLD = prove | |
(`!(l:A->A->bool) m. m inseg l /\ ~(l = m) ==> | |
?a. fld(l) a /\ ~fld(m) a`, | |
MESON_TAC[INSEG_PROPER_SUBSET; REWRITE_RULE[IN] IN_FLD; inseg]);; | |
let INSEG_LINSEG = prove | |
(`!(l:A->A->bool) m. woset l ==> | |
(m inseg l <=> (m = l) \/ (?a. fld(l) a /\ (m = linseg l a)))`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `m:A->A->bool = l` THEN | |
ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[inseg; REWRITE_RULE[IN] IN_FLD] THEN MESON_TAC[]; ALL_TAC] THEN | |
EQ_TAC THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[LINSEG_INSEG]] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL_CONTRAPOS) THEN | |
DISCH_THEN(MP_TAC o SPEC `\x:A. fld(l) x /\ ~fld(m) x`) THEN | |
REWRITE_TAC[] THEN REWRITE_TAC[linseg; GSYM PAIRED_EXT] THEN PBETA_TAC THEN | |
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL | |
[ASM_MESON_TAC[INSEG_PROPER_SUBSET_FLD]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[INSEG_SUBSET; INSEG_SUBSET_FLD; REWRITE_RULE[IN] IN_FLD; | |
WOSET_TOTAL_LE; properly; inseg]);; | |
(* ------------------------------------------------------------------------ *) | |
(* A proper initial segment can be extended by its bounding element. *) | |
(* ------------------------------------------------------------------------ *) | |
let EXTEND_FLD = prove | |
(`!(l:A->A->bool) x. woset l ==> (fld (\ x y. l x y /\ l y a) x <=> l x a)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN PBETA_TAC THEN | |
ASM_MESON_TAC[WOSET_TRANS; WOSET_REFL; REWRITE_RULE[IN] IN_FLD]);; | |
let EXTEND_INSEG = prove | |
(`!(l:A->A->bool) a. woset l /\ fld(l) a ==> (\ x y. l x y /\ l y a) inseg l`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[inseg] THEN PBETA_TAC THEN | |
REPEAT GEN_TAC THEN IMP_RES_THEN (fun t ->REWRITE_TAC[t]) EXTEND_FLD);; | |
let EXTEND_LINSEG = prove | |
(`!(l:A->A->bool) a. woset l /\ fld(l) a ==> | |
(\ x y. linseg l a x y \/ (y = a) /\ (fld(linseg l a) x \/ (x = a))) | |
inseg l`, | |
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN | |
MP_TAC (MATCH_MP EXTEND_INSEG th)) THEN | |
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN | |
AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM PAIRED_EXT] THEN PBETA_TAC THEN | |
REPEAT GEN_TAC THEN IMP_RES_THEN (fun th -> REWRITE_TAC[th]) LINSEG_FLD THEN | |
REWRITE_TAC[linseg; properly] THEN ASM_MESON_TAC[WOSET_REFL]);; | |
(* ------------------------------------------------------------------------ *) | |
(* Key canonicality property of ordinals. *) | |
(* ------------------------------------------------------------------------ *) | |
let ORDINAL_CHAINED_LEMMA = prove | |
(`!(k:A->A->bool) l m. | |
ordinal(l) /\ ordinal(m) | |
==> k inseg l /\ k inseg m | |
==> k = l \/ k = m \/ ?a. fld(l) a /\ fld(m) a /\ | |
k = linseg l a /\ | |
k = linseg m a`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN | |
EVERY_ASSUM(fun th -> TRY | |
(fun g -> REWRITE_TAC[MATCH_MP INSEG_LINSEG th] g)) THEN | |
ASM_CASES_TAC `k:A->A->bool = l` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `k:A->A->bool = m` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) | |
(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC)) THEN | |
EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `a:A = b` (fun th -> ASM_MESON_TAC[th]) THEN | |
FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fld(l) (a:A)`))) THEN | |
FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fld(m) (b:A)`))) THEN | |
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN | |
UNDISCH_TAC `k = linseg m (b:A)` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[linseg; GSYM PAIRED_EXT] THEN PBETA_TAC THEN | |
ASM_MESON_TAC[WOSET_REFL; properly; REWRITE_RULE[IN] IN_FLD]);; | |
let ORDINAL_CHAINED = prove | |
(`!(l:A->A->bool) m. ordinal(l) /\ ordinal(m) ==> m inseg l \/ l inseg m`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(fun th -> STRIP_ASSUME_TAC(REWRITE_RULE[ordinal] th) THEN | |
ASSUME_TAC (MATCH_MP ORDINAL_CHAINED_LEMMA th)) THEN | |
MP_TAC(SPEC `\k:A->A->bool. k inseg l /\ k inseg m` UNION_INSEG) THEN | |
DISCH_THEN(fun th -> | |
MP_TAC(CONJ (SPEC `l:A->A->bool` th) (SPEC `m:A->A->bool` th))) THEN | |
REWRITE_TAC[TAUT `(a /\ b ==> a) /\ (a /\ b ==> b)`] THEN | |
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN | |
FIRST_ASSUM(REPEAT_TCL DISJ_CASES_THEN MP_TAC o | |
C MATCH_MP th)) THENL | |
[ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN | |
MP_TAC(ASSUME | |
`(\x y. ?k. (k inseg l /\ k inseg m) /\ k x y) = linseg l (a:A)`) THEN | |
CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPECL [`a:A`; `a:A`]) THEN | |
REWRITE_TAC[linseg] THEN PBETA_TAC THEN REWRITE_TAC[properly] THEN | |
EXISTS_TAC | |
`\x y. linseg l a x y \/ (y = a) /\ (fld(linseg l a) x \/ (x = a:A))` THEN | |
PBETA_TAC THEN REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
UNDISCH_TAC | |
`(\x y. ?k. (k inseg l /\ k inseg m) /\ k x y) = linseg l (a:A)` THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM)] THEN | |
REWRITE_TAC[] THEN MATCH_MP_TAC EXTEND_LINSEG THEN ASM_REWRITE_TAC[]);; | |
let ORDINAL_FLD_UNIQUE = prove | |
(`!l m:A->A->bool. | |
ordinal l /\ ordinal m /\ fld l = fld m ==> l = m`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`l:A->A->bool`; `m:A->A->bool`] | |
ORDINAL_CHAINED) THEN | |
REWRITE_TAC[inseg; FUN_EQ_THM; FORALL_PAIR_THM] THEN | |
ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]);; | |
let ORDINAL_FLD_SUBSET = prove | |
(`!l m:A->A->bool. | |
ordinal l /\ ordinal m /\ fld l SUBSET fld m ==> l inseg m`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`l:A->A->bool`; `m:A->A->bool`] | |
ORDINAL_CHAINED) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
MATCH_MP_TAC(MESON[INSEG_REFL] `x = y ==> x inseg y`) THEN | |
MATCH_MP_TAC ORDINAL_FLD_UNIQUE THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP INSEG_SUBSET_FLD) THEN ASM SET_TAC[]);; | |
let ORDINAL_FLD_SUBSET_EQ = prove | |
(`!l m:A->A->bool. | |
ordinal l /\ ordinal m ==> (fld l SUBSET fld m <=> l inseg m)`, | |
MESON_TAC[ORDINAL_FLD_SUBSET; INSEG_FLD_SUBSET]);; | |
(* ------------------------------------------------------------------------ *) | |
(* Proof that any non-universe ordinal can be extended to its "successor". *) | |
(* ------------------------------------------------------------------------ *) | |
let FLD_SUC = prove | |
(`!(l:A->A->bool) a. | |
fld(\ x y. l x y \/ (y = a) /\ (fld(l) x \/ (x = a))) x <=> | |
fld(l) x \/ (x = a)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EQ_TAC THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY DISJ1_TAC THEN | |
ASM_MESON_TAC[]);; | |
let ORDINAL_SUC = prove | |
(`!l:A->A->bool. ordinal(l) /\ (?x. ~(fld(l) x)) ==> | |
ordinal(\x y. l x y \/ (y = @y. ~fld(l) y) /\ | |
(fld(l) x \/ (x = @y. ~fld(l) y)))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
ABBREV_TAC `a:A = @y. ~fld(l) y` THEN | |
SUBGOAL_THEN `~fld(l:A->A->bool) a` ASSUME_TAC THENL | |
[EXPAND_TAC "a" THEN CONV_TAC SELECT_CONV THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
PBETA_TAC THEN CONJ_TAC THENL | |
[REWRITE_TAC[WOSET; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN CONJ_TAC THENL | |
[REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL | |
[ASM_MESON_TAC[WOSET_ANTISYM]; ALL_TAC; ALL_TAC] THEN | |
UNDISCH_TAC `~fld(l:A->A->bool) a` THEN CONV_TAC CONTRAPOS_CONV THEN | |
DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN | |
DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THENL | |
[EXISTS_TAC `y:A`; EXISTS_TAC `x:A`] THEN | |
ASM_REWRITE_TAC[]; | |
X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[FLD_SUC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `w:A`)) THEN | |
IMP_RES_THEN (MP_TAC o SPEC `\x:A. P x /\ fld(l) x`) WOSET_WELL THEN | |
BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> b`] THEN | |
ASM_CASES_TAC `?x:A. P x /\ fld(l) x` THEN ASM_REWRITE_TAC[] THENL | |
[ASM_MESON_TAC[]; | |
FIRST_ASSUM(MP_TAC o SPEC `w:A` o | |
GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
ASM_MESON_TAC[]]]; | |
X_GEN_TAC `z:A` THEN REWRITE_TAC[FLD_SUC; properly] THEN | |
PBETA_TAC THEN DISCH_THEN DISJ_CASES_TAC THENL | |
[UNDISCH_TAC `!x:A. fld l x ==> (x = (@y. ~properly l y x))` THEN | |
DISCH_THEN(IMP_RES_THEN MP_TAC) THEN | |
DISCH_THEN(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `y:A` THEN | |
BETA_TAC THEN REWRITE_TAC[properly] THEN AP_TERM_TAC THEN | |
ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN | |
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `fld(l:A->A->bool) z` THEN ASM_REWRITE_TAC[]; | |
UNDISCH_TAC `z:A = a` THEN DISCH_THEN SUBST_ALL_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [SYM(ASSUME `(@y:A. ~fld(l) y) = a`)] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `y:A` THEN | |
BETA_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[] THEN | |
ASM_CASES_TAC `y:A = a` THEN ASM_REWRITE_TAC[] THEN | |
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN | |
EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]]]);; | |
(* ------------------------------------------------------------------------ *) | |
(* The union of a set of ordinals is an ordinal. *) | |
(* ------------------------------------------------------------------------ *) | |
let ORDINAL_UNION = prove | |
(`!P. (!l:A->A->bool. P l ==> ordinal(l)) | |
==> ordinal(\x y. ?l. P l /\ l x y)`, | |
GEN_TAC THEN DISCH_TAC THEN | |
REWRITE_TAC[ordinal; WOSET; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN | |
REPEAT CONJ_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[UNIONS_PRED] THEN | |
BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `l:A->A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC) | |
ASSUME_TAC)) | |
(X_CHOOSE_THEN `m:A->A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC) | |
ASSUME_TAC))) THEN | |
MP_TAC(SPECL [`l:A->A->bool`; `m:A->A->bool`] ORDINAL_CHAINED) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THENL | |
[MP_TAC(SPEC `l:A->A->bool` WOSET_ANTISYM); | |
MP_TAC(SPEC `m:A->A->bool` WOSET_ANTISYM)] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[ordinal]) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN | |
ASM_REWRITE_TAC[]; | |
X_GEN_TAC `Q:A->bool` THEN REWRITE_TAC[UNION_FLD] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `a:A`)) THEN | |
MP_TAC(ASSUME `!x:A. Q x ==> (?l. P l /\ fld l x)`) THEN | |
DISCH_THEN(IMP_RES_THEN | |
(X_CHOOSE_THEN `l:A->A->bool` STRIP_ASSUME_TAC)) THEN | |
IMP_RES_THEN ASSUME_TAC (ASSUME `!l:A->A->bool. P l ==> ordinal l`) THEN | |
ASSUME_TAC(CONJUNCT1 | |
(REWRITE_RULE[ordinal] (ASSUME `ordinal(l:A->A->bool)`))) THEN | |
IMP_RES_THEN(MP_TAC o SPEC `\x:A. fld(l) x /\ Q x`) WOSET_WELL THEN | |
BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> a`] THEN | |
SUBGOAL_THEN `?x:A. fld(l) x /\ Q x` (fun th -> REWRITE_TAC[th]) THENL | |
[EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `x:A` THEN DISCH_TAC THEN | |
ANTE_RES_THEN MP_TAC (ASSUME `(Q:A->bool) x`) THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:A->A->bool` STRIP_ASSUME_TAC) THEN | |
ANTE_RES_THEN ASSUME_TAC (ASSUME `(P:(A->A->bool)->bool) m`) THEN | |
MP_TAC(SPECL [`l:A->A->bool`; `m:A->A->bool`] ORDINAL_CHAINED) THEN | |
ASM_REWRITE_TAC[UNIONS_PRED] THEN BETA_TAC THEN | |
DISCH_THEN DISJ_CASES_TAC THENL | |
[EXISTS_TAC `l:A->A->bool` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET_FLD THEN ASM_REWRITE_TAC[]; | |
EXISTS_TAC `m:A->A->bool` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `b:A`] o REWRITE_RULE[inseg]) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN | |
IMP_RES_THEN (MP_TAC o SPEC `b:A`) INSEG_SUBSET_FLD THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
MP_TAC(CONJUNCT1(REWRITE_RULE[ordinal] | |
(ASSUME `ordinal(m:A->A->bool)`))) THEN | |
DISCH_THEN(MP_TAC o SPECL [`b:A`; `x:A`] o MATCH_MP WOSET_TOTAL) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN (DISJ_CASES_THEN MP_TAC) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN | |
EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[]]; | |
X_GEN_TAC `x:A` THEN REWRITE_TAC[UNION_FLD] THEN | |
DISCH_THEN(X_CHOOSE_THEN `l:A->A->bool` STRIP_ASSUME_TAC) THEN | |
MP_TAC(ASSUME `!l:A->A->bool. P l ==> ordinal l`) THEN | |
DISCH_THEN(IMP_RES_THEN MP_TAC) THEN REWRITE_TAC[ordinal] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:A`)) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN | |
REPEAT AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `y:A` THEN BETA_TAC THEN AP_TERM_TAC THEN | |
ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[properly; UNIONS_PRED] THEN | |
BETA_TAC THEN EQ_TAC THEN DISCH_TAC THENL | |
[EXISTS_TAC `l:A->A->bool` THEN ASM_REWRITE_TAC[]; | |
FIRST_ASSUM(X_CHOOSE_THEN `m:A->A->bool` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `ordinal(l:A->A->bool) /\ ordinal(m:A->A->bool)` | |
MP_TAC THENL | |
[CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; | |
DISCH_THEN(DISJ_CASES_TAC o MATCH_MP ORDINAL_CHAINED)] THENL | |
[IMP_RES_THEN MATCH_MP_TAC INSEG_SUBSET THEN ASM_REWRITE_TAC[]; | |
RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[]]]]);; | |
(* ------------------------------------------------------------------------ *) | |
(* Consequently, every type can be wellordered (and by an ordinal). *) | |
(* ------------------------------------------------------------------------ *) | |
let ORDINAL_UNION_LEMMA = prove | |
(`!(l:A->A->bool) x. | |
ordinal l ==> fld(l) x ==> fld(\a b. ?l. ordinal l /\ l a b) x`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[UNION_FLD] THEN | |
EXISTS_TAC `l:A->A->bool` THEN ASM_REWRITE_TAC[]);; | |
let ORDINAL_UP = prove | |
(`!l:A->A->bool. ordinal(l) ==> (!x. fld(l) x) \/ | |
(?m x. ordinal(m) /\ fld(m) x /\ ~fld(l) x)`, | |
GEN_TAC THEN DISCH_TAC THEN | |
REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN | |
GEN_REWRITE_TAC LAND_CONV [NOT_FORALL_THM] THEN DISCH_TAC THEN | |
MP_TAC(SPEC `l:A->A->bool` ORDINAL_SUC) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_TAC THEN MAP_EVERY EXISTS_TAC | |
[`\x y. l x y \/ (y = @y:A. ~fld l y) /\ (fld(l) x \/ (x = @y. ~fld l y))`; | |
`@y. ~fld(l:A->A->bool) y`] THEN | |
ASM_REWRITE_TAC[FLD_SUC] THEN | |
CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[]);; | |
let WO_ORDINAL = prove | |
(`?l:A->A->bool. ordinal(l) /\ !x. fld(l) x`, | |
EXISTS_TAC `\a b:A. ?l. ordinal l /\ l a b` THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[MATCH_MP_TAC ORDINAL_UNION THEN REWRITE_TAC[]; | |
DISCH_THEN(DISJ_CASES_TAC o MATCH_MP ORDINAL_UP) THEN | |
ASM_REWRITE_TAC[] THEN POP_ASSUM(X_CHOOSE_THEN `m:A->A->bool` | |
(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC)) THEN | |
IMP_RES_THEN (IMP_RES_THEN MP_TAC) ORDINAL_UNION_LEMMA THEN | |
ASM_REWRITE_TAC[]]);; | |
(* ------------------------------------------------------------------------ *) | |
(* At least -- every set can be wellordered. *) | |
(* ------------------------------------------------------------------------ *) | |
let FLD_RESTRICT = prove | |
(`!l. woset l ==> | |
!P. fld(\x y:A. P x /\ P y /\ l x y) x <=> P x /\ fld(l) x`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EQ_TAC THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
TRY(EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN NO_TAC) THEN | |
EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN | |
IMP_RES_THEN MATCH_MP_TAC WOSET_REFL THEN | |
REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EXISTS_TAC `y:A` THEN | |
ASM_REWRITE_TAC[]);; | |
let WO = prove | |
(`!P. ?l:A->A->bool. woset l /\ (fld(l) = P)`, | |
GEN_TAC THEN X_CHOOSE_THEN `l:A->A->bool` STRIP_ASSUME_TAC | |
(REWRITE_RULE[ordinal] WO_ORDINAL) THEN | |
EXISTS_TAC `\x y:A. P x /\ P y /\ l x y` THEN | |
REWRITE_TAC[WOSET; SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN | |
GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN | |
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FLD_RESTRICT th]) THEN | |
PBETA_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[REPEAT GEN_TAC THEN DISCH_TAC THEN | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WOSET_ANTISYM) THEN | |
ASM_REWRITE_TAC[]; | |
X_GEN_TAC `Q:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL) THEN | |
DISCH_THEN(MP_TAC o SPEC `Q:A->bool`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN | |
REPEAT CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
FIRST_ASSUM ACCEPT_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Moreover, the ordinals themselves are wellordered by "inseg". *) | |
(* ------------------------------------------------------------------------- *) | |
let WF_INSEG_WOSET = prove | |
(`WF(\(x:A->A->bool) y. woset x /\ woset y /\ x inseg y /\ ~(x = y))`, | |
REWRITE_TAC[WF] THEN X_GEN_TAC `P:(A->A->bool)->bool` THEN | |
DISCH_TAC THEN | |
ONCE_REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN | |
REWRITE_TAC[TAUT `~(p /\ q) <=> p ==> ~q`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN | |
REWRITE_TAC[NOT_IMP] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `!x:A->A->bool. P x ==> woset x` ASSUME_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!y. ?(a:A) z. P y ==> P z /\ fld y a /\ linseg y a = z` | |
MP_TAC THENL | |
[X_GEN_TAC `y:A->A->bool` THEN | |
ASM_CASES_TAC `(P:(A->A->bool)->bool) y` THEN ASM_REWRITE_TAC[] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:A->A->bool`)) THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[INSEG_LINSEG]; | |
ALL_TAC] THEN | |
REWRITE_TAC[SKOLEM_THM; NOT_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC | |
[`a:(A->A->bool)->A`; `l:(A->A->bool)->(A->A->bool)`] THEN | |
DISCH_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `z:A->A->bool`) THEN | |
SUBGOAL_THEN `woset(z:A->A->bool)` MP_TAC THENL | |
[ASM_MESON_TAC[]; | |
REWRITE_TAC[woset; SUBSET; GSYM MEMBER_NOT_EMPTY; IN]] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPEC `{(a:(A->A->bool)->A) x | P x /\ x inseg z}`) THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN | |
REWRITE_TAC[TAUT `P /\ x = y <=> x = y /\ P`] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM; SWAP_FORALL_THM] THEN | |
REWRITE_TAC[UNWIND_THM2; FORALL_UNWIND_THM2; IMP_CONJ; | |
RIGHT_FORALL_IMP_THM] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM; SWAP_FORALL_THM] THEN | |
REWRITE_TAC[UNWIND_THM2; FORALL_UNWIND_THM2; IMP_CONJ; | |
RIGHT_FORALL_IMP_THM; NOT_IMP] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[INSEG_SUBSET_FLD]; ALL_TAC] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[INSEG_REFL]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `w:A->A->bool` MP_TAC) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPEC `(l:(A->A->bool)->(A->A->bool)) w`) THEN | |
ASM_SIMP_TAC[NOT_IMP] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[LINSEG_INSEG; INSEG_TRANS]; DISCH_TAC] THEN | |
FIRST_X_ASSUM(fun th -> | |
MP_TAC(SPEC `(l:(A->A->bool)->(A->A->bool)) w` th) THEN | |
MP_TAC(SPEC `w:A->A->bool` th)) THEN | |
ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THEN | |
UNDISCH_TAC `fld ((l:(A->A->bool)->(A->A->bool)) w) (a (l w))` THEN | |
FIRST_X_ASSUM(fun th -> | |
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SYM th]) THEN | |
ASM_SIMP_TAC[LINSEG_FLD; properly] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_MESON_TAC[]);; | |
let WOSET_INSEG_ORDINAL = prove | |
(`woset (\(x:A->A->bool) y. ordinal x /\ ordinal y /\ x inseg y)`, | |
REWRITE_TAC[WOSET_WF; IN; properly; REWRITE_RULE[IN] IN_FLD] THEN | |
CONJ_TAC THENL [MESON_TAC[ORDINAL_CHAINED]; ALL_TAC] THEN | |
MATCH_MP_TAC(MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] WF_SUBSET) | |
WF_INSEG_WOSET) THEN | |
SIMP_TAC[ordinal]);; | |
let SUBWOSET_ISO_INSEG = prove | |
(`!l s. woset l /\ fld l = (:A) | |
==> ?f. (!x y. x IN s /\ y IN s ==> (l(f x) (f y) <=> l x y)) /\ | |
(!x y. y IN IMAGE f s /\ l x y ==> x IN IMAGE f s)`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o last o CONJUNCTS o GEN_REWRITE_RULE I [woset]) THEN | |
ASM_REWRITE_TAC[UNIV; MEMBER_NOT_EMPTY] THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `m:(A->bool)->A` THEN DISCH_TAC THEN | |
SUBGOAL_THEN | |
`?f:A->A. !x. f(x) = m (UNIV DIFF IMAGE f {u | u IN s /\ properly l u x})` | |
MP_TAC THENL | |
[FIRST_ASSUM(MP_TAC o CONJUNCT2 o REWRITE_RULE[WOSET_WF; properly]) THEN | |
DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC) THEN | |
REWRITE_TAC[properly] THEN REPEAT STRIP_TAC THEN | |
AP_TERM_TAC THEN ASM SET_TAC[]; | |
MATCH_MP_TAC MONO_EXISTS] THEN | |
X_GEN_TAC `f:A->A` THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN | |
SUBGOAL_THEN `!x. x IN s ==> (l:A->A->bool)(f x) x` ASSUME_TAC THENL | |
[FIRST_ASSUM(MP_TAC o CONJUNCT2 o REWRITE_RULE[WOSET_WF; properly]) THEN | |
REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN | |
X_GEN_TAC `x:A` THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN | |
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC | |
`(:A) DIFF IMAGE (f:A->A) {u | u IN s /\ properly l u x}`) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[REPEAT(POP_ASSUM MP_TAC) THEN | |
REWRITE_TAC[properly; woset] THEN SET_TAC[]; | |
REWRITE_TAC[IN_DIFF; IN_IMAGE; IN_ELIM_THM; IN_UNIV] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN | |
REWRITE_TAC[properly; woset] THEN SET_TAC[]]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP MONO_FORALL o GEN `x:A` o SPEC | |
`(:A) DIFF IMAGE (f:A->A) {u | u IN s /\ properly l u x}`) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]; | |
FIRST_X_ASSUM(K ALL_TAC o CONV_RULE (BINDER_CONV SYM_CONV))] THEN | |
REWRITE_TAC[IN_UNIV; IN_IMAGE; IN_DIFF; IN_ELIM_THM; FORALL_AND_THM] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN | |
`!x z:A. x IN s /\ properly l z (f x) | |
==> ?u. u IN s /\ properly l u x /\ f u = z` | |
ASSUME_TAC THENL | |
[REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!x z:A. x IN s /\ l z (f x) ==> ?u. u IN s /\ l u x /\ f u = z` | |
ASSUME_TAC THENL | |
[REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[SUBGOAL_THEN | |
`!x y:A. x IN s /\ y IN s /\ properly l x y ==> properly l (f x) (f y)` | |
MP_TAC THENL | |
[REPEAT STRIP_TAC THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `(f:A->A) y`])) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN | |
REWRITE_TAC[properly; woset] THEN SET_TAC[]; | |
MATCH_MP_TAC(MESON[] | |
`(!x y. P x y /\ P y x ==> Q x y) | |
==> (!x y. P x y) ==> (!x y. Q x y)`) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN | |
SET_TAC[]]; | |
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN | |
SET_TAC[]]);; | |
(* ======================================================================== *) | |
(* (3) CANTOR-ZERMELO WELL-ORDERING THEOREM ==> HAUSDORFF MAXIMAL PRINCIPLE *) | |
(* ======================================================================== *) | |
let HP = prove | |
(`!l:A->A->bool. poset l ==> | |
?P. chain(l) P /\ !Q. chain(l) Q /\ P SUBSET Q ==> (Q = P)`, | |
GEN_TAC THEN DISCH_TAC THEN | |
X_CHOOSE_THEN `w:A->A->bool` MP_TAC (SPEC `\x:A. T` WO) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
GEN_REWRITE_TAC LAND_CONV [FUN_EQ_THM] THEN BETA_TAC THEN | |
REWRITE_TAC[] THEN DISCH_TAC THEN | |
IMP_RES_THEN (MP_TAC o SPEC `\x:A. fld(l) x`) WOSET_WELL THEN | |
BETA_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `?x:A. fld(l) x` THEN ASM_REWRITE_TAC[] THENL | |
[DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC); | |
FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN | |
EXISTS_TAC `\x:A. F` THEN REWRITE_TAC[chain; IN; SUBSET_PRED] THEN | |
GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN | |
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:A` MP_TAC o | |
GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN | |
REWRITE_TAC[] THEN DISCH_TAC THEN | |
DISCH_THEN(MP_TAC o SPECL [`u:A`; `u:A`]) THEN | |
IMP_RES_THEN(ASSUME_TAC o GSYM) POSET_FLDEQ THEN ASM_REWRITE_TAC[]] THEN | |
SUBGOAL_THEN | |
`?f. !x. f x = if fld(l) x /\ | |
!y. properly w y x ==> l x (f y) \/ l (f y) x | |
then (x:A) else b` | |
(CHOOSE_TAC o GSYM) THENL | |
[SUBGOAL_THEN `WF(\x:A y. (properly w) x y)` MP_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[WOSET_WF]) THEN ASM_REWRITE_TAC[ETA_AX]; | |
DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC) THEN | |
REWRITE_TAC[] THEN REPEAT GEN_TAC THEN | |
REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[]]; ALL_TAC] THEN | |
IMP_RES_THEN(IMP_RES_THEN ASSUME_TAC) POSET_REFL THEN | |
SUBGOAL_THEN `(f:A->A) b = b` ASSUME_TAC THENL | |
[FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `b:A`) THEN | |
REWRITE_TAC[COND_ID] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!x:A. fld(l:A->A->bool) (f x)` ASSUME_TAC THENL | |
[GEN_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
FIRST_ASSUM(ANTE_RES_THEN (ASSUME_TAC o GEN_ALL) o SPEC_ALL) THEN | |
SUBGOAL_THEN `!x:A. (l:A->A->bool) b (f x) \/ l (f x) b` ASSUME_TAC THENL | |
[GEN_TAC THEN MP_TAC(SPEC`x:A` (ASSUME `!x:A. (w:A->A->bool) b (f x)`)) THEN | |
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `x:A = b` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `(properly w) (b:A) x` MP_TAC THENL | |
[ASM_REWRITE_TAC[properly] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN | |
FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN | |
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th o CONJUNCT2)) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!x y. l((f:A->A) x) (f y) \/ l(f y) (f x)` ASSUME_TAC THENL | |
[REPEAT GEN_TAC THEN | |
IMP_RES_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) WOSET_TOTAL_LT THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC) THENL | |
[ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC POSET_REFL; | |
ONCE_REWRITE_TAC[DISJ_SYM] THEN | |
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `y:A`); | |
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`)] THEN | |
TRY COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(IMP_RES_THEN ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN | |
EXISTS_TAC `\y:A. ?x:A. y = f(x)` THEN | |
SUBGOAL_THEN `chain(l:A->A->bool)(\y. ?x:A. y = f x)` ASSUME_TAC THENL | |
[REWRITE_TAC[chain; IN] THEN BETA_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN(CHOOSE_THEN SUBST1_TAC)); ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN X_GEN_TAC `Q:A->bool` THEN STRIP_TAC THEN | |
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `z:A` THEN EQ_TAC THENL | |
[DISCH_TAC THEN BETA_TAC THEN EXISTS_TAC `z:A` THEN | |
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `z:A`) THEN | |
SUBGOAL_THEN `fld(l:A->A->bool) z /\ | |
!y. (properly w) y z ==> l z (f y) \/ l (f y) z` | |
(fun th -> REWRITE_TAC[th]) THEN CONJ_TAC THENL | |
[UNDISCH_TAC `chain(l:A->A->bool) Q` THEN REWRITE_TAC[chain; IN] THEN | |
DISCH_THEN(MP_TAC o SPECL [`z:A`; `z:A`]) THEN | |
ASM_REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN | |
DISCH_TAC THEN EXISTS_TAC `z:A` THEN ASM_REWRITE_TAC[]; | |
X_GEN_TAC `y:A` THEN DISCH_TAC THEN | |
UNDISCH_TAC `chain(l:A->A->bool) Q` THEN REWRITE_TAC[chain; IN] THEN | |
DISCH_THEN(MP_TAC o SPECL [`z:A`; `(f:A->A) y`]) THEN | |
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN | |
BETA_TAC THEN EXISTS_TAC `y:A` THEN REFL_TAC]; | |
SPEC_TAC(`z:A`,`z:A`) THEN ASM_REWRITE_TAC[GSYM SUBSET_PRED]]);; | |
(* ======================================================================== *) | |
(* (4) HAUSDORFF MAXIMAL PRINCIPLE ==> ZORN'S LEMMA *) | |
(* ======================================================================== *) | |
let ZL = prove | |
(`!l:A->A->bool. poset l /\ | |
(!P. chain(l) P ==> (?y. fld(l) y /\ !x. P x ==> l x y)) ==> | |
?y. fld(l) y /\ !x. l y x ==> (y = x)`, | |
GEN_TAC THEN STRIP_TAC THEN | |
FIRST_ASSUM(X_CHOOSE_THEN `M:A->bool` STRIP_ASSUME_TAC o MATCH_MP HP) THEN | |
UNDISCH_TAC `!P. chain(l:A->A->bool) P | |
==> (?y. fld(l) y /\ !x. P x ==> l x y)` THEN | |
DISCH_THEN(MP_TAC o SPEC `M:A->bool`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:A` THEN | |
DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `chain(l) (\x:A. M x \/ (x = z))` MP_TAC THENL | |
[REWRITE_TAC[chain; IN] THEN BETA_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN DISJ_CASES_TAC) THEN | |
ASM_REWRITE_TAC[] THENL | |
[UNDISCH_TAC `chain(l:A->A->bool) M` THEN REWRITE_TAC[chain; IN] THEN | |
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; | |
DISJ1_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN | |
EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; | |
DISJ2_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN | |
EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_REFL) THEN | |
REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN EXISTS_TAC `m:A` THEN | |
ASM_REWRITE_TAC[]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `M SUBSET (\x:A. M x \/ (x = z))` MP_TAC THENL | |
[REWRITE_TAC[SUBSET_PRED] THEN GEN_TAC THEN BETA_TAC THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[th]); ALL_TAC] THEN | |
GEN_REWRITE_TAC I [TAUT `(a ==> b ==> c) <=> (b /\ a ==> c)`] THEN | |
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN | |
REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `z:A`) THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(fun th -> FIRST_ASSUM(ASSUME_TAC o C MATCH_MP th)) THEN | |
FIRST_ASSUM(MP_TAC o SPECL [`m:A`; `z:A`] o MATCH_MP POSET_ANTISYM) THEN | |
ASM_REWRITE_TAC[]);; | |
(* ======================================================================== *) | |
(* (5) ZORN'S LEMMA ==> KURATOWSKI'S LEMMA *) | |
(* ======================================================================== *) | |
let KL_POSET_LEMMA = prove | |
(`poset (\ c1 c2. C SUBSET c1 /\ c1 SUBSET c2 /\ chain(l:A->A->bool) c2)`, | |
REWRITE_TAC[poset; IN] THEN PBETA_TAC THEN REPEAT CONJ_TAC THENL | |
[X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN | |
DISCH_THEN(X_CHOOSE_THEN `Q:A->bool` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[SUBSET_REFL] THENL | |
[MATCH_MP_TAC CHAIN_SUBSET; MATCH_MP_TAC SUBSET_TRANS]; | |
GEN_TAC THEN X_GEN_TAC `Q:A->bool` THEN GEN_TAC THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS; | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM] THEN | |
TRY(EXISTS_TAC `Q:A->bool`) THEN ASM_REWRITE_TAC[]);; | |
let KL = prove | |
(`!l:A->A->bool. poset l ==> | |
!C. chain(l) C ==> | |
?P. (chain(l) P /\ C SUBSET P) /\ | |
(!R. chain(l) R /\ P SUBSET R ==> (R = P))`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPEC `\c1 c2. C SUBSET c1 /\ c1 SUBSET c2 /\ | |
chain(l:A->A->bool) c2` ZL) THEN PBETA_TAC THEN | |
REWRITE_TAC[KL_POSET_LEMMA; MATCH_MP POSET_FLDEQ KL_POSET_LEMMA] THEN | |
PBETA_TAC THEN | |
W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o | |
funpow 2 (fst o dest_imp) o snd) THENL | |
[X_GEN_TAC `P:(A->bool)->bool` THEN GEN_REWRITE_TAC LAND_CONV [chain] THEN | |
REWRITE_TAC[IN] THEN | |
PBETA_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `?D:A->bool. P D` THENL | |
[EXISTS_TAC `UNIONS(P) :A->bool` THEN REWRITE_TAC[SUBSET_REFL] THEN | |
FIRST_ASSUM(X_CHOOSE_TAC `D:A->bool`) THEN | |
FIRST_ASSUM(MP_TAC o SPECL [`D:A->bool`; `D:A->bool`]) THEN | |
REWRITE_TAC[ASSUME `(P:(A->bool)->bool) D`; SUBSET_REFL] THEN | |
STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c) ==> (a /\ b) /\ c`) THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[UNIONS_PRED; SUBSET_PRED] THEN REPEAT STRIP_TAC THEN | |
BETA_TAC THEN EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[chain; IN; UNIONS_PRED] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN | |
BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_TAC `A:A->bool`) (X_CHOOSE_TAC `B:A->bool`)) THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN | |
DISCH_THEN(MP_TAC o SPECL [`A:A->bool`; `B:A->bool`]) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THENL | |
[UNDISCH_TAC `chain(l:A->A->bool) B`; | |
UNDISCH_TAC `chain(l:A->A->bool) A`] THEN | |
REWRITE_TAC[chain; IN] THEN DISCH_THEN MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET_PRED]) THEN | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC THEN X_GEN_TAC `X:A->bool` THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPECL [`X:A->bool`; `X:A->bool`]) THEN | |
REWRITE_TAC[] THEN DISCH_THEN(IMP_RES_THEN STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[UNIONS_PRED; SUBSET_PRED] THEN | |
REPEAT STRIP_TAC THEN BETA_TAC THEN EXISTS_TAC `X:A->bool` THEN | |
ASM_REWRITE_TAC[]]; | |
EXISTS_TAC `C:A->bool` THEN | |
FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN | |
ASM_REWRITE_TAC[SUBSET_REFL]]; | |
DISCH_THEN(X_CHOOSE_THEN `D:A->bool` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Special case of Zorn's Lemma for restriction of subset lattice. *) | |
(* ------------------------------------------------------------------------- *) | |
let POSET_RESTRICTED_SUBSET = prove | |
(`!P. poset(\x y. P(x) /\ P(y) /\ x SUBSET y)`, | |
GEN_TAC THEN REWRITE_TAC[poset; IN; REWRITE_RULE[IN] IN_FLD] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[SUBSET; EXTENSION] THEN MESON_TAC[]);; | |
let FLD_RESTRICTED_SUBSET = prove | |
(`!P. fld(\ x y. P(x) /\ P(y) /\ x SUBSET y) = P`, | |
REWRITE_TAC[REWRITE_RULE[IN] IN_FLD; FORALL_PAIR_THM; FUN_EQ_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[SUBSET_REFL]);; | |
let ZL_SUBSETS = prove | |
(`!P. (!c. (!x. x IN c ==> P x) /\ | |
(!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x) | |
==> ?z. P z /\ (!x. x IN c ==> x SUBSET z)) | |
==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`, | |
GEN_TAC THEN | |
MP_TAC(ISPEC `\x y. P(x:A->bool) /\ P(y) /\ x SUBSET y` ZL) THEN | |
REWRITE_TAC[POSET_RESTRICTED_SUBSET; FLD_RESTRICTED_SUBSET] THEN | |
REWRITE_TAC[chain; IN] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[IN] THEN MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THENL | |
[MATCH_MP_TAC MONO_FORALL; ALL_TAC] THEN | |
MESON_TAC[]);; | |
let ZL_SUBSETS_UNIONS = prove | |
(`!P. (!c. (!x. x IN c ==> P x) /\ | |
(!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x) | |
==> P(UNIONS c)) | |
==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN | |
REPEAT STRIP_TAC THEN EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN | |
ASM_MESON_TAC[SUBSET; IN_UNIONS]);; | |
let ZL_SUBSETS_UNIONS_NONEMPTY = prove | |
(`!P. (?x. P x) /\ | |
(!c. (?x. x IN c) /\ | |
(!x. x IN c ==> P x) /\ | |
(!x y. x IN c /\ y IN c ==> x SUBSET y \/ y SUBSET x) | |
==> P(UNIONS c)) | |
==> ?a:A->bool. P a /\ (!x. P x /\ a SUBSET x ==> (a = x))`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS THEN | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `?x:A->bool. x IN c` THENL | |
[EXISTS_TAC `UNIONS(c:(A->bool)->bool)` THEN | |
ASM_SIMP_TAC[] THEN MESON_TAC[SUBSET; IN_UNIONS]; | |
ASM_MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A form of Tukey's lemma. *) | |
(* ------------------------------------------------------------------------- *) | |
let TUKEY = prove | |
(`!s:(A->bool)->bool. | |
~(s = {}) /\ | |
(!t. (!c. FINITE c /\ c SUBSET t ==> c IN s) <=> t IN s) | |
==> ?u. u IN s /\ !v. v IN s /\ u SUBSET v ==> u = v`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC ZL_SUBSETS_UNIONS_NONEMPTY THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `c:(A->bool)->bool` THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN | |
SUBGOAL_THEN | |
`!d. FINITE d ==> d SUBSET UNIONS c ==> ?e:A->bool. e IN c /\ d SUBSET e` | |
MP_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_FORALL THEN ASM SET_TAC[]] THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[INSERT_SUBSET] THEN ASM SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Also the order extension theorem, using Abian's proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let OEP = prove | |
(`!p:A->A->bool. | |
poset p ==> ?t. toset t /\ fld(t) = fld(p) /\ !x y. p x y ==> t x y`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPEC `fld(p:A->A->bool)` WO) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `w:A->A->bool` STRIP_ASSUME_TAC) THEN | |
ABBREV_TAC | |
`t = \(x:A) (y:A). fld p x /\ fld p y /\ | |
(x = y \/ | |
?i. fld p i /\ | |
(!j. w j i /\ ~(j = i) ==> (p j x <=> p j y)) /\ | |
~p i x /\ p i y)` THEN | |
EXISTS_TAC `t:A->A->bool` THEN | |
SUBGOAL_THEN | |
`!x:A y:A. fld p x /\ fld p y /\ ~(x = y) | |
==> ?i. fld p i /\ | |
(!j:A. w j i /\ ~(j = i) ==> (p j x <=> p j y)) /\ | |
~(p i x <=> p i y)` | |
(LABEL_TAC "*") THENL | |
[REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_SIMP_TAC[IN] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPEC `\i:A. fld p i /\ ~(p i x <=> p i y)`) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM SET_TAC[]; | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:A` THEN | |
ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `!x:A y:A. p x y ==> t x y` ASSUME_TAC THENL | |
[EXPAND_TAC "t" THEN REWRITE_TAC[] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
REPEAT(CONJ_TAC THENL | |
[ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]; ALL_TAC]) THEN | |
ASM_CASES_TAC `x:A = y` THENL | |
[ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]; ALL_TAC] THEN | |
REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_SIMP_TAC[] THEN | |
ANTS_TAC THENL | |
[ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]; MATCH_MP_TAC MONO_EXISTS] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM SET_TAC[]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN] THEN | |
MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL | |
[MATCH_MP_TAC SUBSET_ANTISYM THEN | |
ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN] THEN | |
EXPAND_TAC "t" THEN REWRITE_TAC[REWRITE_RULE[IN] IN_FLD] THEN | |
ASM_MESON_TAC[]; | |
DISCH_TAC THEN ASM_REWRITE_TAC[TOSET_POSET; poset; IN]] THEN | |
EXPAND_TAC "t" THEN REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN | |
REWRITE_TAC[IN] THEN REPEAT CONJ_TAC THENL | |
[MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN | |
ASM_CASES_TAC `x:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN | |
ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN | |
ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN | |
ASM_CASES_TAC `fld p (x:A)` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `fld p (y:A)` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `fld p (z:A)` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) | |
(X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN | |
REWRITE_TAC[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN | |
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[REWRITE_RULE[IN] IN_FLD]; ALL_TAC] THEN | |
STRIP_TAC THENL | |
[EXISTS_TAC `m:A`; EXISTS_TAC `n:A`] THEN ASM_MESON_TAC[]; | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN | |
ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `fld p (x:A)` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `fld p (y:A)` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) | |
(X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN | |
REWRITE_TAC[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] THEN | |
REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN | |
ASM_MESON_TAC[]; | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN | |
ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[IN] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN | |
ASM_REWRITE_TAC[OR_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Every toset contains a cofinal woset. *) | |
(* ------------------------------------------------------------------------- *) | |
let TOSET_COFINAL_WOSET = prove | |
(`!l. toset l | |
==> ?w. (!x y. w x y ==> l x y) /\ woset w /\ | |
!x:A. x IN fld l ==> ?y. y IN fld w /\ l x y`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `fld l:A->bool = {}` THENL | |
[EXISTS_TAC `(\x y. F):A->A->bool` THEN | |
ASM_REWRITE_TAC[woset; FLD_TRIVIAL; NOT_IN_EMPTY] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `?r. ordinal r /\ fld r = (:A->bool)` STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_UNIV] THEN REWRITE_TAC[IN; WO_ORDINAL]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?f. !w. f w = if ?x:A. x IN fld l /\ | |
!v:A->bool. r v w /\ ~(v = w) ==> ~l x (f v) | |
then @x:A. x IN fld l /\ | |
!v. r v w /\ ~(v = w) ==> ~l x (f v) | |
else @x:A. x IN fld l` | |
STRIP_ASSUME_TAC THENL | |
[FIRST_ASSUM(MP_TAC o MATCH_MP ORDINAL_IMP_WOSET) THEN | |
REWRITE_TAC[WOSET_WF; properly] THEN | |
DISCH_THEN(MATCH_MP_TAC o MATCH_MP WF_REC o CONJUNCT2) THEN | |
REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(MESON[] | |
`(p <=> p') /\ x' = x | |
==> (if p then x else a) = (if p' then x' else a)`) THEN | |
CONJ_TAC THENL [ALL_TAC; AP_TERM_TAC THEN ABS_TAC] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!w. (f:(A->bool)->A) w IN fld l` | |
ASSUME_TAC THENL | |
[GEN_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?w:A->bool. (!x. x IN fld l ==> ?v. r v w /\ ~(v = w) /\ l (x:A) (f v)) /\ | |
!z. (!x. x IN fld l ==> ?v. r v z /\ ~(v = z) /\ l x (f v)) | |
==> r w z` | |
STRIP_ASSUME_TAC THENL | |
[FIRST_ASSUM(MATCH_MP_TAC o last o CONJUNCTS o | |
REWRITE_RULE[REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset] o | |
MATCH_MP ORDINAL_IMP_WOSET) THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
ONCE_REWRITE_TAC[MESON[] `(?w. P w) <=> ~(!w. ~P w)`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN | |
REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM; TAUT | |
`~(p /\ q /\ r) <=> (p /\ q ==> ~r)`] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `!v w:A->bool. f v:A = f w ==> v = w` MP_TAC THENL | |
[FIRST_ASSUM(MP_TAC o el 3 o CONJUNCTS o | |
REWRITE_RULE[REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset] o | |
MATCH_MP ORDINAL_IMP_WOSET) THEN | |
FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[UNIV] THEN | |
MATCH_MP_TAC(MESON[] | |
`(!x y. P x y ==> P y x) /\ (!x y. R x y ==> P x y) | |
==> (!x y. R x y \/ R y x) ==> (!x y. P x y)`) THEN | |
CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(fun t -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [t]) THEN | |
ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[] | |
`(y = @x. P x) ==> (?x. P x) ==> P y`)) THEN | |
ASM_SIMP_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOSET_POSET]) THEN | |
ASM_MESON_TAC[]; | |
REWRITE_TAC[INJECTIVE_LEFT_INVERSE; NOT_EXISTS_THM] THEN | |
X_GEN_TAC `g:A->(A->bool)` THEN | |
DISCH_THEN(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!x y. r x y /\ r y w /\ ~(y = w) ==> l((f:(A->bool)->A) x) (f y)` | |
ASSUME_TAC THENL | |
[REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(MESON[] | |
`(l a b \/ l b a) /\ (~(b = a) ==> ~l b a) ==> l a b`) THEN | |
CONJ_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[TOSET_POSET]) THEN ASM SET_TAC[]; | |
DISCH_THEN(ASSUME_TAC o MATCH_MP (MESON[] | |
`~(f x = f y) ==> ~(x = y)`))] THEN | |
FIRST_X_ASSUM(fun th -> | |
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [th]) THEN | |
COND_CASES_TAC THENL | |
[FIRST_X_ASSUM(MATCH_MP_TAC o CONJUNCT2 o SELECT_RULE) THEN | |
ASM_REWRITE_TAC[]; | |
FIRST_ASSUM(MP_TAC o | |
REWRITE_RULE[REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset] o | |
MATCH_MP ORDINAL_IMP_WOSET) THEN | |
ASM_MESON_TAC[]]; | |
ALL_TAC] THEN | |
EXISTS_TAC `\x y. x IN IMAGE (f:(A->bool)->A) {v | r v w /\ ~(v = w)} /\ | |
y IN IMAGE (f:(A->bool)->A) {v | r v w /\ ~(v = w)} /\ | |
l x y` THEN | |
SUBGOAL_THEN | |
`fld(\ x y. x IN IMAGE (f:(A->bool)->A) {v | r v w /\ ~(v = w)} /\ | |
y IN IMAGE (f:(A->bool)->A) {v | r v w /\ ~(v = w)} /\ | |
l x y) = | |
IMAGE f {v | r v w /\ ~(v = w)}` | |
ASSUME_TAC THENL | |
[GEN_REWRITE_TAC I [EXTENSION] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN | |
REWRITE_TAC[IN; REWRITE_RULE[IN] IN_FLD] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[TOSET_POSET]) THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
REPEAT CONJ_TAC THENL | |
[SIMP_TAC[SUBSET; FORALL_PAIR_THM; IN]; | |
ASM_REWRITE_TAC[REWRITE_RULE[SET_RULE `fld l x <=> x IN fld l`] | |
(REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset)]; | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN | |
ASM SET_TAC[]] THEN | |
FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [TOSET_POSET]) THEN | |
FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN | |
REWRITE_TAC[CONJ_ASSOC] THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; SIMP_TAC[]] THEN | |
X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[] THEN STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP ORDINAL_IMP_WOSET) THEN | |
REWRITE_TAC[REWRITE_RULE[SUBSET; GSYM MEMBER_NOT_EMPTY; IN] woset] THEN | |
DISCH_THEN(MP_TAC o SPEC | |
`\x:A->bool. (P:A->bool) (f x)` o last o CONJUNCTS) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:A->bool` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `(f:(A->bool)->A) z` THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`(!z. P z ==> z IN IMAGE f s) | |
==> (!x. x IN s /\ P(f x) ==> Q(f x)) | |
==> !y. P y ==> Q y`)) THEN | |
X_GEN_TAC `y:A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN | |
CONJ_TAC THENL | |
[FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; | |
ASM SET_TAC[]]);; | |