Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Maximum of two nums and of a list of nums. *) | |
(* *) | |
(* Author: Marco Maggesi *) | |
(* University of Florence, Italy *) | |
(* http://www.math.unifi.it/~maggesi/ *) | |
(* *) | |
(* (c) Copyright, Marco Maggesi, 2005-2007 *) | |
(* ========================================================================= *) | |
needs "Permutation/morelist.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Maximum of two nums. *) | |
(* ------------------------------------------------------------------------- *) | |
let MAX_LT = prove | |
(`!m n p. MAX m n < p <=> m < p /\ n < p`, | |
REWRITE_TAC [MAX] THEN ARITH_TAC);; | |
let MAX_LE = prove | |
(`!m n p. MAX m n <= p <=> m <= p /\ n <= p`, | |
REWRITE_TAC [MAX] THEN ARITH_TAC);; | |
let LT_MAX = prove | |
(`!m n p. p < MAX m n <=> p < m \/ p < n`, | |
REWRITE_TAC [MAX] THEN ARITH_TAC);; | |
let LE_MAX = prove | |
(`!m n p. p <= MAX m n <=> p <= m \/ p <= n`, | |
REWRITE_TAC [MAX] THEN ARITH_TAC);; | |
let MAX_SYM = prove | |
(`!m n. MAX n m = MAX m n`, | |
MATCH_MP_TAC WLOG_LE THEN CONJ_TAC THEN REPEAT GEN_TAC THENL | |
[EQ_TAC THEN SIMP_TAC []; SIMP_TAC [MAX] THEN ARITH_TAC]);; | |
let MAX_ASSOC = prove | |
(`!m n p. MAX (MAX m n) p = MAX m (MAX n p)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC [MAX] THEN | |
ASM_CASES_TAC `m <= n` THEN ASM_REWRITE_TAC [] THEN | |
ASM_CASES_TAC `n <= p` THEN ASM_REWRITE_TAC [] THENL | |
[SUBGOAL_THEN `m <= p` (fun th -> REWRITE_TAC [th]) THEN | |
MATCH_MP_TAC LE_TRANS THEN ASM_MESON_TAC []; | |
SUBGOAL_THEN `~(m <= p)` (fun th -> REWRITE_TAC [th]) THEN | |
FIRST_X_ASSUM MP_TAC THEN FIRST_X_ASSUM MP_TAC THEN ARITH_TAC]);; | |
let MAX_ACI = prove | |
(`(!m n. MAX n m = MAX m n) /\ | |
(!m n p. MAX (MAX m n) p = MAX m (MAX n p)) /\ | |
(!m n p. MAX m (MAX n p) = MAX n (MAX m p)) /\ | |
(!m. MAX m m = m) /\ | |
(!m n. MAX m (MAX m n) = MAX m n)`, | |
SUBGOAL_THEN `!n. MAX n n = n` ASSUME_TAC THENL | |
[REWRITE_TAC [MAX] THEN ARITH_TAC; | |
ASM_MESON_TAC [MAX_SYM; MAX_ASSOC]]);; | |
let MAX_0 = prove | |
(`(!n. MAX n 0 = n) /\ (!n. MAX 0 n = n)`, | |
REWRITE_TAC [MAX_SYM] THEN REWRITE_TAC [MAX] THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Maximum of a list of nums. *) | |
(* ------------------------------------------------------------------------- *) | |
let MAXL = define | |
`MAXL [] = 0 /\ | |
(!h t. MAXL (CONS h t) = MAX h (MAXL t))`;; | |
let MAXL_LE = prove | |
(`!l n. MAXL l <= n <=> ALL (\m. m <= n) l`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC [ALL; MAXL; LE_0] THEN | |
ASM_SIMP_TAC [MAX_LE]);; | |
let LT_MAXL = prove | |
(`!l n. n < MAXL l <=> EX (\m. n < m) l`, | |
LIST_INDUCT_TAC THEN | |
ASM_SIMP_TAC [EX; MAXL; NOT_LT; LE_0; LT_MAX]);; | |
let LE_MAXL = prove | |
(`!n l. MEM n l ==> n <= MAXL l`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; MAXL] THEN | |
STRIP_TAC THEN ASM_SIMP_TAC [LE_REFL; LE_MAX]);; | |
let MEM_MAXL = prove | |
(`!l. ~NULL l ==> MEM (MAXL l) l`, | |
REWRITE_TAC [NULL_EQ_NIL] THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC [MEM; MAXL; NOT_CONS_NIL] THEN | |
ASM_CASES_TAC `t:num list=[]` THEN ASM_REWRITE_TAC[MAXL; MAX_0] THEN | |
ASM_MESON_TAC [MAX]);; | |