Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.95 kB
(* ========================================================================= *)
(* Permuted lists and finite permutations. *)
(* *)
(* Author: Marco Maggesi *)
(* University of Florence, Italy *)
(* http://www.math.unifi.it/~maggesi/ *)
(* *)
(* (c) Copyright, Marco Maggesi, 2005-2007 *)
(* ========================================================================= *)
needs "Permutation/permuted.ml";;
(* ------------------------------------------------------------------------- *)
(* Permutation that reverse a list. *)
(* ------------------------------------------------------------------------- *)
let REVPERM = define
`REVPERM 0 = [] /\
REVPERM (SUC n) = n :: REVPERM n`;;
let MEM_REVPERM = prove
(`!n m. MEM m (REVPERM n) <=> m < n`,
INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; MEM; LT]);;
let LIST_UNIQ_REVPERM = prove
(`!n. LIST_UNIQ (REVPERM n)`,
INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; LIST_UNIQ; MEM_REVPERM]
THEN ARITH_TAC);;
let DELETE1_REVPERM = prove
(`!n. DELETE1 n (REVPERM (SUC n)) = REVPERM n`,
INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; DELETE1; MEM]);;
let COUNT_REVPERM = prove
(`!n i. COUNT i (REVPERM n) = if i < n then 1 else 0`,
INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; COUNT] THEN ARITH_TAC);;
let SET_OF_LIST_REVPERM = prove
(`!n. set_of_list (REVPERM n) = {m | m < n}`,
INDUCT_TAC THEN
ASM_REWRITE_TAC [REVPERM; set_of_list; LT; EMPTY_GSPEC; EXTENSION;
IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY]);;
(* ------------------------------------------------------------------------- *)
(* Permutations. *)
(* ------------------------------------------------------------------------- *)
let PERMUTATION = new_definition
`!l. PERMUTATION l <=> REVPERM (LENGTH l) PERMUTED l`;;
let PERMUTATION_NIL = prove
(`PERMUTATION []`,
REWRITE_TAC [PERMUTATION; LENGTH; REVPERM; PERMUTED_RULES]);;
let PERMUTATION_LIST_UNIQ = prove
(`!l. PERMUTATION l ==> LIST_UNIQ l`,
MESON_TAC [PERMUTATION; PERMUTED_LIST_UNIQ; LIST_UNIQ_REVPERM]);;
let PERMUTATION_MEM = prove
(`!l. PERMUTATION l ==> (!i. MEM i l <=> i < LENGTH l)`,
REWRITE_TAC [PERMUTATION] THEN
MESON_TAC [MEM_REVPERM; PERMUTED_MEM]);;
let PERMUTATION_COUNT = prove
(`!l. PERMUTATION l <=> (!x. COUNT x l = if x < LENGTH l then 1 else 0)`,
REWRITE_TAC [PERMUTATION; PERMUTED_COUNT; COUNT_REVPERM] THEN
MESON_TAC[]);;
let LIST_UNIQ_PERMUTED_SET_OF_LIST = prove
(`!l1 l2. LIST_UNIQ l1 /\ LIST_UNIQ l2
==> (l1 PERMUTED l2 <=> set_of_list l1 = set_of_list l2)`,
REWRITE_TAC [LIST_UNIQ_COUNT] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC [EXTENSION; IN_SET_OF_LIST; PERMUTED_COUNT; MEM_COUNT] THEN
ASM_REWRITE_TAC [] THEN MESON_TAC []);;
let PERMUTED_LENGTH_MEM = prove
(`!l l':A list.
LIST_UNIQ l /\ LENGTH l = LENGTH l' /\ (!x. MEM x l <=> MEM x l')
==> l PERMUTED l'`,
REWRITE_TAC[GSYM IN_SET_OF_LIST; GSYM EXTENSION] THEN
ASM_MESON_TAC[LIST_UNIQ_CARD_LENGTH; LIST_UNIQ_PERMUTED_SET_OF_LIST]);;
let PERMUTATION_SET_OF_LIST = prove
(`!l. PERMUTATION l <=> set_of_list l = {n | n < LENGTH l}`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[REWRITE_TAC [GSYM SET_OF_LIST_REVPERM] THEN
ASM_MESON_TAC [LIST_UNIQ_PERMUTED_SET_OF_LIST; PERMUTATION;
PERMUTED_LIST_UNIQ; LIST_UNIQ_REVPERM];
REWRITE_TAC [PERMUTATION] THEN ASSERT_TAC `LIST_UNIQ (l:num list)` THENL
[REWRITE_TAC [LIST_UNIQ_CARD_LENGTH] THEN FIRST_X_ASSUM SUBST1_TAC THEN
REWRITE_TAC [CARD_NUMSEG_LT];
ASM_SIMP_TAC [SET_OF_LIST_REVPERM; LIST_UNIQ_REVPERM;
LIST_UNIQ_PERMUTED_SET_OF_LIST]]]);;
let MEM_PERMUTATION = prove
(`!l. (!n. n < LENGTH l ==> MEM n l) ==> PERMUTATION l`,
REPEAT STRIP_TAC THEN REWRITE_TAC [PERMUTATION_SET_OF_LIST] THEN
MATCH_MP_TAC (GSYM CARD_SUBSET_LE) THEN
REWRITE_TAC [FINITE_SET_OF_LIST; CARD_NUMSEG_LT; CARD_LENGTH] THEN
ASM_SIMP_TAC [SUBSET; IN_ELIM_THM; IN_SET_OF_LIST]);;
let LIST_UNIQ_MEM_PERMUTATION = prove
(`!l. LIST_UNIQ l /\ (!n. MEM n l ==> n < LENGTH l) ==> PERMUTATION l`,
REWRITE_TAC [LIST_UNIQ_CARD_LENGTH; PERMUTATION_SET_OF_LIST] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_SUBSET_LE THEN
ASM_REWRITE_TAC [FINITE_NUMSEG_LT; SUBSET; IN_ELIM_THM; IN_SET_OF_LIST;
CARD_NUMSEG_LT; LE_REFL]);;
let PERMUTATION_UNIQ_LT = prove
(`!l. PERMUTATION l <=> LIST_UNIQ l /\ (!n. MEM n l ==> n < LENGTH l)`,
MESON_TAC [PERMUTATION_LIST_UNIQ; PERMUTATION_MEM;
LIST_UNIQ_MEM_PERMUTATION]);;