Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Permuted lists and finite permutations. *) | |
(* *) | |
(* Author: Marco Maggesi *) | |
(* University of Florence, Italy *) | |
(* http://www.math.unifi.it/~maggesi/ *) | |
(* *) | |
(* (c) Copyright, Marco Maggesi, 2005-2007 *) | |
(* ========================================================================= *) | |
needs "Permutation/permuted.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Permutation that reverse a list. *) | |
(* ------------------------------------------------------------------------- *) | |
let REVPERM = define | |
`REVPERM 0 = [] /\ | |
REVPERM (SUC n) = n :: REVPERM n`;; | |
let MEM_REVPERM = prove | |
(`!n m. MEM m (REVPERM n) <=> m < n`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; MEM; LT]);; | |
let LIST_UNIQ_REVPERM = prove | |
(`!n. LIST_UNIQ (REVPERM n)`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; LIST_UNIQ; MEM_REVPERM] | |
THEN ARITH_TAC);; | |
let DELETE1_REVPERM = prove | |
(`!n. DELETE1 n (REVPERM (SUC n)) = REVPERM n`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; DELETE1; MEM]);; | |
let COUNT_REVPERM = prove | |
(`!n i. COUNT i (REVPERM n) = if i < n then 1 else 0`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; COUNT] THEN ARITH_TAC);; | |
let SET_OF_LIST_REVPERM = prove | |
(`!n. set_of_list (REVPERM n) = {m | m < n}`, | |
INDUCT_TAC THEN | |
ASM_REWRITE_TAC [REVPERM; set_of_list; LT; EMPTY_GSPEC; EXTENSION; | |
IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Permutations. *) | |
(* ------------------------------------------------------------------------- *) | |
let PERMUTATION = new_definition | |
`!l. PERMUTATION l <=> REVPERM (LENGTH l) PERMUTED l`;; | |
let PERMUTATION_NIL = prove | |
(`PERMUTATION []`, | |
REWRITE_TAC [PERMUTATION; LENGTH; REVPERM; PERMUTED_RULES]);; | |
let PERMUTATION_LIST_UNIQ = prove | |
(`!l. PERMUTATION l ==> LIST_UNIQ l`, | |
MESON_TAC [PERMUTATION; PERMUTED_LIST_UNIQ; LIST_UNIQ_REVPERM]);; | |
let PERMUTATION_MEM = prove | |
(`!l. PERMUTATION l ==> (!i. MEM i l <=> i < LENGTH l)`, | |
REWRITE_TAC [PERMUTATION] THEN | |
MESON_TAC [MEM_REVPERM; PERMUTED_MEM]);; | |
let PERMUTATION_COUNT = prove | |
(`!l. PERMUTATION l <=> (!x. COUNT x l = if x < LENGTH l then 1 else 0)`, | |
REWRITE_TAC [PERMUTATION; PERMUTED_COUNT; COUNT_REVPERM] THEN | |
MESON_TAC[]);; | |
let LIST_UNIQ_PERMUTED_SET_OF_LIST = prove | |
(`!l1 l2. LIST_UNIQ l1 /\ LIST_UNIQ l2 | |
==> (l1 PERMUTED l2 <=> set_of_list l1 = set_of_list l2)`, | |
REWRITE_TAC [LIST_UNIQ_COUNT] THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC [EXTENSION; IN_SET_OF_LIST; PERMUTED_COUNT; MEM_COUNT] THEN | |
ASM_REWRITE_TAC [] THEN MESON_TAC []);; | |
let PERMUTED_LENGTH_MEM = prove | |
(`!l l':A list. | |
LIST_UNIQ l /\ LENGTH l = LENGTH l' /\ (!x. MEM x l <=> MEM x l') | |
==> l PERMUTED l'`, | |
REWRITE_TAC[GSYM IN_SET_OF_LIST; GSYM EXTENSION] THEN | |
ASM_MESON_TAC[LIST_UNIQ_CARD_LENGTH; LIST_UNIQ_PERMUTED_SET_OF_LIST]);; | |
let PERMUTATION_SET_OF_LIST = prove | |
(`!l. PERMUTATION l <=> set_of_list l = {n | n < LENGTH l}`, | |
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL | |
[REWRITE_TAC [GSYM SET_OF_LIST_REVPERM] THEN | |
ASM_MESON_TAC [LIST_UNIQ_PERMUTED_SET_OF_LIST; PERMUTATION; | |
PERMUTED_LIST_UNIQ; LIST_UNIQ_REVPERM]; | |
REWRITE_TAC [PERMUTATION] THEN ASSERT_TAC `LIST_UNIQ (l:num list)` THENL | |
[REWRITE_TAC [LIST_UNIQ_CARD_LENGTH] THEN FIRST_X_ASSUM SUBST1_TAC THEN | |
REWRITE_TAC [CARD_NUMSEG_LT]; | |
ASM_SIMP_TAC [SET_OF_LIST_REVPERM; LIST_UNIQ_REVPERM; | |
LIST_UNIQ_PERMUTED_SET_OF_LIST]]]);; | |
let MEM_PERMUTATION = prove | |
(`!l. (!n. n < LENGTH l ==> MEM n l) ==> PERMUTATION l`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC [PERMUTATION_SET_OF_LIST] THEN | |
MATCH_MP_TAC (GSYM CARD_SUBSET_LE) THEN | |
REWRITE_TAC [FINITE_SET_OF_LIST; CARD_NUMSEG_LT; CARD_LENGTH] THEN | |
ASM_SIMP_TAC [SUBSET; IN_ELIM_THM; IN_SET_OF_LIST]);; | |
let LIST_UNIQ_MEM_PERMUTATION = prove | |
(`!l. LIST_UNIQ l /\ (!n. MEM n l ==> n < LENGTH l) ==> PERMUTATION l`, | |
REWRITE_TAC [LIST_UNIQ_CARD_LENGTH; PERMUTATION_SET_OF_LIST] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_SUBSET_LE THEN | |
ASM_REWRITE_TAC [FINITE_NUMSEG_LT; SUBSET; IN_ELIM_THM; IN_SET_OF_LIST; | |
CARD_NUMSEG_LT; LE_REFL]);; | |
let PERMUTATION_UNIQ_LT = prove | |
(`!l. PERMUTATION l <=> LIST_UNIQ l /\ (!n. MEM n l ==> n < LENGTH l)`, | |
MESON_TAC [PERMUTATION_LIST_UNIQ; PERMUTATION_MEM; | |
LIST_UNIQ_MEM_PERMUTATION]);; | |