Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let ARITHMETIC_PROGRESSION_SIMPLE = prove | |
(`!n. nsum(1..n) (\i. i) = (n*(n + 1)) DIV 2`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN | |
ARITH_TAC);; | |
horizon := 1;; | |
thm `; | |
!n. nsum(0..n) (\i. i) = (n*(n + 1)) DIV 2 | |
proof | |
nsum(0..0) (\i. i) = 0 by NSUM_CLAUSES_NUMSEG; | |
.= (0*(0 + 1)) DIV 2 [A1] by ARITH_TAC; | |
now let n be num; | |
assume nsum(0..n) (\i. i) = (n*(n + 1)) DIV 2; | |
nsum(0..SUC n) (\i. i) = (n*(n + 1)) DIV 2 + SUC n | |
by NSUM_CLAUSES_NUMSEG,ARITH_RULE (parse_term "0 <= SUC n"); | |
thus .= ((SUC n)*(SUC n + 1)) DIV 2 by ARITH_TAC; | |
end; | |
qed by INDUCT_TAC,A1`;; | |
thm `; | |
now | |
(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2 [A1] by ARITH_TAC; | |
nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2 [A2] | |
by REWRITE_TAC,NSUM_CLAUSES_NUMSEG,A1; | |
now [A3] | |
let n be num; | |
assume nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A4]; | |
(if 1 <= SUC n then (n * (n + 1)) DIV 2 + SUC n else (n * (n + 1)) DIV 2) = | |
(SUC n * (SUC n + 1)) DIV 2 [A5] by ARITH_TAC; | |
thus nsum (1..SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2 [A6] | |
by REWRITE_TAC,NSUM_CLAUSES_NUMSEG,A4,A5; | |
end; | |
thus !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A7] by INDUCT_TAC,A2,A3; | |
end`;; | |
let EXAMPLE = ref None;; | |
EXAMPLE := Some `; | |
!n. nsum(0..n) (\i. i) = (n*(n + 1)) DIV 2 | |
proof | |
nsum(0..0) (\i. i) = (0*(0 + 1)) DIV 2; | |
now let n be nat; | |
assume nsum(0..n) (\i. i) = (n*(n + 1)) DIV 2; | |
thus nsum(0..SUC n) (\i. i) = ((SUC n)*(SUC n + 1)) DIV 2 by #; | |
end; | |
qed`;; | |
thm `; | |
!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 | |
proof | |
(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2 by ARITH_TAC; | |
nsum (1..0) (\i. i) = (0 * (0 + 1)) DIV 2 [A1] | |
by ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG]; | |
!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 | |
==> nsum (1..SUC n) (\i .i) = (SUC n * (SUC n + 1)) DIV 2 | |
proof | |
let n be num; | |
assume nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2 [A2]; | |
(if 1 <= SUC n then (n * (n + 1)) DIV 2 + SUC n else (n * (n + 1)) DIV 2) = | |
(SUC n * (SUC n + 1)) DIV 2 by ARITH_TAC; | |
qed by ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG],A2; | |
qed by INDUCT_TAC,A1`;; | |
let NSUM_CLAUSES_NUMSEG' = thm `; | |
!s. nsum(0..0) s = s 0 /\ !n. nsum(0..n + 1) s = nsum(0..n) s + s (n + 1) | |
proof | |
!n. 0 <= SUC n by ARITH_TAC; | |
qed by NSUM_CLAUSES_NUMSEG,ADD1`;; | |
let num_INDUCTION' = REWRITE_RULE[ADD1] num_INDUCTION;; | |
thm `; | |
!s. (!i. s i = i) ==> !n. nsum(0..n) s = (n*(n + 1)) DIV 2 | |
proof | |
let s be num->num; | |
assume !i. s i = i [A1]; | |
set X = \n. (nsum(0..n) s = (n*(n + 1)) DIV 2); | |
nsum(0..0) s = s 0 by NSUM_CLAUSES_NUMSEG'; | |
.= 0 by A1; | |
.= (0*(0 + 1)) DIV 2 by ARITH_TAC; | |
X 0 [A2]; | |
now [A3] let n be num; | |
assume X n; | |
nsum(0..n + 1) s = (n*(n + 1)) DIV 2 + s (n + 1) by NSUM_CLAUSES_NUMSEG'; | |
.= (n*(n + 1)) DIV 2 + (n + 1) by A1; | |
thus X (n + 1) by ARITH_TAC; | |
end; | |
!n. X n by MATCH_MP_TAC,num_INDUCTION',A2,A3; | |
qed`;; | |