Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Aodv.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke, Inria | |
*) | |
section "The AODV protocol" | |
theory Aodv | |
imports Aodv_Data Aodv_Message | |
AWN.AWN_SOS_Labels AWN.AWN_Invariants | |
begin | |
subsection "Data state" | |
record state = | |
ip :: "ip" | |
sn :: "sqn" | |
rt :: "rt" | |
rreqs :: "(ip \<times> rreqid) set" | |
store :: "store" | |
(* all locals *) | |
msg :: "msg" | |
data :: "data" | |
dests :: "ip \<rightharpoonup> sqn" | |
pre :: "ip set" | |
rreqid :: "rreqid" | |
dip :: "ip" | |
oip :: "ip" | |
hops :: "nat" | |
dsn :: "sqn" | |
dsk :: "k" | |
osn :: "sqn" | |
sip :: "ip" | |
abbreviation aodv_init :: "ip \<Rightarrow> state" | |
where "aodv_init i \<equiv> \<lparr> | |
ip = i, | |
sn = 1, | |
rt = Map.empty, | |
rreqs = {}, | |
store = Map.empty, | |
msg = (SOME x. True), | |
data = (SOME x. True), | |
dests = (SOME x. True), | |
pre = (SOME x. True), | |
rreqid = (SOME x. True), | |
dip = (SOME x. True), | |
oip = (SOME x. True), | |
hops = (SOME x. True), | |
dsn = (SOME x. True), | |
dsk = (SOME x. True), | |
osn = (SOME x. True), | |
sip = (SOME x. x \<noteq> i) | |
\<rparr>" | |
lemma some_neq_not_eq [simp]: "\<not>((SOME x :: nat. x \<noteq> i) = i)" | |
by (subst some_eq_ex) (metis zero_neq_numeral) | |
definition clear_locals :: "state \<Rightarrow> state" | |
where "clear_locals \<xi> = \<xi> \<lparr> | |
msg := (SOME x. True), | |
data := (SOME x. True), | |
dests := (SOME x. True), | |
pre := (SOME x. True), | |
rreqid := (SOME x. True), | |
dip := (SOME x. True), | |
oip := (SOME x. True), | |
hops := (SOME x. True), | |
dsn := (SOME x. True), | |
dsk := (SOME x. True), | |
osn := (SOME x. True), | |
sip := (SOME x. x \<noteq> ip \<xi>) | |
\<rparr>" | |
lemma clear_locals_sip_not_ip [simp]: "\<not>(sip (clear_locals \<xi>) = ip \<xi>)" | |
unfolding clear_locals_def by simp | |
lemma clear_locals_but_not_globals [simp]: | |
"ip (clear_locals \<xi>) = ip \<xi>" | |
"sn (clear_locals \<xi>) = sn \<xi>" | |
"rt (clear_locals \<xi>) = rt \<xi>" | |
"rreqs (clear_locals \<xi>) = rreqs \<xi>" | |
"store (clear_locals \<xi>) = store \<xi>" | |
unfolding clear_locals_def by auto | |
subsection "Auxilliary message handling definitions" | |
definition is_newpkt | |
where "is_newpkt \<xi> \<equiv> case msg \<xi> of | |
Newpkt data' dip' \<Rightarrow> { \<xi>\<lparr>data := data', dip := dip'\<rparr> } | |
| _ \<Rightarrow> {}" | |
definition is_pkt | |
where "is_pkt \<xi> \<equiv> case msg \<xi> of | |
Pkt data' dip' oip' \<Rightarrow> { \<xi>\<lparr> data := data', dip := dip', oip := oip' \<rparr> } | |
| _ \<Rightarrow> {}" | |
definition is_rreq | |
where "is_rreq \<xi> \<equiv> case msg \<xi> of | |
Rreq hops' rreqid' dip' dsn' dsk' oip' osn' sip' \<Rightarrow> | |
{ \<xi>\<lparr> hops := hops', rreqid := rreqid', dip := dip', dsn := dsn', | |
dsk := dsk', oip := oip', osn := osn', sip := sip' \<rparr> } | |
| _ \<Rightarrow> {}" | |
lemma is_rreq_asm [dest!]: | |
assumes "\<xi>' \<in> is_rreq \<xi>" | |
shows "(\<exists>hops' rreqid' dip' dsn' dsk' oip' osn' sip'. | |
msg \<xi> = Rreq hops' rreqid' dip' dsn' dsk' oip' osn' sip' \<and> | |
\<xi>' = \<xi>\<lparr> hops := hops', rreqid := rreqid', dip := dip', dsn := dsn', | |
dsk := dsk', oip := oip', osn := osn', sip := sip' \<rparr>)" | |
using assms unfolding is_rreq_def | |
by (cases "msg \<xi>") simp_all | |
definition is_rrep | |
where "is_rrep \<xi> \<equiv> case msg \<xi> of | |
Rrep hops' dip' dsn' oip' sip' \<Rightarrow> | |
{ \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn', oip := oip', sip := sip' \<rparr> } | |
| _ \<Rightarrow> {}" | |
lemma is_rrep_asm [dest!]: | |
assumes "\<xi>' \<in> is_rrep \<xi>" | |
shows "(\<exists>hops' dip' dsn' oip' sip'. | |
msg \<xi> = Rrep hops' dip' dsn' oip' sip' \<and> | |
\<xi>' = \<xi>\<lparr> hops := hops', dip := dip', dsn := dsn', oip := oip', sip := sip' \<rparr>)" | |
using assms unfolding is_rrep_def | |
by (cases "msg \<xi>") simp_all | |
definition is_rerr | |
where "is_rerr \<xi> \<equiv> case msg \<xi> of | |
Rerr dests' sip' \<Rightarrow> { \<xi>\<lparr> dests := dests', sip := sip' \<rparr> } | |
| _ \<Rightarrow> {}" | |
lemma is_rerr_asm [dest!]: | |
assumes "\<xi>' \<in> is_rerr \<xi>" | |
shows "(\<exists>dests' sip'. | |
msg \<xi> = Rerr dests' sip' \<and> | |
\<xi>' = \<xi>\<lparr> dests := dests', sip := sip' \<rparr>)" | |
using assms unfolding is_rerr_def | |
by (cases "msg \<xi>") simp_all | |
lemmas is_msg_defs = | |
is_rerr_def is_rrep_def is_rreq_def is_pkt_def is_newpkt_def | |
lemma is_msg_inv_ip [simp]: | |
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>" | |
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>" | |
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>" | |
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>" | |
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> ip \<xi>' = ip \<xi>" | |
unfolding is_msg_defs | |
by (cases "msg \<xi>", clarsimp+)+ | |
lemma is_msg_inv_sn [simp]: | |
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>" | |
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>" | |
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>" | |
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>" | |
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sn \<xi>' = sn \<xi>" | |
unfolding is_msg_defs | |
by (cases "msg \<xi>", clarsimp+)+ | |
lemma is_msg_inv_rt [simp]: | |
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>" | |
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>" | |
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>" | |
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>" | |
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> rt \<xi>' = rt \<xi>" | |
unfolding is_msg_defs | |
by (cases "msg \<xi>", clarsimp+)+ | |
lemma is_msg_inv_rreqs [simp]: | |
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>" | |
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>" | |
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>" | |
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>" | |
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> rreqs \<xi>' = rreqs \<xi>" | |
unfolding is_msg_defs | |
by (cases "msg \<xi>", clarsimp+)+ | |
lemma is_msg_inv_store [simp]: | |
"\<xi>' \<in> is_rerr \<xi> \<Longrightarrow> store \<xi>' = store \<xi>" | |
"\<xi>' \<in> is_rrep \<xi> \<Longrightarrow> store \<xi>' = store \<xi>" | |
"\<xi>' \<in> is_rreq \<xi> \<Longrightarrow> store \<xi>' = store \<xi>" | |
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> store \<xi>' = store \<xi>" | |
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> store \<xi>' = store \<xi>" | |
unfolding is_msg_defs | |
by (cases "msg \<xi>", clarsimp+)+ | |
lemma is_msg_inv_sip [simp]: | |
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> sip \<xi>' = sip \<xi>" | |
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sip \<xi>' = sip \<xi>" | |
unfolding is_msg_defs | |
by (cases "msg \<xi>", clarsimp+)+ | |
subsection "The protocol process" | |
datatype pseqp = | |
PAodv | |
| PNewPkt | |
| PPkt | |
| PRreq | |
| PRrep | |
| PRerr | |
fun nat_of_seqp :: "pseqp \<Rightarrow> nat" | |
where | |
"nat_of_seqp PAodv = 1" | |
| "nat_of_seqp PPkt = 2" | |
| "nat_of_seqp PNewPkt = 3" | |
| "nat_of_seqp PRreq = 4" | |
| "nat_of_seqp PRrep = 5" | |
| "nat_of_seqp PRerr = 6" | |
instantiation "pseqp" :: ord | |
begin | |
definition less_eq_seqp [iff]: "l1 \<le> l2 = (nat_of_seqp l1 \<le> nat_of_seqp l2)" | |
definition less_seqp [iff]: "l1 < l2 = (nat_of_seqp l1 < nat_of_seqp l2)" | |
instance .. | |
end | |
abbreviation AODV | |
where | |
"AODV \<equiv> \<lambda>_. \<lbrakk>clear_locals\<rbrakk> call(PAodv)" | |
abbreviation PKT | |
where | |
"PKT args \<equiv> | |
\<lbrakk>\<xi>. let (data, dip, oip) = args \<xi> in | |
(clear_locals \<xi>) \<lparr> data := data, dip := dip, oip := oip \<rparr>\<rbrakk> | |
call(PPkt)" | |
abbreviation NEWPKT | |
where | |
"NEWPKT args \<equiv> | |
\<lbrakk>\<xi>. let (data, dip) = args \<xi> in | |
(clear_locals \<xi>) \<lparr> data := data, dip := dip \<rparr>\<rbrakk> | |
call(PNewPkt)" | |
abbreviation RREQ | |
where | |
"RREQ args \<equiv> | |
\<lbrakk>\<xi>. let (hops, rreqid, dip, dsn, dsk, oip, osn, sip) = args \<xi> in | |
(clear_locals \<xi>) \<lparr> hops := hops, rreqid := rreqid, dip := dip, | |
dsn := dsn, dsk := dsk, oip := oip, | |
osn := osn, sip := sip \<rparr>\<rbrakk> | |
call(PRreq)" | |
abbreviation RREP | |
where | |
"RREP args \<equiv> | |
\<lbrakk>\<xi>. let (hops, dip, dsn, oip, sip) = args \<xi> in | |
(clear_locals \<xi>) \<lparr> hops := hops, dip := dip, dsn := dsn, | |
oip := oip, sip := sip \<rparr>\<rbrakk> | |
call(PRrep)" | |
abbreviation RERR | |
where | |
"RERR args \<equiv> | |
\<lbrakk>\<xi>. let (dests, sip) = args \<xi> in | |
(clear_locals \<xi>) \<lparr> dests := dests, sip := sip \<rparr>\<rbrakk> | |
call(PRerr)" | |
fun \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V :: "(state, msg, pseqp, pseqp label) seqp_env" | |
where | |
"\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv = labelled PAodv ( | |
receive(\<lambda>msg' \<xi>. \<xi> \<lparr> msg := msg' \<rparr>). | |
( \<langle>is_newpkt\<rangle> NEWPKT(\<lambda>\<xi>. (data \<xi>, ip \<xi>)) | |
\<oplus> \<langle>is_pkt\<rangle> PKT(\<lambda>\<xi>. (data \<xi>, dip \<xi>, oip \<xi>)) | |
\<oplus> \<langle>is_rreq\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk> | |
RREQ(\<lambda>\<xi>. (hops \<xi>, rreqid \<xi>, dip \<xi>, dsn \<xi>, dsk \<xi>, oip \<xi>, osn \<xi>, sip \<xi>)) | |
\<oplus> \<langle>is_rrep\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk> | |
RREP(\<lambda>\<xi>. (hops \<xi>, dip \<xi>, dsn \<xi>, oip \<xi>, sip \<xi>)) | |
\<oplus> \<langle>is_rerr\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr>rt := update (rt \<xi>) (sip \<xi>) (0, unk, val, 1, sip \<xi>, {}) \<rparr>\<rbrakk> | |
RERR(\<lambda>\<xi>. (dests \<xi>, sip \<xi>)) | |
) | |
\<oplus> \<langle>\<lambda>\<xi>. { \<xi>\<lparr> dip := dip \<rparr> | dip. dip \<in> qD(store \<xi>) \<inter> vD(rt \<xi>) }\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr> data := hd(\<sigma>\<^bsub>queue\<^esub>(store \<xi>, dip \<xi>)) \<rparr>\<rbrakk> | |
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (dip \<xi>)), \<lambda>\<xi>. pkt(data \<xi>, dip \<xi>, ip \<xi>)). | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := the (drop (dip \<xi>) (store \<xi>)) \<rparr>\<rbrakk> | |
AODV() | |
\<triangleright> \<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (dip \<xi>)) | |
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {}) | |
then (dests \<xi>) rip else None) \<rparr>\<rbrakk> | |
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)). AODV() | |
\<oplus> \<langle>\<lambda>\<xi>. { \<xi>\<lparr> dip := dip \<rparr> | |
| dip. dip \<in> qD(store \<xi>) - vD(rt \<xi>) \<and> the (\<sigma>\<^bsub>p-flag\<^esub>(store \<xi>, dip)) = req }\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := unsetRRF (store \<xi>) (dip \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> sn := inc (sn \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rreqid := nrreqid (rreqs \<xi>) (ip \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rreqs := rreqs \<xi> \<union> {(ip \<xi>, rreqid \<xi>)} \<rparr>\<rbrakk> | |
broadcast(\<lambda>\<xi>. rreq(0, rreqid \<xi>, dip \<xi>, sqn (rt \<xi>) (dip \<xi>), sqnf (rt \<xi>) (dip \<xi>), | |
ip \<xi>, sn \<xi>, ip \<xi>)). AODV())" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt = labelled PNewPkt ( | |
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle> | |
deliver(\<lambda>\<xi>. data \<xi>).AODV() | |
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := add (data \<xi>) (dip \<xi>) (store \<xi>) \<rparr>\<rbrakk> | |
AODV())" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt = labelled PPkt ( | |
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle> | |
deliver(\<lambda>\<xi>. data \<xi>).AODV() | |
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle> | |
( | |
\<langle>\<xi>. dip \<xi> \<in> vD (rt \<xi>)\<rangle> | |
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (dip \<xi>)), \<lambda>\<xi>. pkt(data \<xi>, dip \<xi>, oip \<xi>)).AODV() | |
\<triangleright> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (dip \<xi>)) | |
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {}) | |
then (dests \<xi>) rip else None) \<rparr>\<rbrakk> | |
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV() | |
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> vD (rt \<xi>)\<rangle> | |
( | |
\<langle>\<xi>. dip \<xi> \<in> iD (rt \<xi>)\<rangle> | |
groupcast(\<lambda>\<xi>. the (precs (rt \<xi>) (dip \<xi>)), | |
\<lambda>\<xi>. rerr([dip \<xi> \<mapsto> sqn (rt \<xi>) (dip \<xi>)], ip \<xi>)). AODV() | |
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> iD (rt \<xi>)\<rangle> | |
AODV() | |
) | |
))" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq = labelled PRreq ( | |
\<langle>\<xi>. (oip \<xi>, rreqid \<xi>) \<in> rreqs \<xi>\<rangle> | |
AODV() | |
\<oplus> \<langle>\<xi>. (oip \<xi>, rreqid \<xi>) \<notin> rreqs \<xi>\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rreqs := rreqs \<xi> \<union> {(oip \<xi>, rreqid \<xi>)} \<rparr>\<rbrakk> | |
( | |
\<langle>\<xi>. dip \<xi> = ip \<xi>\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr> sn := max (sn \<xi>) (dsn \<xi>) \<rparr>\<rbrakk> | |
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(0, dip \<xi>, sn \<xi>, oip \<xi>, ip \<xi>)).AODV() | |
\<triangleright> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>)) | |
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {}) | |
then (dests \<xi>) rip else None) \<rparr>\<rbrakk> | |
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV() | |
\<oplus> \<langle>\<xi>. dip \<xi> \<noteq> ip \<xi>\<rangle> | |
( | |
\<langle>\<xi>. dip \<xi> \<in> vD (rt \<xi>) \<and> dsn \<xi> \<le> sqn (rt \<xi>) (dip \<xi>) \<and> sqnf (rt \<xi>) (dip \<xi>) = kno\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (dip \<xi>) {sip \<xi>}) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}) \<rparr>\<rbrakk> | |
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(the (dhops (rt \<xi>) (dip \<xi>)), dip \<xi>, | |
sqn (rt \<xi>) (dip \<xi>), oip \<xi>, ip \<xi>)). | |
AODV() | |
\<triangleright> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>)) | |
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {}) | |
then (dests \<xi>) rip else None) \<rparr>\<rbrakk> | |
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV() | |
\<oplus> \<langle>\<xi>. dip \<xi> \<notin> vD (rt \<xi>) \<or> sqn (rt \<xi>) (dip \<xi>) < dsn \<xi> \<or> sqnf (rt \<xi>) (dip \<xi>) = unk\<rangle> | |
broadcast(\<lambda>\<xi>. rreq(hops \<xi> + 1, rreqid \<xi>, dip \<xi>, max (sqn (rt \<xi>) (dip \<xi>)) (dsn \<xi>), | |
dsk \<xi>, oip \<xi>, osn \<xi>, ip \<xi>)). | |
AODV() | |
) | |
))" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep = labelled PRrep ( | |
\<langle>\<xi>. rt \<xi> \<noteq> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rangle> | |
( | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rparr> \<rbrakk> | |
( | |
\<langle>\<xi>. oip \<xi> = ip \<xi> \<rangle> | |
AODV() | |
\<oplus> \<langle>\<xi>. oip \<xi> \<noteq> ip \<xi> \<rangle> | |
( | |
\<langle>\<xi>. oip \<xi> \<in> vD (rt \<xi>)\<rangle> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (dip \<xi>) {the (nhop (rt \<xi>) (oip \<xi>))}) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := the (addpreRT (rt \<xi>) (the (nhop (rt \<xi>) (dip \<xi>))) | |
{the (nhop (rt \<xi>) (oip \<xi>))}) \<rparr>\<rbrakk> | |
unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), \<lambda>\<xi>. rrep(hops \<xi> + 1, dip \<xi>, dsn \<xi>, oip \<xi>, ip \<xi>)). | |
AODV() | |
\<triangleright> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if (rip \<in> vD (rt \<xi>) \<and> nhop (rt \<xi>) rip = nhop (rt \<xi>) (oip \<xi>)) | |
then Some (inc (sqn (rt \<xi>) rip)) else None) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {}) | |
then (dests \<xi>) rip else None) \<rparr>\<rbrakk> | |
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)).AODV() | |
\<oplus> \<langle>\<xi>. oip \<xi> \<notin> vD (rt \<xi>)\<rangle> | |
AODV() | |
) | |
) | |
) | |
\<oplus> \<langle>\<xi>. rt \<xi> = update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {}) \<rangle> | |
AODV() | |
)" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr = labelled PRerr ( | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. case (dests \<xi>) rip of None \<Rightarrow> None | |
| Some rsn \<Rightarrow> if rip \<in> vD (rt \<xi>) \<and> the (nhop (rt \<xi>) rip) = sip \<xi> | |
\<and> sqn (rt \<xi>) rip < rsn then Some rsn else None) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> rt := invalidate (rt \<xi>) (dests \<xi>) \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> store := setRRF (store \<xi>) (dests \<xi>)\<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> pre := \<Union>{ the (precs (rt \<xi>) rip) | rip. rip \<in> dom (dests \<xi>) } \<rparr>\<rbrakk> | |
\<lbrakk>\<xi>. \<xi> \<lparr> dests := (\<lambda>rip. if ((dests \<xi>) rip \<noteq> None \<and> the (precs (rt \<xi>) rip) \<noteq> {}) | |
then (dests \<xi>) rip else None) \<rparr>\<rbrakk> | |
groupcast(\<lambda>\<xi>. pre \<xi>, \<lambda>\<xi>. rerr(dests \<xi>, ip \<xi>)). AODV())" | |
declare \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V.simps [simp del, code del] | |
lemmas \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps [simp, code] = \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V.simps [simplified] | |
fun \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton | |
where | |
"\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PAodv = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PNewPkt = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt)" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PPkt = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt)" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRreq = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq)" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRrep = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep)" | |
| "\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton PRerr = seqp_skeleton (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr)" | |
lemma \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton_wf [simp]: | |
"wellformed \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton" | |
proof (rule, intro allI) | |
fix pn pn' | |
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton pn)" | |
by (cases pn) simp_all | |
qed | |
declare \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton.simps [simp del, code del] | |
lemmas \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton_simps [simp, code] | |
= \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_skeleton.simps [simplified \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps seqp_skeleton.simps] | |
lemma aodv_proc_cases [dest]: | |
fixes p pn | |
shows "p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn) \<Longrightarrow> | |
(p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv) \<or> | |
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PNewPkt) \<or> | |
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PPkt) \<or> | |
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRreq) \<or> | |
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRrep) \<or> | |
p \<in> ctermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PRerr))" | |
by (cases pn) simp_all | |
definition \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V :: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp) set" | |
where "\<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<equiv> {(aodv_init i, \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)}" | |
abbreviation paodv | |
:: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton" | |
where | |
"paodv i \<equiv> \<lparr> init = \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i, trans = seqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V \<rparr>" | |
lemma aodv_trans: "trans (paodv i) = seqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V" | |
by simp | |
lemma aodv_control_within [simp]: "control_within \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (init (paodv i))" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps) | |
lemma aodv_wf [simp]: | |
"wellformed \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V" | |
proof (rule, intro allI) | |
fix pn pn' | |
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn)" | |
by (cases pn) simp_all | |
qed | |
lemmas aodv_labels_not_empty [simp] = labels_not_empty [OF aodv_wf] | |
lemma aodv_ex_label [intro]: "\<exists>l. l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p" | |
by (metis aodv_labels_not_empty all_not_in_conv) | |
lemma aodv_ex_labelE [elim]: | |
assumes "\<forall>l\<in>labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p. P l p" | |
and "\<exists>p l. P l p \<Longrightarrow> Q" | |
shows "Q" | |
using assms by (metis aodv_ex_label) | |
lemma aodv_simple_labels [simp]: "simple_labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V" | |
proof | |
fix pn p | |
assume "p\<in>subterms(\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pn)" | |
thus "\<exists>!l. labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {l}" | |
by (cases pn) (simp_all cong: seqp_congs | elim disjE)+ | |
qed | |
lemma \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_labels [simp]: "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<Longrightarrow> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {PAodv-:0}" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp | |
lemma aodv_init_kD_empty [simp]: | |
"(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<Longrightarrow> kD (rt \<xi>) = {}" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def kD_def by simp | |
lemma aodv_init_sip_not_ip [simp]: "\<not>(sip (aodv_init i) = i)" by simp | |
lemma aodv_init_sip_not_ip' [simp]: | |
assumes "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i" | |
shows "sip \<xi> \<noteq> ip \<xi>" | |
using assms unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp | |
lemma aodv_init_sip_not_i [simp]: | |
assumes "(\<xi>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i" | |
shows "sip \<xi> \<noteq> i" | |
using assms unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp | |
lemma clear_locals_sip_not_ip': | |
assumes "ip \<xi> = i" | |
shows "\<not>(sip (clear_locals \<xi>) = i)" | |
using assms by auto | |
text \<open>Stop the simplifier from descending into process terms.\<close> | |
declare seqp_congs [cong] | |
text \<open>Configure the main invariant tactic for AODV.\<close> | |
declare | |
\<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps [cterms_env] | |
aodv_proc_cases [ctermsl_cases] | |
seq_invariant_ctermsI [OF aodv_wf aodv_control_within aodv_simple_labels aodv_trans, | |
cterms_intros] | |
seq_step_invariant_ctermsI [OF aodv_wf aodv_control_within aodv_simple_labels aodv_trans, | |
cterms_intros] | |
end | |