Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Aodv_Data.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke, Inria | |
*) | |
section "Predicates and functions used in the AODV model" | |
theory Aodv_Data | |
imports Aodv_Basic | |
begin | |
subsection "Sequence Numbers" | |
text \<open>Sequence numbers approximate the relative freshness of routing information.\<close> | |
definition inc :: "sqn \<Rightarrow> sqn" | |
where "inc sn \<equiv> if sn = 0 then sn else sn + 1" | |
lemma less_than_inc [simp]: "x \<le> inc x" | |
unfolding inc_def by simp | |
lemma inc_minus_suc_0 [simp]: | |
"inc x - Suc 0 = x" | |
unfolding inc_def by simp | |
lemma inc_never_one' [simp, intro]: "inc x \<noteq> Suc 0" | |
unfolding inc_def by simp | |
lemma inc_never_one [simp, intro]: "inc x \<noteq> 1" | |
by simp | |
subsection "Modelling Routes" | |
text \<open> | |
A route is a 6-tuple, @{term "(dsn, dsk, flag, hops, nhip, pre)"} where | |
@{term dsn} is the `destination sequence number', @{term dsk} is the | |
`destination-sequence-number status', @{term flag} is the route status, | |
@{term hops} is the number of hops to the destination, @{term nhip} is the | |
next hop toward the destination, and @{term pre} is the set of `precursor nodes'--those | |
interested in hearing about changes to the route. | |
\<close> | |
type_synonym r = "sqn \<times> k \<times> f \<times> nat \<times> ip \<times> ip set" | |
definition proj2 :: "r \<Rightarrow> sqn" ("\<pi>\<^sub>2") | |
where "\<pi>\<^sub>2 \<equiv> \<lambda>(dsn, _, _, _, _, _). dsn" | |
definition proj3 :: "r \<Rightarrow> k" ("\<pi>\<^sub>3") | |
where "\<pi>\<^sub>3 \<equiv> \<lambda>(_, dsk, _, _, _, _). dsk" | |
definition proj4 :: "r \<Rightarrow> f" ("\<pi>\<^sub>4") | |
where "\<pi>\<^sub>4 \<equiv> \<lambda>(_, _, flag, _, _, _). flag" | |
definition proj5 :: "r \<Rightarrow> nat" ("\<pi>\<^sub>5") | |
where "\<pi>\<^sub>5 \<equiv> \<lambda>(_, _, _, hops, _, _). hops" | |
definition proj6 :: "r \<Rightarrow> ip" ("\<pi>\<^sub>6") | |
where "\<pi>\<^sub>6 \<equiv> \<lambda>(_, _, _, _, nhip, _). nhip" | |
definition proj7 :: "r \<Rightarrow> ip set" ("\<pi>\<^sub>7") | |
where "\<pi>\<^sub>7 \<equiv> \<lambda>(_, _, _, _, _, pre). pre" | |
lemma projs [simp]: | |
"\<pi>\<^sub>2(dsn, dsk, flag, hops, nhip, pre) = dsn" | |
"\<pi>\<^sub>3(dsn, dsk, flag, hops, nhip, pre) = dsk" | |
"\<pi>\<^sub>4(dsn, dsk, flag, hops, nhip, pre) = flag" | |
"\<pi>\<^sub>5(dsn, dsk, flag, hops, nhip, pre) = hops" | |
"\<pi>\<^sub>6(dsn, dsk, flag, hops, nhip, pre) = nhip" | |
"\<pi>\<^sub>7(dsn, dsk, flag, hops, nhip, pre) = pre" | |
by (clarsimp simp: proj2_def proj3_def proj4_def | |
proj5_def proj6_def proj7_def)+ | |
lemma proj3_pred [intro]: "\<lbrakk> P kno; P unk \<rbrakk> \<Longrightarrow> P (\<pi>\<^sub>3 x)" | |
by (rule k.induct) | |
lemma proj4_pred [intro]: "\<lbrakk> P val; P inv \<rbrakk> \<Longrightarrow> P (\<pi>\<^sub>4 x)" | |
by (rule f.induct) | |
lemma proj6_pair_snd [simp]: | |
fixes dsn' r | |
shows "\<pi>\<^sub>6 (dsn', snd (r)) = \<pi>\<^sub>6(r)" | |
by (cases r) simp | |
subsection "Routing Tables" | |
text \<open>Routing tables map ip addresses to route entries.\<close> | |
type_synonym rt = "ip \<rightharpoonup> r" | |
syntax | |
"_Sigma_route" :: "rt \<Rightarrow> ip \<rightharpoonup> r" ("\<sigma>\<^bsub>route\<^esub>'(_, _')") | |
translations | |
"\<sigma>\<^bsub>route\<^esub>(rt, dip)" => "rt dip" | |
definition sqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn" | |
where "sqn rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>2(r) | None \<Rightarrow> 0" | |
definition sqnf :: "rt \<Rightarrow> ip \<Rightarrow> k" | |
where "sqnf rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>3(r) | None \<Rightarrow> unk" | |
abbreviation flag :: "rt \<Rightarrow> ip \<rightharpoonup> f" | |
where "flag rt dip \<equiv> map_option \<pi>\<^sub>4 (\<sigma>\<^bsub>route\<^esub>(rt, dip))" | |
abbreviation dhops :: "rt \<Rightarrow> ip \<rightharpoonup> nat" | |
where "dhops rt dip \<equiv> map_option \<pi>\<^sub>5 (\<sigma>\<^bsub>route\<^esub>(rt, dip))" | |
abbreviation nhop :: "rt \<Rightarrow> ip \<rightharpoonup> ip" | |
where "nhop rt dip \<equiv> map_option \<pi>\<^sub>6 (\<sigma>\<^bsub>route\<^esub>(rt, dip))" | |
abbreviation precs :: "rt \<Rightarrow> ip \<rightharpoonup> ip set" | |
where "precs rt dip \<equiv> map_option \<pi>\<^sub>7 (\<sigma>\<^bsub>route\<^esub>(rt, dip))" | |
definition vD :: "rt \<Rightarrow> ip set" | |
where "vD rt \<equiv> {dip. flag rt dip = Some val}" | |
definition iD :: "rt \<Rightarrow> ip set" | |
where "iD rt \<equiv> {dip. flag rt dip = Some inv}" | |
definition kD :: "rt \<Rightarrow> ip set" | |
where "kD rt \<equiv> {dip. rt dip \<noteq> None}" | |
lemma kD_is_vD_and_iD: "kD rt = vD rt \<union> iD rt" | |
unfolding kD_def vD_def iD_def by auto | |
lemma vD_iD_gives_kD [simp]: | |
"\<And>ip rt. ip \<in> vD rt \<Longrightarrow> ip \<in> kD rt" | |
"\<And>ip rt. ip \<in> iD rt \<Longrightarrow> ip \<in> kD rt" | |
unfolding kD_is_vD_and_iD by simp_all | |
lemma kD_Some [dest]: | |
fixes dip rt | |
assumes "dip \<in> kD rt" | |
shows "\<exists>dsn dsk flag hops nhip pre. | |
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, flag, hops, nhip, pre)" | |
using assms unfolding kD_def by simp | |
lemma kD_None [dest]: | |
fixes dip rt | |
assumes "dip \<notin> kD rt" | |
shows "\<sigma>\<^bsub>route\<^esub>(rt, dip) = None" | |
using assms unfolding kD_def | |
by (metis (mono_tags) mem_Collect_eq) | |
lemma vD_Some [dest]: | |
fixes dip rt | |
assumes "dip \<in> vD rt" | |
shows "\<exists>dsn dsk hops nhip pre. | |
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, val, hops, nhip, pre)" | |
using assms unfolding vD_def by simp | |
lemma vD_empty [simp]: "vD Map.empty = {}" | |
unfolding vD_def by simp | |
lemma iD_Some [dest]: | |
fixes dip rt | |
assumes "dip \<in> iD rt" | |
shows "\<exists>dsn dsk hops nhip pre. | |
\<sigma>\<^bsub>route\<^esub>(rt, dip) = Some (dsn, dsk, inv, hops, nhip, pre)" | |
using assms unfolding iD_def by simp | |
lemma val_is_vD [elim]: | |
fixes ip rt | |
assumes "ip\<in>kD(rt)" | |
and "the (flag rt ip) = val" | |
shows "ip\<in>vD(rt)" | |
using assms unfolding vD_def by auto | |
lemma inv_is_iD [elim]: | |
fixes ip rt | |
assumes "ip\<in>kD(rt)" | |
and "the (flag rt ip) = inv" | |
shows "ip\<in>iD(rt)" | |
using assms unfolding iD_def by auto | |
lemma iD_flag_is_inv [elim, simp]: | |
fixes ip rt | |
assumes "ip\<in>iD(rt)" | |
shows "the (flag rt ip) = inv" | |
proof - | |
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)" by auto | |
with assms show ?thesis unfolding iD_def by auto | |
qed | |
lemma kD_but_not_vD_is_iD [elim]: | |
fixes ip rt | |
assumes "ip\<in>kD(rt)" | |
and "ip\<notin>vD(rt)" | |
shows "ip\<in>iD(rt)" | |
proof - | |
from \<open>ip\<in>kD(rt)\<close> obtain dsn dsk f hops nhop pre | |
where rtip: "rt ip = Some (dsn, dsk, f, hops, nhop, pre)" | |
by (metis kD_Some) | |
from \<open>ip\<notin>vD(rt)\<close> have "f \<noteq> val" | |
proof (rule contrapos_nn) | |
assume "f = val" | |
with rtip have "the (flag rt ip) = val" by simp | |
with \<open>ip\<in>kD(rt)\<close> show "ip\<in>vD(rt)" .. | |
qed | |
with rtip have "the (flag rt ip)= inv" by simp | |
with \<open>ip\<in>kD(rt)\<close> show "ip\<in>iD(rt)" .. | |
qed | |
lemma vD_or_iD [elim]: | |
fixes ip rt | |
assumes "ip\<in>kD(rt)" | |
and "ip\<in>vD(rt) \<Longrightarrow> P rt ip" | |
and "ip\<in>iD(rt) \<Longrightarrow> P rt ip" | |
shows "P rt ip" | |
proof - | |
from \<open>ip\<in>kD(rt)\<close> have "ip\<in>vD(rt) \<union> iD(rt)" | |
by (simp add: kD_is_vD_and_iD) | |
thus ?thesis by (auto elim: assms(2-3)) | |
qed | |
lemma proj5_eq_dhops: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>5(the (rt dip)) = the (dhops rt dip)" | |
unfolding sqn_def by (drule kD_Some) clarsimp | |
lemma proj4_eq_flag: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>4(the (rt dip)) = the (flag rt dip)" | |
unfolding sqn_def by (drule kD_Some) clarsimp | |
lemma proj2_eq_sqn: "\<And>dip rt. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>2(the (rt dip)) = sqn rt dip" | |
unfolding sqn_def by (drule kD_Some) clarsimp | |
lemma kD_sqnf_is_proj3 [simp]: | |
"\<And>ip rt. ip\<in>kD(rt) \<Longrightarrow> sqnf rt ip = \<pi>\<^sub>3(the (rt ip))" | |
unfolding sqnf_def by auto | |
lemma vD_flag_val [simp]: | |
"\<And>dip rt. dip \<in> vD (rt) \<Longrightarrow> the (flag rt dip) = val" | |
unfolding vD_def by clarsimp | |
lemma kD_update [simp]: | |
"\<And>rt nip v. kD (rt(nip \<mapsto> v)) = insert nip (kD rt)" | |
unfolding kD_def by auto | |
lemma kD_empty [simp]: "kD Map.empty = {}" | |
unfolding kD_def by simp | |
lemma ip_equal_or_known [elim]: | |
fixes rt ip ip' | |
assumes "ip = ip' \<or> ip\<in>kD(rt)" | |
and "ip = ip' \<Longrightarrow> P rt ip ip'" | |
and "\<lbrakk> ip \<noteq> ip'; ip\<in>kD(rt)\<rbrakk> \<Longrightarrow> P rt ip ip'" | |
shows "P rt ip ip'" | |
using assms by auto | |
subsection "Updating Routing Tables" | |
text \<open>Routing table entries are modified through explicit functions. | |
The properties of these functions are important in invariant proofs.\<close> | |
subsubsection "Updating Precursor Lists" | |
definition addpre :: "r \<Rightarrow> ip set \<Rightarrow> r" | |
where "addpre r npre \<equiv> let (dsn, dsk, flag, hops, nhip, pre) = r in | |
(dsn, dsk, flag, hops, nhip, pre \<union> npre)" | |
lemma proj2_addpre: | |
fixes v pre | |
shows "\<pi>\<^sub>2(addpre v pre) = \<pi>\<^sub>2(v)" | |
unfolding addpre_def by (cases v) simp | |
lemma proj3_addpre: | |
fixes v pre | |
shows "\<pi>\<^sub>3(addpre v pre) = \<pi>\<^sub>3(v)" | |
unfolding addpre_def by (cases v) simp | |
lemma proj4_addpre: | |
fixes v pre | |
shows "\<pi>\<^sub>4(addpre v pre) = \<pi>\<^sub>4(v)" | |
unfolding addpre_def by (cases v) simp | |
lemma proj5_addpre: | |
fixes v pre | |
shows "\<pi>\<^sub>5(addpre v pre) = \<pi>\<^sub>5(v)" | |
unfolding addpre_def by (cases v) simp | |
lemma proj6_addpre: | |
fixes dsn dsk flag hops nhip pre npre | |
shows "\<pi>\<^sub>6(addpre v npre) = \<pi>\<^sub>6(v)" | |
unfolding addpre_def by (cases v) simp | |
lemma proj7_addpre: | |
fixes dsn dsk flag hops nhip pre npre | |
shows "\<pi>\<^sub>7(addpre v npre) = \<pi>\<^sub>7(v) \<union> npre" | |
unfolding addpre_def by (cases v) simp | |
lemma addpre_empty: "addpre r {} = r" | |
unfolding addpre_def by simp | |
lemma addpre_r: | |
"addpre (dsn, dsk, fl, hops, nhip, pre) npre = (dsn, dsk, fl, hops, nhip, pre \<union> npre)" | |
unfolding addpre_def by simp | |
lemmas addpre_simps [simp] = proj2_addpre proj3_addpre proj4_addpre proj5_addpre | |
proj6_addpre proj7_addpre addpre_empty addpre_r | |
definition addpreRT :: "rt \<Rightarrow> ip \<Rightarrow> ip set \<rightharpoonup> rt" | |
where "addpreRT rt dip npre \<equiv> | |
map_option (\<lambda>s. rt (dip \<mapsto> addpre s npre)) (\<sigma>\<^bsub>route\<^esub>(rt, dip))" | |
lemma snd_addpre [simp]: | |
"\<And>dsn dsn' v pre. (dsn, snd(addpre (dsn', v) pre)) = addpre (dsn, v) pre" | |
unfolding addpre_def by clarsimp | |
lemma proj2_addpreRT [simp]: | |
fixes ip rt ip' npre | |
assumes "ip\<in>kD rt" | |
and "ip'\<in>kD rt" | |
shows "\<pi>\<^sub>2(the (the (addpreRT rt ip' npre) ip)) = \<pi>\<^sub>2(the (rt ip))" | |
using assms [THEN kD_Some] unfolding addpreRT_def by clarsimp | |
lemma proj3_addpreRT [simp]: | |
fixes ip rt ip' npre | |
assumes "ip\<in>kD rt" | |
and "ip'\<in>kD rt" | |
shows "\<pi>\<^sub>3(the (the (addpreRT rt ip' npre) ip)) = \<pi>\<^sub>3(the (rt ip))" | |
using assms [THEN kD_Some] unfolding addpreRT_def by clarsimp | |
lemma proj5_addpreRT [simp]: | |
"\<And>rt dip ip npre. dip\<in>kD(rt) \<Longrightarrow> \<pi>\<^sub>5(the (the (addpreRT rt dip npre) ip)) = \<pi>\<^sub>5(the (rt ip))" | |
unfolding addpreRT_def by auto | |
lemma flag_addpreRT [simp]: | |
fixes rt pre ip dip | |
assumes "dip \<in> kD rt" | |
shows "flag (the (addpreRT rt dip pre)) ip = flag rt ip" | |
unfolding addpreRT_def | |
using assms [THEN kD_Some] by (clarsimp) | |
lemma kD_addpreRT [simp]: | |
fixes rt dip npre | |
assumes "dip \<in> kD rt" | |
shows "kD (the (addpreRT rt dip npre)) = kD rt" | |
unfolding kD_def addpreRT_def | |
using assms [THEN kD_Some] | |
by clarsimp blast | |
lemma vD_addpreRT [simp]: | |
fixes rt dip npre | |
assumes "dip \<in> kD rt" | |
shows "vD (the (addpreRT rt dip npre)) = vD rt" | |
unfolding vD_def addpreRT_def | |
using assms [THEN kD_Some] by clarsimp auto | |
lemma iD_addpreRT [simp]: | |
fixes rt dip npre | |
assumes "dip \<in> kD rt" | |
shows "iD (the (addpreRT rt dip npre)) = iD rt" | |
unfolding iD_def addpreRT_def | |
using assms [THEN kD_Some] by clarsimp auto | |
lemma nhop_addpreRT [simp]: | |
fixes rt pre ip dip | |
assumes "dip \<in> kD rt" | |
shows "nhop (the (addpreRT rt dip pre)) ip = nhop rt ip" | |
unfolding sqn_def addpreRT_def | |
using assms [THEN kD_Some] by (clarsimp) | |
lemma sqn_addpreRT [simp]: | |
fixes rt pre ip dip | |
assumes "dip \<in> kD rt" | |
shows "sqn (the (addpreRT rt dip pre)) ip = sqn rt ip" | |
unfolding sqn_def addpreRT_def | |
using assms [THEN kD_Some] by (clarsimp) | |
lemma dhops_addpreRT [simp]: | |
fixes rt pre ip dip | |
assumes "dip \<in> kD rt" | |
shows "dhops (the (addpreRT rt dip pre)) ip = dhops rt ip" | |
unfolding addpreRT_def | |
using assms [THEN kD_Some] by (clarsimp) | |
lemma sqnf_addpreRT [simp]: | |
"\<And>ip dip. ip\<in>kD(rt \<xi>) \<Longrightarrow> sqnf (the (addpreRT (rt \<xi>) ip npre)) dip = sqnf (rt \<xi>) dip" | |
unfolding sqnf_def addpreRT_def by auto | |
subsubsection "Updating route entries" | |
lemma in_kD_case [simp]: | |
fixes dip rt | |
assumes "dip \<in> kD(rt)" | |
shows "(case rt dip of None \<Rightarrow> en | Some r \<Rightarrow> es r) = es (the (rt dip))" | |
using assms [THEN kD_Some] by auto | |
lemma not_in_kD_case [simp]: | |
fixes dip rt | |
assumes "dip \<notin> kD(rt)" | |
shows "(case rt dip of None \<Rightarrow> en | Some r \<Rightarrow> es r) = en" | |
using assms [THEN kD_None] by auto | |
lemma rt_Some_sqn [dest]: | |
fixes rt and ip dsn dsk flag hops nhip pre | |
assumes "rt ip = Some (dsn, dsk, flag, hops, nhip, pre)" | |
shows "sqn rt ip = dsn" | |
unfolding sqn_def using assms by simp | |
lemma not_kD_sqn [simp]: | |
fixes dip rt | |
assumes "dip \<notin> kD(rt)" | |
shows "sqn rt dip = 0" | |
using assms unfolding sqn_def | |
by simp | |
definition update_arg_wf :: "r \<Rightarrow> bool" | |
where "update_arg_wf r \<equiv> \<pi>\<^sub>4(r) = val \<and> | |
(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk) \<and> | |
(\<pi>\<^sub>3(r) = unk \<longrightarrow> \<pi>\<^sub>5(r) = 1)" | |
lemma update_arg_wf_gives_cases: | |
"\<And>r. update_arg_wf r \<Longrightarrow> (\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)" | |
unfolding update_arg_wf_def by simp | |
lemma update_arg_wf_tuples [simp]: | |
"\<And>nhip pre. update_arg_wf (0, unk, val, Suc 0, nhip, pre)" | |
"\<And>n hops nhip pre. update_arg_wf (Suc n, kno, val, hops, nhip, pre)" | |
unfolding update_arg_wf_def by auto | |
lemma update_arg_wf_tuples' [elim]: | |
"\<And>n hops nhip pre. Suc 0 \<le> n \<Longrightarrow> update_arg_wf (n, kno, val, hops, nhip, pre)" | |
unfolding update_arg_wf_def by auto | |
lemma wf_r_cases [intro]: | |
fixes P r | |
assumes "update_arg_wf r" | |
and c1: "\<And>nhip pre. P (0, unk, val, Suc 0, nhip, pre)" | |
and c2: "\<And>dsn hops nhip pre. dsn > 0 \<Longrightarrow> P (dsn, kno, val, hops, nhip, pre)" | |
shows "P r" | |
proof - | |
obtain dsn dsk flag hops nhip pre | |
where *: "r = (dsn, dsk, flag, hops, nhip, pre)" by (cases r) | |
with \<open>update_arg_wf r\<close> have wf1: "flag = val" | |
and wf2: "(dsn = 0) = (dsk = unk)" | |
and wf3: "dsk = unk \<longrightarrow> (hops = 1)" | |
unfolding update_arg_wf_def by auto | |
have "P (dsn, dsk, flag, hops, nhip, pre)" | |
proof (cases dsk) | |
assume "dsk = unk" | |
moreover with wf2 wf3 have "dsn = 0" and "hops = Suc 0" by auto | |
ultimately show ?thesis using \<open>flag = val\<close> by simp (rule c1) | |
next | |
assume "dsk = kno" | |
moreover with wf2 have "dsn > 0" by simp | |
ultimately show ?thesis using \<open>flag = val\<close> by simp (rule c2) | |
qed | |
with * show "P r" by simp | |
qed | |
definition update :: "rt \<Rightarrow> ip \<Rightarrow> r \<Rightarrow> rt" | |
where | |
"update rt ip r \<equiv> | |
case \<sigma>\<^bsub>route\<^esub>(rt, ip) of | |
None \<Rightarrow> rt (ip \<mapsto> r) | |
| Some s \<Rightarrow> | |
if \<pi>\<^sub>2(s) < \<pi>\<^sub>2(r) then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s))) | |
else if \<pi>\<^sub>2(s) = \<pi>\<^sub>2(r) \<and> (\<pi>\<^sub>5(s) > \<pi>\<^sub>5(r) \<or> \<pi>\<^sub>4(s) = inv) | |
then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s))) | |
else if \<pi>\<^sub>3(r) = unk | |
then rt (ip \<mapsto> (\<pi>\<^sub>2(s), snd (addpre r (\<pi>\<^sub>7(s))))) | |
else rt (ip \<mapsto> addpre s (\<pi>\<^sub>7(r)))" | |
lemma update_simps [simp]: | |
fixes r s nrt nr nr' ns rt ip | |
defines "s \<equiv> the \<sigma>\<^bsub>route\<^esub>(rt, ip)" | |
and "nr \<equiv> addpre r (\<pi>\<^sub>7(s))" | |
and "nr' \<equiv> (\<pi>\<^sub>2(s), \<pi>\<^sub>3(nr), \<pi>\<^sub>4(nr), \<pi>\<^sub>5(nr), \<pi>\<^sub>6(nr), \<pi>\<^sub>7(nr))" | |
and "ns \<equiv> addpre s (\<pi>\<^sub>7(r))" | |
shows | |
"\<lbrakk>ip \<notin> kD(rt)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> r)" | |
"\<lbrakk>ip \<in> kD(rt); sqn rt ip < \<pi>\<^sub>2(r)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)" | |
"\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); | |
the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)" | |
"\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); | |
flag rt ip = Some inv\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr)" | |
"\<lbrakk>ip \<in> kD(rt); \<pi>\<^sub>3(r) = unk; (\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<rbrakk> \<Longrightarrow> update rt ip r = rt (ip \<mapsto> nr')" | |
"\<lbrakk>ip \<in> kD(rt); sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno; | |
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val \<rbrakk> | |
\<Longrightarrow> update rt ip r = rt (ip \<mapsto> ns)" | |
proof - | |
assume "ip\<notin>kD(rt)" | |
hence "\<sigma>\<^bsub>route\<^esub>(rt, ip) = None" .. | |
thus "update rt ip r = rt (ip \<mapsto> r)" | |
unfolding update_def by simp | |
next | |
assume "ip \<in> kD(rt)" | |
and "sqn rt ip < \<pi>\<^sub>2(r)" | |
from this(1) obtain dsn dsk fl hops nhip pre | |
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)" | |
by (metis kD_Some) | |
with \<open>sqn rt ip < \<pi>\<^sub>2(r)\<close> show "update rt ip r = rt (ip \<mapsto> nr)" | |
unfolding update_def nr_def s_def by auto | |
next | |
assume "ip \<in> kD(rt)" | |
and "sqn rt ip = \<pi>\<^sub>2(r)" | |
and "the (dhops rt ip) > \<pi>\<^sub>5(r)" | |
from this(1) obtain dsn dsk fl hops nhip pre | |
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)" | |
by (metis kD_Some) | |
with \<open>sqn rt ip = \<pi>\<^sub>2(r)\<close> and \<open>the (dhops rt ip) > \<pi>\<^sub>5(r)\<close> | |
show "update rt ip r = rt (ip \<mapsto> nr)" | |
unfolding update_def nr_def s_def by auto | |
next | |
assume "ip \<in> kD(rt)" | |
and "sqn rt ip = \<pi>\<^sub>2(r)" | |
and "flag rt ip = Some inv" | |
from this(1) obtain dsn dsk fl hops nhip pre | |
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)" | |
by (metis kD_Some) | |
with \<open>sqn rt ip = \<pi>\<^sub>2(r)\<close> and \<open>flag rt ip = Some inv\<close> | |
show "update rt ip r = rt (ip \<mapsto> nr)" | |
unfolding update_def nr_def s_def by auto | |
next | |
assume "ip \<in> kD(rt)" | |
and "\<pi>\<^sub>3(r) = unk" | |
and "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)" | |
from this(1) obtain dsn dsk fl hops nhip pre | |
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)" | |
by (metis kD_Some) | |
with \<open>(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<close> and \<open>\<pi>\<^sub>3(r) = unk\<close> | |
show "update rt ip r = rt (ip \<mapsto> nr')" | |
unfolding update_def nr'_def nr_def s_def | |
by (cases r) simp | |
next | |
assume "ip \<in> kD(rt)" | |
and otherassms: "sqn rt ip \<ge> \<pi>\<^sub>2(r)" | |
"\<pi>\<^sub>3(r) = kno" | |
"sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val" | |
from this(1) obtain dsn dsk fl hops nhip pre | |
where "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)" | |
by (metis kD_Some) | |
with otherassms show "update rt ip r = rt (ip \<mapsto> ns)" | |
unfolding update_def ns_def s_def by auto | |
qed | |
lemma update_cases [elim]: | |
assumes "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)" | |
and c1: "\<lbrakk>ip \<notin> kD(rt)\<rbrakk> \<Longrightarrow> P (rt (ip \<mapsto> r))" | |
and c2: "\<lbrakk>ip \<in> kD(rt); sqn rt ip < \<pi>\<^sub>2(r)\<rbrakk> | |
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))" | |
and c3: "\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk> | |
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))" | |
and c4: "\<lbrakk>ip \<in> kD(rt); sqn rt ip = \<pi>\<^sub>2(r); the (flag rt ip) = inv\<rbrakk> | |
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))" | |
and c5: "\<lbrakk>ip \<in> kD(rt); \<pi>\<^sub>3(r) = unk\<rbrakk> | |
\<Longrightarrow> P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r), | |
\<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r), \<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))))" | |
and c6: "\<lbrakk>ip \<in> kD(rt); sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno; | |
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val\<rbrakk> | |
\<Longrightarrow> P (rt (ip \<mapsto> addpre (the \<sigma>\<^bsub>route\<^esub>(rt, ip)) (\<pi>\<^sub>7(r))))" | |
shows "(P (update rt ip r))" | |
proof (cases "ip \<in> kD(rt)") | |
assume "ip \<notin> kD(rt)" | |
with c1 show ?thesis | |
by simp | |
next | |
assume "ip \<in> kD(rt)" | |
moreover then obtain dsn dsk fl hops nhip pre | |
where rteq: "rt ip = Some (dsn, dsk, fl, hops, nhip, pre)" | |
by (metis kD_Some) | |
moreover obtain dsn' dsk' fl' hops' nhip' pre' | |
where req: "r = (dsn', dsk', fl', hops', nhip', pre')" | |
by (cases r) metis | |
ultimately show ?thesis | |
using \<open>(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)\<close> | |
c2 [OF \<open>ip\<in>kD(rt)\<close>] | |
c3 [OF \<open>ip\<in>kD(rt)\<close>] | |
c4 [OF \<open>ip\<in>kD(rt)\<close>] | |
c5 [OF \<open>ip\<in>kD(rt)\<close>] | |
c6 [OF \<open>ip\<in>kD(rt)\<close>] | |
unfolding update_def sqn_def by auto | |
qed | |
lemma update_cases_kD: | |
assumes "(\<pi>\<^sub>2(r) = 0) = (\<pi>\<^sub>3(r) = unk)" | |
and "ip \<in> kD(rt)" | |
and c2: "sqn rt ip < \<pi>\<^sub>2(r) \<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))" | |
and c3: "\<lbrakk>sqn rt ip = \<pi>\<^sub>2(r); the (dhops rt ip) > \<pi>\<^sub>5(r)\<rbrakk> | |
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))" | |
and c4: "\<lbrakk>sqn rt ip = \<pi>\<^sub>2(r); the (flag rt ip) = inv\<rbrakk> | |
\<Longrightarrow> P (rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))" | |
and c5: "\<pi>\<^sub>3(r) = unk \<Longrightarrow> P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r), | |
\<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r), | |
\<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the \<sigma>\<^bsub>route\<^esub>(rt, ip)))))))" | |
and c6: "\<lbrakk>sqn rt ip \<ge> \<pi>\<^sub>2(r); \<pi>\<^sub>3(r) = kno; | |
sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val\<rbrakk> | |
\<Longrightarrow> P (rt (ip \<mapsto> addpre (the \<sigma>\<^bsub>route\<^esub>(rt, ip)) (\<pi>\<^sub>7(r))))" | |
shows "(P (update rt ip r))" | |
using assms(1) proof (rule update_cases) | |
assume "sqn rt ip < \<pi>\<^sub>2(r)" | |
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7(the (rt ip)))))" by (rule c2) | |
next | |
assume "sqn rt ip = \<pi>\<^sub>2(r)" | |
and "the (dhops rt ip) > \<pi>\<^sub>5(r)" | |
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7 (the (rt ip)))))" | |
by (rule c3) | |
next | |
assume "sqn rt ip = \<pi>\<^sub>2(r)" | |
and "the (flag rt ip) = inv" | |
thus "P (rt(ip \<mapsto> addpre r (\<pi>\<^sub>7 (the (rt ip)))))" | |
by (rule c4) | |
next | |
assume "\<pi>\<^sub>3(r) = unk" | |
thus "P (rt (ip \<mapsto> (\<pi>\<^sub>2(the \<sigma>\<^bsub>route\<^esub>(rt, ip)), \<pi>\<^sub>3(r), \<pi>\<^sub>4(r), \<pi>\<^sub>5(r), \<pi>\<^sub>6(r), | |
\<pi>\<^sub>7(addpre r (\<pi>\<^sub>7(the (rt ip)))))))" | |
by (rule c5) | |
next | |
assume "sqn rt ip \<ge> \<pi>\<^sub>2(r)" | |
and "\<pi>\<^sub>3(r) = kno" | |
and "sqn rt ip = \<pi>\<^sub>2(r) \<Longrightarrow> the (dhops rt ip) \<le> \<pi>\<^sub>5(r) \<and> the (flag rt ip) = val" | |
thus "P (rt (ip \<mapsto> addpre (the (rt ip)) (\<pi>\<^sub>7(r))))" | |
by (rule c6) | |
qed (simp add: \<open>ip \<in> kD(rt)\<close>) | |
lemma in_kD_after_update [simp]: | |
fixes rt nip dsn dsk flag hops nhip pre | |
shows "kD (update rt nip (dsn, dsk, flag, hops, nhip, pre)) = insert nip (kD rt)" | |
unfolding update_def | |
by (cases "rt nip") auto | |
lemma nhop_of_update [simp]: | |
fixes rt dip dsn dsk flag hops nhip | |
assumes "rt \<noteq> update rt dip (dsn, dsk, flag, hops, nhip, {})" | |
shows "the (nhop (update rt dip (dsn, dsk, flag, hops, nhip, {})) dip) = nhip" | |
proof - | |
from assms | |
have update_neq: "\<And>v. rt dip = Some v \<Longrightarrow> | |
update rt dip (dsn, dsk, flag, hops, nhip, {}) | |
\<noteq> rt(dip \<mapsto> addpre (the (rt dip)) (\<pi>\<^sub>7 (dsn, dsk, flag, hops, nhip, {})))" | |
by auto | |
show ?thesis | |
proof (cases "rt dip = None") | |
assume "rt dip = None" | |
thus "?thesis" unfolding update_def by clarsimp | |
next | |
assume "rt dip \<noteq> None" | |
then obtain v where "rt dip = Some v" by (metis not_None_eq) | |
with update_neq [OF this] show ?thesis | |
unfolding update_def by auto | |
qed | |
qed | |
lemma sqn_if_updated: | |
fixes rip v rt ip | |
shows "sqn (\<lambda>x. if x = rip then Some v else rt x) ip | |
= (if ip = rip then \<pi>\<^sub>2(v) else sqn rt ip)" | |
unfolding sqn_def by simp | |
lemma update_sqn [simp]: | |
fixes rt dip rip dsn dsk hops nhip pre | |
assumes "(dsn = 0) = (dsk = unk)" | |
shows "sqn rt dip \<le> sqn (update rt rip (dsn, dsk, val, hops, nhip, pre)) dip" | |
proof (rule update_cases) | |
show "(\<pi>\<^sub>2 (dsn, dsk, val, hops, nhip, pre) = 0) = (\<pi>\<^sub>3 (dsn, dsk, val, hops, nhip, pre) = unk)" | |
by simp (rule assms) | |
qed (clarsimp simp: sqn_if_updated sqn_def)+ | |
lemma sqn_update_bigger [simp]: | |
fixes rt ip ip' dsn dsk flag hops nhip pre | |
assumes "1 \<le> hops" | |
shows "sqn rt ip \<le> sqn (update rt ip' (dsn, dsk, flag, hops, nhip, pre)) ip" | |
using assms unfolding update_def sqn_def | |
by (clarsimp split: option.split) auto | |
lemma dhops_update [intro]: | |
fixes rt dsn dsk flag hops ip rip nhip pre | |
assumes ex: "\<forall>ip\<in>kD rt. the (dhops rt ip) \<ge> 1" | |
and ip: "(ip = rip \<and> Suc 0 \<le> hops) \<or> (ip \<noteq> rip \<and> ip\<in>kD rt)" | |
shows "Suc 0 \<le> the (dhops (update rt rip (dsn, dsk, flag, hops, nhip, pre)) ip)" | |
using ip proof | |
assume "ip = rip \<and> Suc 0 \<le> hops" thus ?thesis | |
unfolding update_def using ex | |
by (cases "rip \<in> kD rt") (drule(1) bspec, auto) | |
next | |
assume "ip \<noteq> rip \<and> ip\<in>kD rt" thus ?thesis | |
using ex unfolding update_def | |
by (cases "rip\<in>kD rt") auto | |
qed | |
lemma update_another [simp]: | |
fixes dip ip rt dsn dsk flag hops nhip pre | |
assumes "ip \<noteq> dip" | |
shows "(update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = rt ip" | |
using assms unfolding update_def | |
by (clarsimp split: option.split) | |
lemma nhop_update_another [simp]: | |
fixes dip ip rt dsn dsk flag hops nhip pre | |
assumes "ip \<noteq> dip" | |
shows "nhop (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = nhop rt ip" | |
using assms unfolding update_def | |
by (clarsimp split: option.split) | |
lemma dhops_update_another [simp]: | |
fixes dip ip rt dsn dsk flag hops nhip pre | |
assumes "ip \<noteq> dip" | |
shows "dhops (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = dhops rt ip" | |
using assms unfolding update_def | |
by (clarsimp split: option.split) | |
lemma sqn_update_same [simp]: | |
"\<And>rt ip dsn dsk flag hops nhip pre. sqn (rt(ip \<mapsto> v)) ip = \<pi>\<^sub>2(v)" | |
unfolding sqn_def by simp | |
lemma dhops_update_changed [simp]: | |
fixes rt dip osn hops nhip | |
assumes "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})" | |
shows "the (dhops (update rt dip (osn, kno, val, hops, nhip, {})) dip) = hops" | |
using assms unfolding update_def | |
by (clarsimp split: option.split_asm option.split if_split_asm) auto | |
lemma nhop_update_unk_val [simp]: | |
"\<And>rt dip ip dsn hops npre. | |
the (nhop (update rt dip (dsn, unk, val, hops, ip, npre)) dip) = ip" | |
unfolding update_def by (clarsimp split: option.split) | |
lemma nhop_update_changed [simp]: | |
fixes rt dip dsn dsk flg hops sip | |
assumes "update rt dip (dsn, dsk, flg, hops, sip, {}) \<noteq> rt" | |
shows "the (nhop (update rt dip (dsn, dsk, flg, hops, sip, {})) dip) = sip" | |
using assms unfolding update_def | |
by (clarsimp split: option.splits if_split_asm) auto | |
lemma update_rt_split_asm: | |
"\<And>rt ip dsn dsk flag hops sip. | |
P (update rt ip (dsn, dsk, flag, hops, sip, {})) | |
= | |
(\<not>(rt = update rt ip (dsn, dsk, flag, hops, sip, {}) \<and> \<not>P rt | |
\<or> rt \<noteq> update rt ip (dsn, dsk, flag, hops, sip, {}) | |
\<and> \<not>P (update rt ip (dsn, dsk, flag, hops, sip, {}))))" | |
by auto | |
lemma sqn_update [simp]: "\<And>rt dip dsn flg hops sip. | |
rt \<noteq> update rt dip (dsn, kno, flg, hops, sip, {}) | |
\<Longrightarrow> sqn (update rt dip (dsn, kno, flg, hops, sip, {})) dip = dsn" | |
unfolding update_def by (clarsimp split: option.split if_split_asm) auto | |
lemma sqnf_update [simp]: "\<And>rt dip dsn dsk flg hops sip. | |
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {}) | |
\<Longrightarrow> sqnf (update rt dip (dsn, dsk, flg, hops, sip, {})) dip = dsk" | |
unfolding update_def sqnf_def | |
by (clarsimp split: option.splits if_split_asm) auto | |
lemma update_kno_dsn_greater_zero: | |
"\<And>rt dip ip dsn hops npre. 1 \<le> dsn \<Longrightarrow> 1 \<le> (sqn (update rt dip (dsn, kno, val, hops, ip, npre)) dip)" | |
unfolding update_def | |
by (clarsimp split: option.splits) | |
lemma proj3_update [simp]: "\<And>rt dip dsn dsk flg hops sip. | |
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {}) | |
\<Longrightarrow> \<pi>\<^sub>3(the (update rt dip (dsn, dsk, flg, hops, sip, {}) dip)) = dsk" | |
unfolding update_def sqnf_def | |
by (clarsimp split: option.splits if_split_asm) auto | |
lemma nhop_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip. | |
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {}) | |
\<Longrightarrow> the (nhop (update rt ip (dsn, kno, val, hops, nhip, {})) ip) = nhip" | |
unfolding update_def | |
by (clarsimp split: option.split_asm option.split if_split_asm) auto | |
lemma flag_update [simp]: "\<And>rt dip dsn flg hops sip. | |
rt \<noteq> update rt dip (dsn, kno, flg, hops, sip, {}) | |
\<Longrightarrow> the (flag (update rt dip (dsn, kno, flg, hops, sip, {})) dip) = flg" | |
unfolding update_def | |
by (clarsimp split: option.split if_split_asm) auto | |
lemma the_flag_Some [dest!]: | |
fixes ip rt | |
assumes "the (flag rt ip) = x" | |
and "ip \<in> kD rt" | |
shows "flag rt ip = Some x" | |
using assms by auto | |
lemma kD_update_unchanged [dest]: | |
fixes rt dip dsn dsk flag hops nhip pre | |
assumes "rt = update rt dip (dsn, dsk, flag, hops, nhip, pre)" | |
shows "dip\<in>kD(rt)" | |
proof - | |
have "dip\<in>kD(update rt dip (dsn, dsk, flag, hops, nhip, pre))" by simp | |
with assms show ?thesis by simp | |
qed | |
lemma nhop_update [simp]: "\<And>rt dip dsn dsk flg hops sip. | |
rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {}) | |
\<Longrightarrow> the (nhop (update rt dip (dsn, dsk, flg, hops, sip, {})) dip) = sip" | |
unfolding update_def sqnf_def | |
by (clarsimp split: option.splits if_split_asm) auto | |
lemma sqn_update_another [simp]: | |
fixes dip ip rt dsn dsk flag hops nhip pre | |
assumes "ip \<noteq> dip" | |
shows "sqn (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = sqn rt ip" | |
using assms unfolding update_def sqn_def | |
by (clarsimp split: option.splits) auto | |
lemma sqnf_update_another [simp]: | |
fixes dip ip rt dsn dsk flag hops nhip pre | |
assumes "ip \<noteq> dip" | |
shows "sqnf (update rt dip (dsn, dsk, flag, hops, nhip, pre)) ip = sqnf rt ip" | |
using assms unfolding update_def sqnf_def | |
by (clarsimp split: option.splits) auto | |
lemma vD_update_val [dest]: | |
"\<And>dip rt dip' dsn dsk hops nhip pre. | |
dip \<in> vD(update rt dip' (dsn, dsk, val, hops, nhip, pre)) \<Longrightarrow> (dip\<in>vD(rt) \<or> dip=dip')" | |
unfolding update_def vD_def by (clarsimp split: option.split_asm if_split_asm) | |
subsubsection "Invalidating route entries" | |
definition invalidate :: "rt \<Rightarrow> (ip \<rightharpoonup> sqn) \<Rightarrow> rt" | |
where "invalidate rt dests \<equiv> | |
\<lambda>ip. case (rt ip, dests ip) of | |
(None, _) \<Rightarrow> None | |
| (Some s, None) \<Rightarrow> Some s | |
| (Some (_, dsk, _, hops, nhip, pre), Some rsn) \<Rightarrow> | |
Some (rsn, dsk, inv, hops, nhip, pre)" | |
lemma proj3_invalidate [simp]: | |
"\<And>dip. \<pi>\<^sub>3(the ((invalidate rt dests) dip)) = \<pi>\<^sub>3(the (rt dip))" | |
unfolding invalidate_def by (clarsimp split: option.split) | |
lemma proj5_invalidate [simp]: | |
"\<And>dip. \<pi>\<^sub>5(the ((invalidate rt dests) dip)) = \<pi>\<^sub>5(the (rt dip))" | |
unfolding invalidate_def by (clarsimp split: option.split) | |
lemma proj6_invalidate [simp]: | |
"\<And>dip. \<pi>\<^sub>6(the ((invalidate rt dests) dip)) = \<pi>\<^sub>6(the (rt dip))" | |
unfolding invalidate_def by (clarsimp split: option.split) | |
lemma proj7_invalidate [simp]: | |
"\<And>dip. \<pi>\<^sub>7(the ((invalidate rt dests) dip)) = \<pi>\<^sub>7(the (rt dip))" | |
unfolding invalidate_def by (clarsimp split: option.split) | |
lemma invalidate_kD_inv [simp]: | |
"\<And>rt dests. kD (invalidate rt dests) = kD rt" | |
unfolding invalidate_def kD_def | |
by (simp split: option.split) | |
lemma invalidate_sqn: | |
fixes rt dip dests | |
assumes "\<forall>rsn. dests dip = Some rsn \<longrightarrow> sqn rt dip \<le> rsn" | |
shows "sqn rt dip \<le> sqn (invalidate rt dests) dip" | |
proof (cases "dip \<notin> kD(rt)") | |
assume "\<not> dip \<notin> kD(rt)" | |
hence "dip\<in>kD(rt)" by simp | |
then obtain dsn dsk flag hops nhip pre where "rt dip = Some (dsn, dsk, flag, hops, nhip, pre)" | |
by (metis kD_Some) | |
with assms show "sqn rt dip \<le> sqn (invalidate rt dests) dip" | |
by (cases "dests dip") (auto simp add: invalidate_def sqn_def) | |
qed simp | |
lemma sqn_invalidate_in_dests [simp]: | |
fixes dests ipa rsn rt | |
assumes "dests ipa = Some rsn" | |
and "ipa\<in>kD(rt)" | |
shows "sqn (invalidate rt dests) ipa = rsn" | |
unfolding invalidate_def sqn_def | |
using assms(1) assms(2) [THEN kD_Some] | |
by clarsimp | |
lemma dhops_invalidate [simp]: | |
"\<And>dip. the (dhops (invalidate rt dests) dip) = the (dhops rt dip)" | |
unfolding invalidate_def by (clarsimp split: option.split) | |
lemma sqnf_invalidate [simp]: | |
"\<And>dip. sqnf (invalidate (rt \<xi>) (dests \<xi>)) dip = sqnf (rt \<xi>) dip" | |
unfolding sqnf_def invalidate_def by (clarsimp split: option.split) | |
lemma nhop_invalidate [simp]: | |
"\<And>dip. the (nhop (invalidate (rt \<xi>) (dests \<xi>)) dip) = the (nhop (rt \<xi>) dip)" | |
unfolding invalidate_def by (clarsimp split: option.split) | |
lemma invalidate_other [simp]: | |
fixes rt dests dip | |
assumes "dip\<notin>dom(dests)" | |
shows "invalidate rt dests dip = rt dip" | |
using assms unfolding invalidate_def | |
by (clarsimp split: option.split_asm) | |
lemma invalidate_none [simp]: | |
fixes rt dests dip | |
assumes "dip\<notin>kD(rt)" | |
shows "invalidate rt dests dip = None" | |
using assms unfolding invalidate_def by clarsimp | |
lemma vD_invalidate_vD_not_dests: | |
"\<And>dip rt dests. dip\<in>vD(invalidate rt dests) \<Longrightarrow> dip\<in>vD(rt) \<and> dests dip = None" | |
unfolding invalidate_def vD_def | |
by (clarsimp split: option.split_asm) | |
lemma sqn_invalidate_not_in_dests [simp]: | |
fixes dests dip rt | |
assumes "dip\<notin>dom(dests)" | |
shows "sqn (invalidate rt dests) dip = sqn rt dip" | |
using assms unfolding sqn_def by simp | |
lemma invalidate_changes: | |
fixes rt dests dip dsn dsk flag hops nhip pre | |
assumes "invalidate rt dests dip = Some (dsn, dsk, flag, hops, nhip, pre)" | |
shows " dsn = (case dests dip of None \<Rightarrow> \<pi>\<^sub>2(the (rt dip)) | Some rsn \<Rightarrow> rsn) | |
\<and> dsk = \<pi>\<^sub>3(the (rt dip)) | |
\<and> flag = (if dests dip = None then \<pi>\<^sub>4(the (rt dip)) else inv) | |
\<and> hops = \<pi>\<^sub>5(the (rt dip)) | |
\<and> nhip = \<pi>\<^sub>6(the (rt dip)) | |
\<and> pre = \<pi>\<^sub>7(the (rt dip))" | |
using assms unfolding invalidate_def | |
by (cases "rt dip", clarsimp, cases "dests dip") auto | |
lemma proj3_inv: "\<And>dip rt dests. dip\<in>kD (rt) | |
\<Longrightarrow> \<pi>\<^sub>3(the (invalidate rt dests dip)) = \<pi>\<^sub>3(the (rt dip))" | |
by (clarsimp simp: invalidate_def kD_def split: option.split) | |
lemma dests_iD_invalidate [simp]: | |
assumes "dests ip = Some rsn" | |
and "ip\<in>kD(rt)" | |
shows "ip\<in>iD(invalidate rt dests)" | |
using assms(1) assms(2) [THEN kD_Some] unfolding invalidate_def iD_def | |
by (clarsimp split: option.split) | |
subsection "Route Requests" | |
text \<open>Generate a fresh route request identifier.\<close> | |
definition nrreqid :: "(ip \<times> rreqid) set \<Rightarrow> ip \<Rightarrow> rreqid" | |
where "nrreqid rreqs ip \<equiv> Max ({n. (ip, n) \<in> rreqs} \<union> {0}) + 1" | |
subsection "Queued Packets" | |
text \<open>Functions for sending data packets.\<close> | |
type_synonym store = "ip \<rightharpoonup> (p \<times> data list)" | |
definition sigma_queue :: "store \<Rightarrow> ip \<Rightarrow> data list" ("\<sigma>\<^bsub>queue\<^esub>'(_, _')") | |
where "\<sigma>\<^bsub>queue\<^esub>(store, dip) \<equiv> case store dip of None \<Rightarrow> [] | Some (p, q) \<Rightarrow> q" | |
definition qD :: "store \<Rightarrow> ip set" | |
where "qD \<equiv> dom" | |
definition add :: "data \<Rightarrow> ip \<Rightarrow> store \<Rightarrow> store" | |
where "add d dip store \<equiv> case store dip of | |
None \<Rightarrow> store (dip \<mapsto> (req, [d])) | |
| Some (p, q) \<Rightarrow> store (dip \<mapsto> (p, q @ [d]))" | |
lemma qD_add [simp]: | |
fixes d dip store | |
shows "qD(add d dip store) = insert dip (qD store)" | |
unfolding add_def Let_def qD_def | |
by (clarsimp split: option.split) | |
definition drop :: "ip \<Rightarrow> store \<rightharpoonup> store" | |
where "drop dip store \<equiv> | |
map_option (\<lambda>(p, q). if tl q = [] then store (dip := None) | |
else store (dip \<mapsto> (p, tl q))) (store dip)" | |
definition sigma_p_flag :: "store \<Rightarrow> ip \<rightharpoonup> p" ("\<sigma>\<^bsub>p-flag\<^esub>'(_, _')") | |
where "\<sigma>\<^bsub>p-flag\<^esub>(store, dip) \<equiv> map_option fst (store dip)" | |
definition unsetRRF :: "store \<Rightarrow> ip \<Rightarrow> store" | |
where "unsetRRF store dip \<equiv> case store dip of | |
None \<Rightarrow> store | |
| Some (p, q) \<Rightarrow> store (dip \<mapsto> (noreq, q))" | |
definition setRRF :: "store \<Rightarrow> (ip \<rightharpoonup> sqn) \<Rightarrow> store" | |
where "setRRF store dests \<equiv> \<lambda>dip. if dests dip = None then store dip | |
else map_option (\<lambda>(_, q). (req, q)) (store dip)" | |
subsection "Comparison with the original technical report" | |
text \<open> | |
The major differences with the AODV technical report of Fehnker et al are: | |
\begin{enumerate} | |
\item @{term nhop} is partial, thus a `@{term the}' is needed, similarly for @{term dhops} | |
and @{term addpreRT}. | |
\item @{term precs} is partial. | |
\item @{term "\<sigma>\<^bsub>p-flag\<^esub>(store, dip)"} is partial. | |
\item The routing table (@{typ rt}) is modelled as a map (@{typ "ip \<Rightarrow> r option"}) | |
rather than a set of 7-tuples, likewise, the @{typ r} is a 6-tuple rather than | |
a 7-tuple, i.e., the destination ip-address (@{term "dip"}) is taken from the | |
argument to the function, rather than a part of the result. Well-definedness then | |
follows from the structure of the type and more related facts are available | |
automatically, rather than having to be acquired through tedious proofs. | |
\item Similar remarks hold for the dests mapping passed to @{term "invalidate"}, | |
and @{term "store"}. | |
\end{enumerate} | |
\<close> | |
end | |