Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /AODV /Seq_Invariants.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
37.4 kB
(* Title: Seq_Invariants.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke, Inria
*)
section "Invariant proofs on individual processes"
theory Seq_Invariants
imports AWN.Invariants Aodv Aodv_Data Aodv_Predicates Fresher
begin
text \<open>
The proposition numbers are taken from the December 2013 version of
the Fehnker et al technical report.
\<close>
text \<open>Proposition 7.2\<close>
lemma sequence_number_increases:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')"
by inv_cterms
lemma sequence_number_one_or_bigger:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)"
by (rule onll_step_to_invariantI [OF sequence_number_increases])
(auto simp: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def)
text \<open>We can get rid of the onl/onll if desired...\<close>
lemma sequence_number_increases':
"paodv i \<TTurnstile>\<^sub>A (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')"
by (rule step_invariant_weakenE [OF sequence_number_increases]) (auto dest!: onllD)
lemma sequence_number_one_or_bigger':
"paodv i \<TTurnstile> (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)"
by (rule invariant_weakenE [OF sequence_number_one_or_bigger]) auto
lemma sip_in_kD:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> ({PAodv-:7} \<union> {PAodv-:5} \<union> {PRrep-:0..PRrep-:1}
\<union> {PRreq-:0..PRreq-:3}) \<longrightarrow> sip \<xi> \<in> kD (rt \<xi>))"
by inv_cterms
lemma rrep_1_update_changes:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l = PRrep-:1 \<longrightarrow>
rt \<xi> \<noteq> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {})))"
by inv_cterms
lemma addpreRT_partly_welldefined:
"paodv i \<TTurnstile>
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<union> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>))
\<and> (l \<in> {PRreq-:3..PRreq-:17} \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)))"
by inv_cterms
text \<open>Proposition 7.38\<close>
lemma includes_nhip:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). \<forall>dip\<in>kD(rt \<xi>). the (nhop (rt \<xi>) dip)\<in>kD(rt \<xi>))"
proof -
{ fix ip and \<xi> \<xi>' :: state
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)"
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})\<rparr>"
hence "\<forall>dip\<in>kD (rt \<xi>).
the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) = ip
\<or> the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) \<in> kD (rt \<xi>)"
by clarsimp (metis nhop_update_unk_val update_another)
} note one_hop = this
{ fix ip sip sn hops and \<xi> \<xi>' :: state
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)"
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})\<rparr>"
and "sip \<in> kD (rt \<xi>)"
hence "(the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) = ip
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) \<in> kD (rt \<xi>))
\<and> (\<forall>dip\<in>kD (rt \<xi>).
the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) = ip
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) \<in> kD (rt \<xi>))"
by (metis kD_update_unchanged nhop_update_changed update_another)
} note nhip_is_sip = this
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf sip_in_kD]
onl_invariant_sterms [OF aodv_wf addpreRT_partly_welldefined]
solve: one_hop nhip_is_sip)
qed
text \<open>Proposition 7.22: needed in Proposition 7.4\<close>
lemma addpreRT_welldefined:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and>
(l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)) \<and>
(l = PRrep-:5 \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and>
(l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD (rt \<xi>)))"
(is "_ \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P")
unfolding invariant_def
proof
fix s
assume "s \<in> reachable (paodv i) TT"
then obtain \<xi> p where "s = (\<xi>, p)"
and "(\<xi>, p) \<in> reachable (paodv i) TT"
by (metis prod.exhaust)
have "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P (\<xi>, p)"
proof (rule onlI)
fix l
assume "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p"
with \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close>
have I1: "l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)"
and I2: "l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)"
and I3: "l \<in> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)"
by (auto dest!: invariantD [OF addpreRT_partly_welldefined])
moreover from \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and I3
have "l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD(rt \<xi>)"
by (auto dest!: invariantD [OF includes_nhip])
ultimately show "?P (\<xi>, l)"
by simp
qed
with \<open>s = (\<xi>, p)\<close> show "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P s"
by simp
qed
text \<open>Proposition 7.4\<close>
lemma known_destinations_increase:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). kD (rt \<xi>) \<subseteq> kD (rt \<xi>'))"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]
simp add: subset_insertI)
text \<open>Proposition 7.5\<close>
lemma rreqs_increase:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). rreqs \<xi> \<subseteq> rreqs \<xi>')"
by (inv_cterms simp add: subset_insertI)
lemma dests_bigger_than_sqn:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:15..PAodv-:19}
\<union> {PPkt-:7..PPkt-:11}
\<union> {PRreq-:9..PRreq-:13}
\<union> {PRreq-:21..PRreq-:25}
\<union> {PRrep-:10..PRrep-:14}
\<union> {PRerr-:1..PRerr-:5}
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>kD(rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)))"
proof -
have sqninv:
"\<And>dests rt rsn ip.
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk>
\<Longrightarrow> sqn (invalidate rt dests) ip \<le> rsn"
by (rule sqn_invalidate_in_dests [THEN eq_imp_le], assumption) auto
have indests:
"\<And>dests rt rsn ip.
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk>
\<Longrightarrow> ip\<in>kD(rt) \<and> sqn rt ip \<le> rsn"
by (metis domI option.sel)
show ?thesis
by inv_cterms
(clarsimp split: if_split_asm option.split_asm
elim!: sqninv indests)+
qed
text \<open>Proposition 7.6\<close>
lemma sqns_increase:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>ip. sqn (rt \<xi>) ip \<le> sqn (rt \<xi>') ip)"
proof -
{ fix \<xi> :: state
assume *: "\<forall>ip\<in>dom(dests \<xi>). ip \<in> kD (rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)"
have "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
proof
fix ip
from * have "ip\<notin>dom(dests \<xi>) \<or> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)" by simp
thus "sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
by (metis domI invalidate_sqn option.sel)
qed
} note solve_invalidate = this
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn]
simp add: solve_invalidate)
qed
text \<open>Proposition 7.7\<close>
lemma ip_constant:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). ip \<xi> = i)"
by (inv_cterms simp add: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def)
text \<open>Proposition 7.8\<close>
lemma sender_ip_valid':
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = ip \<xi>) a)"
by inv_cterms
lemma sender_ip_valid:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a)"
by (rule step_invariant_weaken_with_invariantE [OF ip_constant sender_ip_valid'])
(auto dest!: onlD onllD)
lemma received_msg_inv:
"paodv i \<TTurnstile> (recvmsg P \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:1} \<longrightarrow> P (msg \<xi>))"
by inv_cterms
text \<open>Proposition 7.9\<close>
lemma sip_not_ip':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> ip \<xi>)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]]
simp add: clear_locals_sip_not_ip') clarsimp+
lemma sip_not_ip:
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> i)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]]
simp add: clear_locals_sip_not_ip') clarsimp+
text \<open>Neither \<open>sip_not_ip'\<close> nor \<open>sip_not_ip\<close> is needed to show loop freedom.\<close>
text \<open>Proposition 7.10\<close>
lemma hop_count_positive:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). \<forall>ip\<in>kD (rt \<xi>). the (dhops (rt \<xi>) ip) \<ge> 1)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]) auto
lemma rreq_dip_in_vD_dip_eq_ip:
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> vD(rt \<xi>))
\<and> (l \<in> {PRreq-:5, PRreq-:6} \<longrightarrow> dip \<xi> = ip \<xi>)
\<and> (l \<in> {PRreq-:15..PRreq-:18} \<longrightarrow> dip \<xi> \<noteq> ip \<xi>))"
proof (inv_cterms, elim conjE)
fix l \<xi> pp p'
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
and "{PRreq-:17}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))})\<rparr>\<rbrakk> p'
\<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "l = PRreq-:17"
and "dip \<xi> \<in> vD (rt \<xi>)"
from this(1-3) have "oip \<xi> \<in> kD (rt \<xi>)"
by (auto dest: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined, where l="PRreq-:17"])
with \<open>dip \<xi> \<in> vD (rt \<xi>)\<close>
show "dip \<xi> \<in> vD (the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}))" by simp
qed
text \<open>Proposition 7.11\<close>
lemma anycast_msg_zhops:
"\<And>rreqid dip dsn dsk oip osn sip.
paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)"
proof (inv_cterms inv add:
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip [THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]],
elim conjE)
fix l \<xi> a pp p' pp'
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
and "{PRreq-:18}unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)),
\<lambda>\<xi>. Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>)).
p' \<triangleright> pp' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "l = PRreq-:18"
and "a = unicast (the (nhop (rt \<xi>) (oip \<xi>)))
(Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>))"
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
and "dip \<xi> \<in> vD (rt \<xi>)"
from \<open>dip \<xi> \<in> vD (rt \<xi>)\<close> have "dip \<xi> \<in> kD (rt \<xi>)"
by (rule vD_iD_gives_kD(1))
with * have "Suc 0 \<le> the (dhops (rt \<xi>) (dip \<xi>))" ..
thus "0 < the (dhops (rt \<xi>) (dip \<xi>))" by simp
qed
lemma hop_count_zero_oip_dip_sip:
"paodv i \<TTurnstile> (recvmsg msg_zhops \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow>
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>))
\<and>
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow>
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) auto
lemma osn_rreq:
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp
lemma osn_rreq':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)"
proof (rule invariant_weakenE [OF osn_rreq])
fix a
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
thus "recvmsg rreq_rrep_sn a"
by (cases a) simp_all
qed
lemma dsn_rrep:
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp
lemma dsn_rrep':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)"
proof (rule invariant_weakenE [OF dsn_rrep])
fix a
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
thus "recvmsg rreq_rrep_sn a"
by (cases a) simp_all
qed
lemma hop_count_zero_oip_dip_sip':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow>
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>))
\<and>
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow>
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))"
proof (rule invariant_weakenE [OF hop_count_zero_oip_dip_sip])
fix a
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a"
thus "recvmsg msg_zhops a"
by (cases a) simp_all
qed
text \<open>Proposition 7.12\<close>
lemma zero_seq_unk_hops_one':
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _).
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> sqnf (rt \<xi>) dip = unk)
\<and> (sqnf (rt \<xi>) dip = unk \<longrightarrow> the (dhops (rt \<xi>) dip) = 1)
\<and> (the (dhops (rt \<xi>) dip) = 1 \<longrightarrow> the (nhop (rt \<xi>) dip) = dip))"
proof -
{ fix dip and \<xi> :: state and P
assume "sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0"
and all: "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip"
and *: "sqn (rt \<xi>) dip = 0 \<Longrightarrow> P \<xi> dip"
have "P \<xi> dip"
proof -
from all have "sqn (rt \<xi>) dip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) dip" ..
with \<open>sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0\<close> have "sqn (rt \<xi>) dip = 0" by simp
thus "P \<xi> dip" by (rule *)
qed
} note sqn_invalidate_zero [elim!] = this
{ fix dsn hops :: nat and sip oip rt and ip dip :: ip
assume "\<forall>dip\<in>kD(rt).
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
and "hops = 0 \<longrightarrow> sip = dip"
and "Suc 0 \<le> dsn"
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
hence "the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0 \<longrightarrow>
the (nhop (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = ip"
by - (rule update_cases, auto simp add: sqn_def dest!: bspec)
} note prreq_ok1 [simp] = this
{ fix ip dsn hops sip oip rt dip
assume "\<forall>dip\<in>kD(rt).
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
and "Suc 0 \<le> dsn"
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
hence "\<pi>\<^sub>3(the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk \<longrightarrow>
the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0"
by - (rule update_cases, auto simp add: sqn_def sqnf_def dest!: bspec)
} note prreq_ok2 [simp] = this
{ fix ip dsn hops sip oip rt dip
assume "\<forall>dip\<in>kD(rt).
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
and "Suc 0 \<le> dsn"
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)"
hence "sqn (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip = 0 \<longrightarrow>
\<pi>\<^sub>3 (the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk"
by - (rule update_cases, auto simp add: sqn_def dest!: bspec)
} note prreq_ok3 [simp] = this
{ fix rt sip
assume "\<forall>dip\<in>kD rt.
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and>
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and>
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)"
hence "\<forall>dip\<in>kD rt.
(sqn (update rt sip (0, unk, val, Suc 0, sip, {})) dip = 0 \<longrightarrow>
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk)
\<and> (\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk \<longrightarrow>
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0)
\<and> (the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0 \<longrightarrow>
the (nhop (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = dip)"
by - (rule update_cases, simp_all add: sqnf_def sqn_def)
} note prreq_ok4 [simp] = this
have prreq_ok5 [simp]: "\<And>sip rt.
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk \<longrightarrow>
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) sip) = Suc 0"
by (rule update_cases) simp_all
have prreq_ok6 [simp]: "\<And>sip rt.
sqn (update rt sip (0, unk, val, Suc 0, sip, {})) sip = 0 \<longrightarrow>
\<pi>\<^sub>3 (the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk"
by (rule update_cases) simp_all
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
onl_invariant_sterms [OF aodv_wf hop_count_zero_oip_dip_sip']
seq_step_invariant_sterms_TT [OF sqns_increase aodv_wf aodv_trans]
onl_invariant_sterms [OF aodv_wf osn_rreq']
onl_invariant_sterms [OF aodv_wf dsn_rrep']) clarsimp+
qed
lemma zero_seq_unk_hops_one:
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _).
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> (sqnf (rt \<xi>) dip = unk
\<and> the (dhops (rt \<xi>) dip) = 1
\<and> the (nhop (rt \<xi>) dip) = dip)))"
by (rule invariant_weakenE [OF zero_seq_unk_hops_one']) auto
lemma kD_unk_or_atleast_one:
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
\<forall>dip\<in>kD(rt \<xi>). \<pi>\<^sub>3(the (rt \<xi> dip)) = unk \<or> 1 \<le> \<pi>\<^sub>2(the (rt \<xi> dip)))"
proof -
{ fix sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2
assume "dsk1 = unk \<or> Suc 0 \<le> dsn2"
hence "\<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) sip)) = unk
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) sip"
unfolding update_def by (cases "dsk1 =unk") (clarsimp split: option.split)+
} note fromsip [simp] = this
{ fix dip sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2
assume allkd: "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip"
and **: "dsk1 = unk \<or> Suc 0 \<le> dsn2"
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) dip)) = unk
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) dip"
(is "\<forall>dip\<in>kD(rt). ?prop dip")
proof
fix dip
assume "dip\<in>kD(rt)"
thus "?prop dip"
proof (cases "dip = sip")
assume "dip = sip"
with ** show ?thesis
by simp
next
assume "dip \<noteq> sip"
with \<open>dip\<in>kD(rt)\<close> allkd show ?thesis
by simp
qed
qed
} note solve_update [simp] = this
{ fix dip rt dests
assume *: "\<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip)"
and **: "\<forall>ip\<in>kD(rt). \<pi>\<^sub>3(the (rt ip)) = unk \<or> Suc 0 \<le> sqn rt ip"
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip"
proof
fix dip
assume "dip\<in>kD(rt)"
with ** have "\<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip" ..
thus "\<pi>\<^sub>3 (the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip"
proof
assume "\<pi>\<^sub>3(the (rt dip)) = unk" thus ?thesis ..
next
assume "Suc 0 \<le> sqn rt dip"
have "Suc 0 \<le> sqn (invalidate rt dests) dip"
proof (cases "dip\<in>dom(dests)")
assume "dip\<in>dom(dests)"
with * have "sqn rt dip \<le> the (dests dip)" by simp
with \<open>Suc 0 \<le> sqn rt dip\<close> have "Suc 0 \<le> the (dests dip)" by simp
with \<open>dip\<in>dom(dests)\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis
unfolding invalidate_def sqn_def by auto
next
assume "dip\<notin>dom(dests)"
with \<open>Suc 0 \<le> sqn rt dip\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis
unfolding invalidate_def sqn_def by auto
qed
thus ?thesis by (rule disjI2)
qed
qed
} note solve_invalidate [simp] = this
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn
[THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf osn_rreq]
onl_invariant_sterms [OF aodv_wf dsn_rrep]
simp add: proj3_inv proj2_eq_sqn)
qed
text \<open>Proposition 7.13\<close>
lemma rreq_rrep_sn_any_step_invariant:
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast rreq_rrep_sn a)"
proof -
have sqnf_kno: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> sqnf (rt \<xi>) (dip \<xi>) = kno))"
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined])
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]
onl_invariant_sterms [OF aodv_wf sequence_number_one_or_bigger
[THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf kD_unk_or_atleast_one]
onl_invariant_sterms_TT [OF aodv_wf sqnf_kno]
onl_invariant_sterms [OF aodv_wf osn_rreq]
onl_invariant_sterms [OF aodv_wf dsn_rrep])
(auto simp: proj2_eq_sqn)
qed
text \<open>Proposition 7.14\<close>
lemma rreq_rrep_fresh_any_step_invariant:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a)"
proof -
have rreq_oip: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l \<in> {PRreq-:3, PRreq-:4, PRreq-:15, PRreq-:27}
\<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)
\<and> (sqn (rt \<xi>) (oip \<xi>) > (osn \<xi>)
\<or> (sqn (rt \<xi>) (oip \<xi>) = (osn \<xi>)
\<and> the (dhops (rt \<xi>) (oip \<xi>)) \<le> Suc (hops \<xi>)
\<and> the (flag (rt \<xi>) (oip \<xi>)) = val))))"
proof inv_cterms
fix l \<xi> l' pp p'
assume "(\<xi>, pp) \<in> reachable (paodv i) TT"
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt :=
update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk> p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "l' = PRreq-:3"
show "osn \<xi> < sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>)
\<or> (sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>) = osn \<xi>
\<and> the (dhops (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>))
\<le> Suc (hops \<xi>)
\<and> the (flag (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>))
= val)"
unfolding update_def by (clarsimp split: option.split)
(metis linorder_neqE_nat not_less)
qed
have rrep_prrep: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l).
(l \<in> {PRrep-:2..PRrep-:7} \<longrightarrow> (dip \<xi> \<in> kD(rt \<xi>)
\<and> sqn (rt \<xi>) (dip \<xi>) = dsn \<xi>
\<and> the (dhops (rt \<xi>) (dip \<xi>)) = Suc (hops \<xi>)
\<and> the (flag (rt \<xi>) (dip \<xi>)) = val
\<and> the (nhop (rt \<xi>) (dip \<xi>)) \<in> kD (rt \<xi>))))"
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rrep_1_update_changes]
onl_invariant_sterms [OF aodv_wf sip_in_kD])
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rreq_oip]
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip]
onl_invariant_sterms [OF aodv_wf rrep_prrep])
qed
text \<open>Proposition 7.15\<close>
lemma rerr_invalid_any_step_invariant:
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a)"
proof -
have dests_inv: "paodv i \<TTurnstile>
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9,
PRreq-:21, PRrep-:10, PRerr-:1}
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>)))
\<and> (l \<in> {PAodv-:16..PAodv-:19}
\<union> {PPkt-:8..PPkt-:11}
\<union> {PRreq-:10..PRreq-:13}
\<union> {PRreq-:22..PRreq-:25}
\<union> {PRrep-:11..PRrep-:14}
\<union> {PRerr-:2..PRerr-:5} \<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>iD(rt \<xi>)
\<and> the (dests \<xi> ip) = sqn (rt \<xi>) ip))
\<and> (l = PPkt-:14 \<longrightarrow> dip \<xi>\<in>iD(rt \<xi>)))"
by inv_cterms (clarsimp split: if_split_asm option.split_asm simp: domIff)+
show ?thesis
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf dests_inv])
qed
text \<open>Proposition 7.16\<close>
text \<open>
Some well-definedness obligations are irrelevant for the Isabelle development:
\begin{enumerate}
\item In each routing table there is at most one entry for each destination: guaranteed by type.
\item In each store of queued data packets there is at most one data queue for
each destination: guaranteed by structure.
\item Whenever a set of pairs @{term "(rip, rsn)"} is assigned to the variable
@{term "dests"} of type @{typ "ip \<rightharpoonup> sqn"}, or to the first argument of
the function @{term "rerr"}, this set is a partial function, i.e., there
is at most one entry @{term "(rip, rsn)"} for each destination
@{term "rip"}: guaranteed by type.
\end{enumerate}
\<close>
lemma dests_vD_inc_sqn:
"paodv i \<TTurnstile>
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9, PRreq-:21, PRrep-:10}
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) = inc (sqn (rt \<xi>) ip)))
\<and> (l = PRerr-:1
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) > sqn (rt \<xi>) ip)))"
by inv_cterms (clarsimp split: if_split_asm option.split_asm)+
text \<open>Proposition 7.27\<close>
lemma route_tables_fresher:
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)).
\<forall>dip\<in>kD(rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>')"
proof (inv_cterms inv add:
onl_invariant_sterms [OF aodv_wf dests_vD_inc_sqn [THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]]
onl_invariant_sterms [OF aodv_wf osn_rreq]
onl_invariant_sterms [OF aodv_wf dsn_rrep]
onl_invariant_sterms [OF aodv_wf addpreRT_welldefined [THEN invariant_restrict_inD]])
fix \<xi> pp p'
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk>
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "Suc 0 \<le> osn \<xi>"
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
proof
fix ip
assume "ip\<in>kD (rt \<xi>)"
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp
moreover from \<open>Suc 0 \<le> osn \<xi>\<close>
have "update_arg_wf (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" ..
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
by (rule rt_fresher_update)
qed
next
fix \<xi> pp p'
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)"
and "{PRrep-:1}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk>
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp"
and "Suc 0 \<le> dsn \<xi>"
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)"
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
proof
fix ip
assume "ip\<in>kD (rt \<xi>)"
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp
moreover from \<open>Suc 0 \<le> dsn \<xi>\<close>
have "update_arg_wf (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" ..
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})"
by (rule rt_fresher_update)
qed
qed
end