Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Seq_Invariants.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke, Inria | |
*) | |
section "Invariant proofs on individual processes" | |
theory Seq_Invariants | |
imports AWN.Invariants Aodv Aodv_Data Aodv_Predicates Fresher | |
begin | |
text \<open> | |
The proposition numbers are taken from the December 2013 version of | |
the Fehnker et al technical report. | |
\<close> | |
text \<open>Proposition 7.2\<close> | |
lemma sequence_number_increases: | |
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')" | |
by inv_cterms | |
lemma sequence_number_one_or_bigger: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)" | |
by (rule onll_step_to_invariantI [OF sequence_number_increases]) | |
(auto simp: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def) | |
text \<open>We can get rid of the onl/onll if desired...\<close> | |
lemma sequence_number_increases': | |
"paodv i \<TTurnstile>\<^sub>A (\<lambda>((\<xi>, _), _, (\<xi>', _)). sn \<xi> \<le> sn \<xi>')" | |
by (rule step_invariant_weakenE [OF sequence_number_increases]) (auto dest!: onllD) | |
lemma sequence_number_one_or_bigger': | |
"paodv i \<TTurnstile> (\<lambda>(\<xi>, _). 1 \<le> sn \<xi>)" | |
by (rule invariant_weakenE [OF sequence_number_one_or_bigger]) auto | |
lemma sip_in_kD: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> ({PAodv-:7} \<union> {PAodv-:5} \<union> {PRrep-:0..PRrep-:1} | |
\<union> {PRreq-:0..PRreq-:3}) \<longrightarrow> sip \<xi> \<in> kD (rt \<xi>))" | |
by inv_cterms | |
lemma rrep_1_update_changes: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l = PRrep-:1 \<longrightarrow> | |
rt \<xi> \<noteq> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, hops \<xi> + 1, sip \<xi>, {})))" | |
by inv_cterms | |
lemma addpreRT_partly_welldefined: | |
"paodv i \<TTurnstile> | |
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<union> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) | |
\<and> (l \<in> {PRreq-:3..PRreq-:17} \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)))" | |
by inv_cterms | |
text \<open>Proposition 7.38\<close> | |
lemma includes_nhip: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). \<forall>dip\<in>kD(rt \<xi>). the (nhop (rt \<xi>) dip)\<in>kD(rt \<xi>))" | |
proof - | |
{ fix ip and \<xi> \<xi>' :: state | |
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)" | |
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})\<rparr>" | |
hence "\<forall>dip\<in>kD (rt \<xi>). | |
the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) = ip | |
\<or> the (nhop (update (rt \<xi>) ip (0, unk, val, Suc 0, ip, {})) dip) \<in> kD (rt \<xi>)" | |
by clarsimp (metis nhop_update_unk_val update_another) | |
} note one_hop = this | |
{ fix ip sip sn hops and \<xi> \<xi>' :: state | |
assume "\<forall>dip\<in>kD (rt \<xi>). the (nhop (rt \<xi>) dip) \<in> kD (rt \<xi>)" | |
and "\<xi>' = \<xi>\<lparr>rt := update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})\<rparr>" | |
and "sip \<in> kD (rt \<xi>)" | |
hence "(the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) = ip | |
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) ip) \<in> kD (rt \<xi>)) | |
\<and> (\<forall>dip\<in>kD (rt \<xi>). | |
the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) = ip | |
\<or> the (nhop (update (rt \<xi>) ip (sn, kno, val, Suc hops, sip, {})) dip) \<in> kD (rt \<xi>))" | |
by (metis kD_update_unchanged nhop_update_changed update_another) | |
} note nhip_is_sip = this | |
show ?thesis | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf sip_in_kD] | |
onl_invariant_sterms [OF aodv_wf addpreRT_partly_welldefined] | |
solve: one_hop nhip_is_sip) | |
qed | |
text \<open>Proposition 7.22: needed in Proposition 7.4\<close> | |
lemma addpreRT_welldefined: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and> | |
(l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD (rt \<xi>)) \<and> | |
(l = PRrep-:5 \<longrightarrow> dip \<xi> \<in> kD (rt \<xi>)) \<and> | |
(l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD (rt \<xi>)))" | |
(is "_ \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P") | |
unfolding invariant_def | |
proof | |
fix s | |
assume "s \<in> reachable (paodv i) TT" | |
then obtain \<xi> p where "s = (\<xi>, p)" | |
and "(\<xi>, p) \<in> reachable (paodv i) TT" | |
by (metis prod.exhaust) | |
have "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P (\<xi>, p)" | |
proof (rule onlI) | |
fix l | |
assume "l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p" | |
with \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close> | |
have I1: "l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)" | |
and I2: "l = PRreq-:17 \<longrightarrow> oip \<xi> \<in> kD(rt \<xi>)" | |
and I3: "l \<in> {PRrep-:2..PRrep-:6} \<longrightarrow> dip \<xi> \<in> kD(rt \<xi>)" | |
by (auto dest!: invariantD [OF addpreRT_partly_welldefined]) | |
moreover from \<open>(\<xi>, p) \<in> reachable (paodv i) TT\<close> \<open>l \<in> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p\<close> and I3 | |
have "l = PRrep-:6 \<longrightarrow> (the (nhop (rt \<xi>) (dip \<xi>))) \<in> kD(rt \<xi>)" | |
by (auto dest!: invariantD [OF includes_nhip]) | |
ultimately show "?P (\<xi>, l)" | |
by simp | |
qed | |
with \<open>s = (\<xi>, p)\<close> show "onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V ?P s" | |
by simp | |
qed | |
text \<open>Proposition 7.4\<close> | |
lemma known_destinations_increase: | |
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). kD (rt \<xi>) \<subseteq> kD (rt \<xi>'))" | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined] | |
simp add: subset_insertI) | |
text \<open>Proposition 7.5\<close> | |
lemma rreqs_increase: | |
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). rreqs \<xi> \<subseteq> rreqs \<xi>')" | |
by (inv_cterms simp add: subset_insertI) | |
lemma dests_bigger_than_sqn: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:15..PAodv-:19} | |
\<union> {PPkt-:7..PPkt-:11} | |
\<union> {PRreq-:9..PRreq-:13} | |
\<union> {PRreq-:21..PRreq-:25} | |
\<union> {PRrep-:10..PRrep-:14} | |
\<union> {PRerr-:1..PRerr-:5} | |
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>kD(rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)))" | |
proof - | |
have sqninv: | |
"\<And>dests rt rsn ip. | |
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk> | |
\<Longrightarrow> sqn (invalidate rt dests) ip \<le> rsn" | |
by (rule sqn_invalidate_in_dests [THEN eq_imp_le], assumption) auto | |
have indests: | |
"\<And>dests rt rsn ip. | |
\<lbrakk> \<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip); dests ip = Some rsn \<rbrakk> | |
\<Longrightarrow> ip\<in>kD(rt) \<and> sqn rt ip \<le> rsn" | |
by (metis domI option.sel) | |
show ?thesis | |
by inv_cterms | |
(clarsimp split: if_split_asm option.split_asm | |
elim!: sqninv indests)+ | |
qed | |
text \<open>Proposition 7.6\<close> | |
lemma sqns_increase: | |
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). \<forall>ip. sqn (rt \<xi>) ip \<le> sqn (rt \<xi>') ip)" | |
proof - | |
{ fix \<xi> :: state | |
assume *: "\<forall>ip\<in>dom(dests \<xi>). ip \<in> kD (rt \<xi>) \<and> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)" | |
have "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip" | |
proof | |
fix ip | |
from * have "ip\<notin>dom(dests \<xi>) \<or> sqn (rt \<xi>) ip \<le> the (dests \<xi> ip)" by simp | |
thus "sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip" | |
by (metis domI invalidate_sqn option.sel) | |
qed | |
} note solve_invalidate = this | |
show ?thesis | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined] | |
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn] | |
simp add: solve_invalidate) | |
qed | |
text \<open>Proposition 7.7\<close> | |
lemma ip_constant: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). ip \<xi> = i)" | |
by (inv_cterms simp add: \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def) | |
text \<open>Proposition 7.8\<close> | |
lemma sender_ip_valid': | |
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = ip \<xi>) a)" | |
by inv_cterms | |
lemma sender_ip_valid: | |
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m = i) a)" | |
by (rule step_invariant_weaken_with_invariantE [OF ip_constant sender_ip_valid']) | |
(auto dest!: onlD onllD) | |
lemma received_msg_inv: | |
"paodv i \<TTurnstile> (recvmsg P \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). l \<in> {PAodv-:1} \<longrightarrow> P (msg \<xi>))" | |
by inv_cterms | |
text \<open>Proposition 7.9\<close> | |
lemma sip_not_ip': | |
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> ip \<xi>)" | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv] | |
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]] | |
simp add: clear_locals_sip_not_ip') clarsimp+ | |
lemma sip_not_ip: | |
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. not_Pkt m \<longrightarrow> msg_sender m \<noteq> i) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). sip \<xi> \<noteq> i)" | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv] | |
onl_invariant_sterms [OF aodv_wf ip_constant [THEN invariant_restrict_inD]] | |
simp add: clear_locals_sip_not_ip') clarsimp+ | |
text \<open>Neither \<open>sip_not_ip'\<close> nor \<open>sip_not_ip\<close> is needed to show loop freedom.\<close> | |
text \<open>Proposition 7.10\<close> | |
lemma hop_count_positive: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). \<forall>ip\<in>kD (rt \<xi>). the (dhops (rt \<xi>) ip) \<ge> 1)" | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined]) auto | |
lemma rreq_dip_in_vD_dip_eq_ip: | |
"paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> dip \<xi> \<in> vD(rt \<xi>)) | |
\<and> (l \<in> {PRreq-:5, PRreq-:6} \<longrightarrow> dip \<xi> = ip \<xi>) | |
\<and> (l \<in> {PRreq-:15..PRreq-:18} \<longrightarrow> dip \<xi> \<noteq> ip \<xi>))" | |
proof (inv_cterms, elim conjE) | |
fix l \<xi> pp p' | |
assume "(\<xi>, pp) \<in> reachable (paodv i) TT" | |
and "{PRreq-:17}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))})\<rparr>\<rbrakk> p' | |
\<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp" | |
and "l = PRreq-:17" | |
and "dip \<xi> \<in> vD (rt \<xi>)" | |
from this(1-3) have "oip \<xi> \<in> kD (rt \<xi>)" | |
by (auto dest: onl_invariant_sterms [OF aodv_wf addpreRT_welldefined, where l="PRreq-:17"]) | |
with \<open>dip \<xi> \<in> vD (rt \<xi>)\<close> | |
show "dip \<xi> \<in> vD (the (addpreRT (rt \<xi>) (oip \<xi>) {the (nhop (rt \<xi>) (dip \<xi>))}))" by simp | |
qed | |
text \<open>Proposition 7.11\<close> | |
lemma anycast_msg_zhops: | |
"\<And>rreqid dip dsn dsk oip osn sip. | |
paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)" | |
proof (inv_cterms inv add: | |
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip [THEN invariant_restrict_inD]] | |
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]], | |
elim conjE) | |
fix l \<xi> a pp p' pp' | |
assume "(\<xi>, pp) \<in> reachable (paodv i) TT" | |
and "{PRreq-:18}unicast(\<lambda>\<xi>. the (nhop (rt \<xi>) (oip \<xi>)), | |
\<lambda>\<xi>. Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>)). | |
p' \<triangleright> pp' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp" | |
and "l = PRreq-:18" | |
and "a = unicast (the (nhop (rt \<xi>) (oip \<xi>))) | |
(Rrep (the (dhops (rt \<xi>) (dip \<xi>))) (dip \<xi>) (sqn (rt \<xi>) (dip \<xi>)) (oip \<xi>) (ip \<xi>))" | |
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)" | |
and "dip \<xi> \<in> vD (rt \<xi>)" | |
from \<open>dip \<xi> \<in> vD (rt \<xi>)\<close> have "dip \<xi> \<in> kD (rt \<xi>)" | |
by (rule vD_iD_gives_kD(1)) | |
with * have "Suc 0 \<le> the (dhops (rt \<xi>) (dip \<xi>))" .. | |
thus "0 < the (dhops (rt \<xi>) (dip \<xi>))" by simp | |
qed | |
lemma hop_count_zero_oip_dip_sip: | |
"paodv i \<TTurnstile> (recvmsg msg_zhops \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> | |
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>)) | |
\<and> | |
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> | |
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))" | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) auto | |
lemma osn_rreq: | |
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)" | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp | |
lemma osn_rreq': | |
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
l \<in> {PAodv-:4, PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> 1 \<le> osn \<xi>)" | |
proof (rule invariant_weakenE [OF osn_rreq]) | |
fix a | |
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a" | |
thus "recvmsg rreq_rrep_sn a" | |
by (cases a) simp_all | |
qed | |
lemma dsn_rrep: | |
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)" | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf received_msg_inv]) clarsimp | |
lemma dsn_rrep': | |
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
l \<in> {PAodv-:6, PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> 1 \<le> dsn \<xi>)" | |
proof (rule invariant_weakenE [OF dsn_rrep]) | |
fix a | |
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a" | |
thus "recvmsg rreq_rrep_sn a" | |
by (cases a) simp_all | |
qed | |
lemma hop_count_zero_oip_dip_sip': | |
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
(l\<in>{PAodv-:4..PAodv-:5} \<union> {PRreq-:n|n. True} \<longrightarrow> | |
(hops \<xi> = 0 \<longrightarrow> oip \<xi> = sip \<xi>)) | |
\<and> | |
((l\<in>{PAodv-:6..PAodv-:7} \<union> {PRrep-:n|n. True} \<longrightarrow> | |
(hops \<xi> = 0 \<longrightarrow> dip \<xi> = sip \<xi>))))" | |
proof (rule invariant_weakenE [OF hop_count_zero_oip_dip_sip]) | |
fix a | |
assume "recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) a" | |
thus "recvmsg msg_zhops a" | |
by (cases a) simp_all | |
qed | |
text \<open>Proposition 7.12\<close> | |
lemma zero_seq_unk_hops_one': | |
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). | |
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> sqnf (rt \<xi>) dip = unk) | |
\<and> (sqnf (rt \<xi>) dip = unk \<longrightarrow> the (dhops (rt \<xi>) dip) = 1) | |
\<and> (the (dhops (rt \<xi>) dip) = 1 \<longrightarrow> the (nhop (rt \<xi>) dip) = dip))" | |
proof - | |
{ fix dip and \<xi> :: state and P | |
assume "sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0" | |
and all: "\<forall>ip. sqn (rt \<xi>) ip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) ip" | |
and *: "sqn (rt \<xi>) dip = 0 \<Longrightarrow> P \<xi> dip" | |
have "P \<xi> dip" | |
proof - | |
from all have "sqn (rt \<xi>) dip \<le> sqn (invalidate (rt \<xi>) (dests \<xi>)) dip" .. | |
with \<open>sqn (invalidate (rt \<xi>) (dests \<xi>)) dip = 0\<close> have "sqn (rt \<xi>) dip = 0" by simp | |
thus "P \<xi> dip" by (rule *) | |
qed | |
} note sqn_invalidate_zero [elim!] = this | |
{ fix dsn hops :: nat and sip oip rt and ip dip :: ip | |
assume "\<forall>dip\<in>kD(rt). | |
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and> | |
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and> | |
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)" | |
and "hops = 0 \<longrightarrow> sip = dip" | |
and "Suc 0 \<le> dsn" | |
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)" | |
hence "the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0 \<longrightarrow> | |
the (nhop (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = ip" | |
by - (rule update_cases, auto simp add: sqn_def dest!: bspec) | |
} note prreq_ok1 [simp] = this | |
{ fix ip dsn hops sip oip rt dip | |
assume "\<forall>dip\<in>kD(rt). | |
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and> | |
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and> | |
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)" | |
and "Suc 0 \<le> dsn" | |
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)" | |
hence "\<pi>\<^sub>3(the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk \<longrightarrow> | |
the (dhops (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip) = Suc 0" | |
by - (rule update_cases, auto simp add: sqn_def sqnf_def dest!: bspec) | |
} note prreq_ok2 [simp] = this | |
{ fix ip dsn hops sip oip rt dip | |
assume "\<forall>dip\<in>kD(rt). | |
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and> | |
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and> | |
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)" | |
and "Suc 0 \<le> dsn" | |
and "ip \<noteq> dip \<longrightarrow> ip\<in>kD(rt)" | |
hence "sqn (update rt dip (dsn, kno, val, Suc hops, sip, {})) ip = 0 \<longrightarrow> | |
\<pi>\<^sub>3 (the (update rt dip (dsn, kno, val, Suc hops, sip, {}) ip)) = unk" | |
by - (rule update_cases, auto simp add: sqn_def dest!: bspec) | |
} note prreq_ok3 [simp] = this | |
{ fix rt sip | |
assume "\<forall>dip\<in>kD rt. | |
(sqn rt dip = 0 \<longrightarrow> \<pi>\<^sub>3(the (rt dip)) = unk) \<and> | |
(\<pi>\<^sub>3(the (rt dip)) = unk \<longrightarrow> the (dhops rt dip) = Suc 0) \<and> | |
(the (dhops rt dip) = Suc 0 \<longrightarrow> the (nhop rt dip) = dip)" | |
hence "\<forall>dip\<in>kD rt. | |
(sqn (update rt sip (0, unk, val, Suc 0, sip, {})) dip = 0 \<longrightarrow> | |
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk) | |
\<and> (\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) dip)) = unk \<longrightarrow> | |
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0) | |
\<and> (the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = Suc 0 \<longrightarrow> | |
the (nhop (update rt sip (0, unk, val, Suc 0, sip, {})) dip) = dip)" | |
by - (rule update_cases, simp_all add: sqnf_def sqn_def) | |
} note prreq_ok4 [simp] = this | |
have prreq_ok5 [simp]: "\<And>sip rt. | |
\<pi>\<^sub>3(the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk \<longrightarrow> | |
the (dhops (update rt sip (0, unk, val, Suc 0, sip, {})) sip) = Suc 0" | |
by (rule update_cases) simp_all | |
have prreq_ok6 [simp]: "\<And>sip rt. | |
sqn (update rt sip (0, unk, val, Suc 0, sip, {})) sip = 0 \<longrightarrow> | |
\<pi>\<^sub>3 (the (update rt sip (0, unk, val, Suc 0, sip, {}) sip)) = unk" | |
by (rule update_cases) simp_all | |
show ?thesis | |
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined] | |
onl_invariant_sterms [OF aodv_wf hop_count_zero_oip_dip_sip'] | |
seq_step_invariant_sterms_TT [OF sqns_increase aodv_wf aodv_trans] | |
onl_invariant_sterms [OF aodv_wf osn_rreq'] | |
onl_invariant_sterms [OF aodv_wf dsn_rrep']) clarsimp+ | |
qed | |
lemma zero_seq_unk_hops_one: | |
"paodv i \<TTurnstile> (recvmsg (\<lambda>m. rreq_rrep_sn m \<and> msg_zhops m) \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, _). | |
\<forall>dip\<in>kD(rt \<xi>). (sqn (rt \<xi>) dip = 0 \<longrightarrow> (sqnf (rt \<xi>) dip = unk | |
\<and> the (dhops (rt \<xi>) dip) = 1 | |
\<and> the (nhop (rt \<xi>) dip) = dip)))" | |
by (rule invariant_weakenE [OF zero_seq_unk_hops_one']) auto | |
lemma kD_unk_or_atleast_one: | |
"paodv i \<TTurnstile> (recvmsg rreq_rrep_sn \<rightarrow>) onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
\<forall>dip\<in>kD(rt \<xi>). \<pi>\<^sub>3(the (rt \<xi> dip)) = unk \<or> 1 \<le> \<pi>\<^sub>2(the (rt \<xi> dip)))" | |
proof - | |
{ fix sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2 | |
assume "dsk1 = unk \<or> Suc 0 \<le> dsn2" | |
hence "\<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) sip)) = unk | |
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) sip" | |
unfolding update_def by (cases "dsk1 =unk") (clarsimp split: option.split)+ | |
} note fromsip [simp] = this | |
{ fix dip sip rt dsn1 dsn2 dsk1 dsk2 flag1 flag2 hops1 hops2 nhip1 nhip2 pre1 pre2 | |
assume allkd: "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip" | |
and **: "dsk1 = unk \<or> Suc 0 \<le> dsn2" | |
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (update rt sip (dsn1, dsk1, flag1, hops1, nhip1, pre1) dip)) = unk | |
\<or> Suc 0 \<le> sqn (update rt sip (dsn2, dsk2, flag2, hops2, nhip2, pre2)) dip" | |
(is "\<forall>dip\<in>kD(rt). ?prop dip") | |
proof | |
fix dip | |
assume "dip\<in>kD(rt)" | |
thus "?prop dip" | |
proof (cases "dip = sip") | |
assume "dip = sip" | |
with ** show ?thesis | |
by simp | |
next | |
assume "dip \<noteq> sip" | |
with \<open>dip\<in>kD(rt)\<close> allkd show ?thesis | |
by simp | |
qed | |
qed | |
} note solve_update [simp] = this | |
{ fix dip rt dests | |
assume *: "\<forall>ip\<in>dom(dests). ip\<in>kD(rt) \<and> sqn rt ip \<le> the (dests ip)" | |
and **: "\<forall>ip\<in>kD(rt). \<pi>\<^sub>3(the (rt ip)) = unk \<or> Suc 0 \<le> sqn rt ip" | |
have "\<forall>dip\<in>kD(rt). \<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip" | |
proof | |
fix dip | |
assume "dip\<in>kD(rt)" | |
with ** have "\<pi>\<^sub>3(the (rt dip)) = unk \<or> Suc 0 \<le> sqn rt dip" .. | |
thus "\<pi>\<^sub>3 (the (rt dip)) = unk \<or> Suc 0 \<le> sqn (invalidate rt dests) dip" | |
proof | |
assume "\<pi>\<^sub>3(the (rt dip)) = unk" thus ?thesis .. | |
next | |
assume "Suc 0 \<le> sqn rt dip" | |
have "Suc 0 \<le> sqn (invalidate rt dests) dip" | |
proof (cases "dip\<in>dom(dests)") | |
assume "dip\<in>dom(dests)" | |
with * have "sqn rt dip \<le> the (dests dip)" by simp | |
with \<open>Suc 0 \<le> sqn rt dip\<close> have "Suc 0 \<le> the (dests dip)" by simp | |
with \<open>dip\<in>dom(dests)\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis | |
unfolding invalidate_def sqn_def by auto | |
next | |
assume "dip\<notin>dom(dests)" | |
with \<open>Suc 0 \<le> sqn rt dip\<close> \<open>dip\<in>kD(rt)\<close> [THEN kD_Some] show ?thesis | |
unfolding invalidate_def sqn_def by auto | |
qed | |
thus ?thesis by (rule disjI2) | |
qed | |
qed | |
} note solve_invalidate [simp] = this | |
show ?thesis | |
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined] | |
onl_invariant_sterms [OF aodv_wf dests_bigger_than_sqn | |
[THEN invariant_restrict_inD]] | |
onl_invariant_sterms [OF aodv_wf osn_rreq] | |
onl_invariant_sterms [OF aodv_wf dsn_rrep] | |
simp add: proj3_inv proj2_eq_sqn) | |
qed | |
text \<open>Proposition 7.13\<close> | |
lemma rreq_rrep_sn_any_step_invariant: | |
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast rreq_rrep_sn a)" | |
proof - | |
have sqnf_kno: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
(l \<in> {PRreq-:16..PRreq-:18} \<longrightarrow> sqnf (rt \<xi>) (dip \<xi>) = kno))" | |
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined]) | |
show ?thesis | |
by (inv_cterms inv add: onl_invariant_sterms_TT [OF aodv_wf addpreRT_welldefined] | |
onl_invariant_sterms [OF aodv_wf sequence_number_one_or_bigger | |
[THEN invariant_restrict_inD]] | |
onl_invariant_sterms [OF aodv_wf kD_unk_or_atleast_one] | |
onl_invariant_sterms_TT [OF aodv_wf sqnf_kno] | |
onl_invariant_sterms [OF aodv_wf osn_rreq] | |
onl_invariant_sterms [OF aodv_wf dsn_rrep]) | |
(auto simp: proj2_eq_sqn) | |
qed | |
text \<open>Proposition 7.14\<close> | |
lemma rreq_rrep_fresh_any_step_invariant: | |
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rreq_rrep_fresh (rt \<xi>)) a)" | |
proof - | |
have rreq_oip: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
(l \<in> {PRreq-:3, PRreq-:4, PRreq-:15, PRreq-:27} | |
\<longrightarrow> oip \<xi> \<in> kD(rt \<xi>) | |
\<and> (sqn (rt \<xi>) (oip \<xi>) > (osn \<xi>) | |
\<or> (sqn (rt \<xi>) (oip \<xi>) = (osn \<xi>) | |
\<and> the (dhops (rt \<xi>) (oip \<xi>)) \<le> Suc (hops \<xi>) | |
\<and> the (flag (rt \<xi>) (oip \<xi>)) = val))))" | |
proof inv_cterms | |
fix l \<xi> l' pp p' | |
assume "(\<xi>, pp) \<in> reachable (paodv i) TT" | |
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := | |
update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk> p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp" | |
and "l' = PRreq-:3" | |
show "osn \<xi> < sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>) | |
\<or> (sqn (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>) = osn \<xi> | |
\<and> the (dhops (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>)) | |
\<le> Suc (hops \<xi>) | |
\<and> the (flag (update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})) (oip \<xi>)) | |
= val)" | |
unfolding update_def by (clarsimp split: option.split) | |
(metis linorder_neqE_nat not_less) | |
qed | |
have rrep_prrep: "paodv i \<TTurnstile> onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). | |
(l \<in> {PRrep-:2..PRrep-:7} \<longrightarrow> (dip \<xi> \<in> kD(rt \<xi>) | |
\<and> sqn (rt \<xi>) (dip \<xi>) = dsn \<xi> | |
\<and> the (dhops (rt \<xi>) (dip \<xi>)) = Suc (hops \<xi>) | |
\<and> the (flag (rt \<xi>) (dip \<xi>)) = val | |
\<and> the (nhop (rt \<xi>) (dip \<xi>)) \<in> kD (rt \<xi>))))" | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rrep_1_update_changes] | |
onl_invariant_sterms [OF aodv_wf sip_in_kD]) | |
show ?thesis | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf rreq_oip] | |
onl_invariant_sterms [OF aodv_wf rreq_dip_in_vD_dip_eq_ip] | |
onl_invariant_sterms [OF aodv_wf rrep_prrep]) | |
qed | |
text \<open>Proposition 7.15\<close> | |
lemma rerr_invalid_any_step_invariant: | |
"paodv i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), a, _). anycast (rerr_invalid (rt \<xi>)) a)" | |
proof - | |
have dests_inv: "paodv i \<TTurnstile> | |
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9, | |
PRreq-:21, PRrep-:10, PRerr-:1} | |
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>))) | |
\<and> (l \<in> {PAodv-:16..PAodv-:19} | |
\<union> {PPkt-:8..PPkt-:11} | |
\<union> {PRreq-:10..PRreq-:13} | |
\<union> {PRreq-:22..PRreq-:25} | |
\<union> {PRrep-:11..PRrep-:14} | |
\<union> {PRerr-:2..PRerr-:5} \<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>iD(rt \<xi>) | |
\<and> the (dests \<xi> ip) = sqn (rt \<xi>) ip)) | |
\<and> (l = PPkt-:14 \<longrightarrow> dip \<xi>\<in>iD(rt \<xi>)))" | |
by inv_cterms (clarsimp split: if_split_asm option.split_asm simp: domIff)+ | |
show ?thesis | |
by (inv_cterms inv add: onl_invariant_sterms [OF aodv_wf dests_inv]) | |
qed | |
text \<open>Proposition 7.16\<close> | |
text \<open> | |
Some well-definedness obligations are irrelevant for the Isabelle development: | |
\begin{enumerate} | |
\item In each routing table there is at most one entry for each destination: guaranteed by type. | |
\item In each store of queued data packets there is at most one data queue for | |
each destination: guaranteed by structure. | |
\item Whenever a set of pairs @{term "(rip, rsn)"} is assigned to the variable | |
@{term "dests"} of type @{typ "ip \<rightharpoonup> sqn"}, or to the first argument of | |
the function @{term "rerr"}, this set is a partial function, i.e., there | |
is at most one entry @{term "(rip, rsn)"} for each destination | |
@{term "rip"}: guaranteed by type. | |
\end{enumerate} | |
\<close> | |
lemma dests_vD_inc_sqn: | |
"paodv i \<TTurnstile> | |
onl \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(\<xi>, l). (l \<in> {PAodv-:15, PPkt-:7, PRreq-:9, PRreq-:21, PRrep-:10} | |
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) = inc (sqn (rt \<xi>) ip))) | |
\<and> (l = PRerr-:1 | |
\<longrightarrow> (\<forall>ip\<in>dom(dests \<xi>). ip\<in>vD(rt \<xi>) \<and> the (dests \<xi> ip) > sqn (rt \<xi>) ip)))" | |
by inv_cterms (clarsimp split: if_split_asm option.split_asm)+ | |
text \<open>Proposition 7.27\<close> | |
lemma route_tables_fresher: | |
"paodv i \<TTurnstile>\<^sub>A (recvmsg rreq_rrep_sn \<rightarrow>) onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<xi>, _), _, (\<xi>', _)). | |
\<forall>dip\<in>kD(rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>dip\<^esub> rt \<xi>')" | |
proof (inv_cterms inv add: | |
onl_invariant_sterms [OF aodv_wf dests_vD_inc_sqn [THEN invariant_restrict_inD]] | |
onl_invariant_sterms [OF aodv_wf hop_count_positive [THEN invariant_restrict_inD]] | |
onl_invariant_sterms [OF aodv_wf osn_rreq] | |
onl_invariant_sterms [OF aodv_wf dsn_rrep] | |
onl_invariant_sterms [OF aodv_wf addpreRT_welldefined [THEN invariant_restrict_inD]]) | |
fix \<xi> pp p' | |
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)" | |
and "{PRreq-:2}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk> | |
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp" | |
and "Suc 0 \<le> osn \<xi>" | |
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)" | |
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" | |
proof | |
fix ip | |
assume "ip\<in>kD (rt \<xi>)" | |
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp | |
moreover from \<open>Suc 0 \<le> osn \<xi>\<close> | |
have "update_arg_wf (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" .. | |
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (oip \<xi>) (osn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" | |
by (rule rt_fresher_update) | |
qed | |
next | |
fix \<xi> pp p' | |
assume "(\<xi>, pp) \<in> reachable (paodv i) (recvmsg rreq_rrep_sn)" | |
and "{PRrep-:1}\<lbrakk>\<lambda>\<xi>. \<xi>\<lparr>rt := update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})\<rparr>\<rbrakk> | |
p' \<in> sterms \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V pp" | |
and "Suc 0 \<le> dsn \<xi>" | |
and *: "\<forall>ip\<in>kD (rt \<xi>). Suc 0 \<le> the (dhops (rt \<xi>) ip)" | |
show "\<forall>ip\<in>kD (rt \<xi>). rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" | |
proof | |
fix ip | |
assume "ip\<in>kD (rt \<xi>)" | |
moreover with * have "1 \<le> the (dhops (rt \<xi>) ip)" by simp | |
moreover from \<open>Suc 0 \<le> dsn \<xi>\<close> | |
have "update_arg_wf (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" .. | |
ultimately show "rt \<xi> \<sqsubseteq>\<^bsub>ip\<^esub> update (rt \<xi>) (dip \<xi>) (dsn \<xi>, kno, val, Suc (hops \<xi>), sip \<xi>, {})" | |
by (rule rt_fresher_update) | |
qed | |
qed | |
end | |