Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
18.1 kB
theory ASC_Example
imports ASC_Hoare
begin
section \<open> Example product machines and properties \<close>
text \<open>
This section provides example FSMs and shows that the assumptions on the inputs of the adaptive
state counting algorithm are not vacuous.
\<close>
subsection \<open> Constructing FSMs from transition relations \<close>
text \<open>
This subsection provides a function to more easily create FSMs, only requiring a set of
transition-tuples and an initial state.
\<close>
fun from_rel :: "('state \<times> ('in \<times> 'out) \<times> 'state) set \<Rightarrow> 'state \<Rightarrow> ('in, 'out, 'state) FSM" where
"from_rel rel q0 = \<lparr> succ = \<lambda> io p . { q . (p,io,q) \<in> rel },
inputs = image (fst \<circ> fst \<circ> snd) rel,
outputs = image (snd \<circ> fst \<circ> snd) rel,
initial = q0 \<rparr>"
lemma nodes_from_rel : "nodes (from_rel rel q0) \<subseteq> insert q0 (image (snd \<circ> snd) rel)"
(is "nodes ?M \<subseteq> insert q0 (image (snd \<circ> snd) rel)")
proof -
have "\<And> q io p . q \<in> succ ?M io p \<Longrightarrow> q \<in> image (snd \<circ> snd) rel"
by force
have "\<And> q . q \<in> nodes ?M \<Longrightarrow> q = q0 \<or> q \<in> image (snd \<circ> snd) rel"
proof -
fix q assume "q \<in> nodes ?M"
then show "q = q0 \<or> q \<in> image (snd \<circ> snd) rel"
proof (cases rule: FSM.nodes.cases)
case initial
then show ?thesis by auto
next
case (execute p a)
then show ?thesis
using \<open>\<And> q io p . q \<in> succ ?M io p \<Longrightarrow> q \<in> image (snd \<circ> snd) rel\<close> by blast
qed
qed
then show "nodes ?M \<subseteq> insert q0 (image (snd \<circ> snd) rel)"
by blast
qed
fun well_formed_rel :: "('state \<times> ('in \<times> 'out) \<times> 'state) set \<Rightarrow> bool" where
"well_formed_rel rel = (finite rel
\<and> (\<forall> s1 x y . (x \<notin> image (fst \<circ> fst \<circ> snd) rel
\<or> y \<notin> image (snd \<circ> fst \<circ> snd) rel)
\<longrightarrow> \<not>(\<exists> s2 . (s1,(x,y),s2) \<in> rel))
\<and> rel \<noteq> {})"
lemma well_formed_from_rel :
assumes "well_formed_rel rel"
shows "well_formed (from_rel rel q0)" (is "well_formed ?M")
proof -
have "nodes ?M \<subseteq> insert q0 (image (snd \<circ> snd) rel)"
using nodes_from_rel[of rel q0] by auto
moreover have "finite (insert q0 (image (snd \<circ> snd) rel))"
using assms by auto
ultimately have "finite (nodes ?M)"
by (simp add: Finite_Set.finite_subset)
moreover have "finite (inputs ?M)" "finite (outputs ?M)"
using assms by auto
ultimately have "finite_FSM ?M"
by auto
moreover have "inputs ?M \<noteq> {}"
using assms by auto
moreover have "outputs ?M \<noteq> {}"
using assms by auto
moreover have "\<And> s1 x y . (x \<notin> inputs ?M \<or> y \<notin> outputs ?M) \<longrightarrow> succ ?M (x,y) s1 = {}"
using assms by auto
ultimately show ?thesis
by auto
qed
fun completely_specified_rel_over :: "('state \<times> ('in \<times> 'out) \<times> 'state) set \<Rightarrow> 'state set \<Rightarrow> bool"
where
"completely_specified_rel_over rel nods = (\<forall> s1 \<in> nods .
\<forall> x \<in> image (fst \<circ> fst \<circ> snd) rel .
\<exists> y \<in> image (snd \<circ> fst \<circ> snd) rel .
\<exists> s2 . (s1,(x,y),s2) \<in> rel)"
lemma completely_specified_from_rel :
assumes "completely_specified_rel_over rel (nodes ((from_rel rel q0)))"
shows "completely_specified (from_rel rel q0)" (is "completely_specified ?M")
unfolding completely_specified.simps
proof
fix s1 assume "s1 \<in> nodes (from_rel rel q0)"
show "\<forall>x\<in>inputs ?M. \<exists>y\<in>outputs ?M. \<exists>s2. s2 \<in> succ ?M (x, y) s1"
proof
fix x assume "x \<in> inputs (from_rel rel q0)"
then have "x \<in> image (fst \<circ> fst \<circ> snd) rel"
using assms by auto
obtain y s2 where "y \<in> image (snd \<circ> fst \<circ> snd) rel" "(s1,(x,y),s2) \<in> rel"
using assms \<open>s1 \<in> nodes (from_rel rel q0)\<close> \<open>x \<in> image (fst \<circ> fst \<circ> snd) rel\<close>
by (meson completely_specified_rel_over.elims(2))
then have "y \<in> outputs (from_rel rel q0)" "s2 \<in> succ (from_rel rel q0) (x, y) s1"
by auto
then show "\<exists>y\<in>outputs (from_rel rel q0). \<exists>s2. s2 \<in> succ (from_rel rel q0) (x, y) s1"
by blast
qed
qed
fun observable_rel :: "('state \<times> ('in \<times> 'out) \<times> 'state) set \<Rightarrow> bool" where
"observable_rel rel = (\<forall> io s1 . { s2 . (s1,io,s2) \<in> rel } = {}
\<or> (\<exists> s2 . { s2' . (s1,io,s2') \<in> rel } = {s2}))"
lemma observable_from_rel :
assumes "observable_rel rel"
shows "observable (from_rel rel q0)" (is "observable ?M")
proof -
have "\<And> io s1 . { s2 . (s1,io,s2) \<in> rel } = succ ?M io s1"
by auto
then show ?thesis using assms by auto
qed
abbreviation "OFSM_rel rel q0 \<equiv> well_formed_rel rel
\<and> completely_specified_rel_over rel (nodes (from_rel rel q0))
\<and> observable_rel rel"
lemma OFMS_from_rel :
assumes "OFSM_rel rel q0"
shows "OFSM (from_rel rel q0)"
by (metis assms completely_specified_from_rel observable_from_rel well_formed_from_rel)
subsection \<open> Example FSMs and properties \<close>
abbreviation "M\<^sub>S_rel :: (nat\<times>(nat\<times>nat)\<times>nat) set \<equiv> {(0,(0,0),1), (0,(0,1),1), (1,(0,2),1)}"
abbreviation "M\<^sub>S :: (nat,nat,nat) FSM \<equiv> from_rel M\<^sub>S_rel 0"
abbreviation "M\<^sub>I_rel :: (nat\<times>(nat\<times>nat)\<times>nat) set \<equiv> {(0,(0,0),1), (0,(0,1),1), (1,(0,2),0)}"
abbreviation "M\<^sub>I :: (nat,nat,nat) FSM \<equiv> from_rel M\<^sub>I_rel 0"
lemma example_nodes :
"nodes M\<^sub>S = {0,1}" "nodes M\<^sub>I = {0,1}"
proof -
have "0 \<in> nodes M\<^sub>S" by auto
have "1 \<in> succ M\<^sub>S (0,0) 0" by auto
have "1 \<in> nodes M\<^sub>S"
by (meson \<open>0 \<in> nodes M\<^sub>S\<close> \<open>1 \<in> succ M\<^sub>S (0, 0) 0\<close> succ_nodes)
have "{0,1} \<subseteq> nodes M\<^sub>S"
using \<open>0 \<in> nodes M\<^sub>S\<close> \<open>1 \<in> nodes M\<^sub>S\<close> by auto
moreover have "nodes M\<^sub>S \<subseteq> {0,1}"
using nodes_from_rel[of M\<^sub>S_rel 0] by auto
ultimately show "nodes M\<^sub>S = {0,1}"
by blast
next
have "0 \<in> nodes M\<^sub>I" by auto
have "1 \<in> succ M\<^sub>I (0,0) 0" by auto
have "1 \<in> nodes M\<^sub>I"
by (meson \<open>0 \<in> nodes M\<^sub>I\<close> \<open>1 \<in> succ M\<^sub>I (0, 0) 0\<close> succ_nodes)
have "{0,1} \<subseteq> nodes M\<^sub>I"
using \<open>0 \<in> nodes M\<^sub>I\<close> \<open>1 \<in> nodes M\<^sub>I\<close> by auto
moreover have "nodes M\<^sub>I \<subseteq> {0,1}"
using nodes_from_rel[of M\<^sub>I_rel 0] by auto
ultimately show "nodes M\<^sub>I = {0,1}"
by blast
qed
lemma example_OFSM :
"OFSM M\<^sub>S" "OFSM M\<^sub>I"
proof -
have "well_formed_rel M\<^sub>S_rel"
unfolding well_formed_rel.simps by auto
moreover have "completely_specified_rel_over M\<^sub>S_rel (nodes (from_rel M\<^sub>S_rel 0))"
unfolding completely_specified_rel_over.simps
proof
fix s1 assume "(s1::nat) \<in> nodes (from_rel M\<^sub>S_rel 0)"
then have "s1 \<in> (insert 0 (image (snd \<circ> snd) M\<^sub>S_rel))"
using nodes_from_rel[of M\<^sub>S_rel 0] by blast
moreover have "completely_specified_rel_over M\<^sub>S_rel (insert 0 (image (snd \<circ> snd) M\<^sub>S_rel))"
unfolding completely_specified_rel_over.simps by auto
ultimately show "\<forall>x\<in>(fst \<circ> fst \<circ> snd) ` M\<^sub>S_rel.
\<exists>y\<in>(snd \<circ> fst \<circ> snd) ` M\<^sub>S_rel. \<exists>s2. (s1, (x, y), s2) \<in> M\<^sub>S_rel"
by simp
qed
moreover have "observable_rel M\<^sub>S_rel"
by auto
ultimately have "OFSM_rel M\<^sub>S_rel 0"
by auto
then show "OFSM M\<^sub>S"
using OFMS_from_rel[of M\<^sub>S_rel 0] by linarith
next
have "well_formed_rel M\<^sub>I_rel"
unfolding well_formed_rel.simps by auto
moreover have "completely_specified_rel_over M\<^sub>I_rel (nodes (from_rel M\<^sub>I_rel 0))"
unfolding completely_specified_rel_over.simps
proof
fix s1 assume "(s1::nat) \<in> nodes (from_rel M\<^sub>I_rel 0)"
then have "s1 \<in> (insert 0 (image (snd \<circ> snd) M\<^sub>I_rel))"
using nodes_from_rel[of M\<^sub>I_rel 0] by blast
have "completely_specified_rel_over M\<^sub>I_rel (insert 0 (image (snd \<circ> snd) M\<^sub>I_rel))"
unfolding completely_specified_rel_over.simps by auto
show "\<forall>x\<in>(fst \<circ> fst \<circ> snd) ` M\<^sub>I_rel.
\<exists>y\<in>(snd \<circ> fst \<circ> snd) ` M\<^sub>I_rel. \<exists>s2. (s1, (x, y), s2) \<in> M\<^sub>I_rel"
by (meson \<open>completely_specified_rel_over M\<^sub>I_rel (insert 0 ((snd \<circ> snd) ` M\<^sub>I_rel))\<close>
\<open>s1 \<in> insert 0 ((snd \<circ> snd) ` M\<^sub>I_rel)\<close> completely_specified_rel_over.elims(2))
qed
moreover have "observable_rel M\<^sub>I_rel"
by auto
ultimately have "OFSM_rel M\<^sub>I_rel 0"
by auto
then show "OFSM M\<^sub>I"
using OFMS_from_rel[of M\<^sub>I_rel 0] by linarith
qed
lemma example_fault_domain : "asc_fault_domain M\<^sub>S M\<^sub>I 2"
proof -
have "inputs M\<^sub>S = inputs M\<^sub>I"
by auto
moreover have "card (nodes M\<^sub>I) \<le> 2"
using example_nodes(2) by auto
ultimately show "asc_fault_domain M\<^sub>S M\<^sub>I 2"
by auto
qed
abbreviation "FAIL\<^sub>I :: (nat\<times>nat) \<equiv> (3,3)"
abbreviation "PM\<^sub>I :: (nat, nat, nat\<times>nat) FSM \<equiv> \<lparr>
succ = (\<lambda> a (p1,p2) . (if (p1 \<in> nodes M\<^sub>S \<and> p2 \<in> nodes M\<^sub>I \<and> (fst a \<in> inputs M\<^sub>S)
\<and> (snd a \<in> outputs M\<^sub>S \<union> outputs M\<^sub>I))
then (if (succ M\<^sub>S a p1 = {} \<and> succ M\<^sub>I a p2 \<noteq> {})
then {FAIL\<^sub>I}
else (succ M\<^sub>S a p1 \<times> succ M\<^sub>I a p2))
else {})),
inputs = inputs M\<^sub>S,
outputs = outputs M\<^sub>S \<union> outputs M\<^sub>I,
initial = (initial M\<^sub>S, initial M\<^sub>I)
\<rparr>"
lemma example_productF : "productF M\<^sub>S M\<^sub>I FAIL\<^sub>I PM\<^sub>I"
proof -
have "inputs M\<^sub>S = inputs M\<^sub>I"
by auto
moreover have "fst FAIL\<^sub>I \<notin> nodes M\<^sub>S"
using example_nodes(1) by auto
moreover have "snd FAIL\<^sub>I \<notin> nodes M\<^sub>I"
using example_nodes(2) by auto
ultimately show ?thesis
unfolding productF.simps by blast
qed
abbreviation "V\<^sub>I :: nat list set \<equiv> {[],[0]}"
lemma example_det_state_cover : "is_det_state_cover M\<^sub>S V\<^sub>I"
proof -
have "d_reaches M\<^sub>S (initial M\<^sub>S) [] (initial M\<^sub>S)"
by auto
then have "initial M\<^sub>S \<in> d_reachable M\<^sub>S (initial M\<^sub>S)"
unfolding d_reachable.simps by blast
have "d_reached_by M\<^sub>S (initial M\<^sub>S) [0] 1 [1] [0]"
proof
show "length [0] = length [0] \<and>
length [0] = length [1] \<and> path M\<^sub>S (([0] || [0]) || [1]) (initial M\<^sub>S)
\<and> target (([0] || [0]) || [1]) (initial M\<^sub>S) = 1"
by auto
have "\<And>ys2 tr2.
length [0] = length ys2
\<and> length [0] = length tr2
\<and> path M\<^sub>S (([0] || ys2) || tr2) (initial M\<^sub>S)
\<longrightarrow> target (([0] || ys2) || tr2) (initial M\<^sub>S) = 1"
proof
fix ys2 tr2 assume "length [0] = length ys2 \<and> length [0] = length tr2
\<and> path M\<^sub>S (([0] || ys2) || tr2) (initial M\<^sub>S)"
then have "length ys2 = 1" "length tr2 = 1" "path M\<^sub>S (([0] || ys2) || tr2) (initial M\<^sub>S)"
by auto
moreover obtain y2 where "ys2 = [y2]"
using \<open>length ys2 = 1\<close>
by (metis One_nat_def \<open>length [0] = length ys2 \<and> length [0] = length tr2
\<and> path M\<^sub>S (([0] || ys2) || tr2) (initial M\<^sub>S)\<close> append.simps(1) append_butlast_last_id
butlast_snoc length_butlast length_greater_0_conv list.size(3) nat.simps(3))
moreover obtain t2 where "tr2 = [t2]"
using \<open>length tr2 = 1\<close>
by (metis One_nat_def \<open>length [0] = length ys2 \<and> length [0] = length tr2
\<and> path M\<^sub>S (([0] || ys2) || tr2) (initial M\<^sub>S)\<close> append.simps(1) append_butlast_last_id
butlast_snoc length_butlast length_greater_0_conv list.size(3) nat.simps(3))
ultimately have "path M\<^sub>S [((0,y2),t2)] (initial M\<^sub>S)"
by auto
then have "t2 \<in> succ M\<^sub>S (0,y2) (initial M\<^sub>S)"
by auto
moreover have "\<And> y . succ M\<^sub>S (0,y) (initial M\<^sub>S) \<subseteq> {1}"
by auto
ultimately have "t2 = 1"
by blast
show "target (([0] || ys2) || tr2) (initial M\<^sub>S) = 1"
using \<open>ys2 = [y2]\<close> \<open>tr2 = [t2]\<close> \<open>t2 = 1\<close> by auto
qed
then show "\<forall>ys2 tr2.
length [0] = length ys2 \<and> length [0] = length tr2
\<and> path M\<^sub>S (([0] || ys2) || tr2) (initial M\<^sub>S)
\<longrightarrow> target (([0] || ys2) || tr2) (initial M\<^sub>S) = 1"
by auto
qed
then have "d_reaches M\<^sub>S (initial M\<^sub>S) [0] 1"
unfolding d_reaches.simps by blast
then have "1 \<in> d_reachable M\<^sub>S (initial M\<^sub>S)"
unfolding d_reachable.simps by blast
then have "{0,1} \<subseteq> d_reachable M\<^sub>S (initial M\<^sub>S)"
using \<open>initial M\<^sub>S \<in> d_reachable M\<^sub>S (initial M\<^sub>S)\<close> by auto
moreover have "d_reachable M\<^sub>S (initial M\<^sub>S) \<subseteq> nodes M\<^sub>S"
proof
fix s assume "s\<in>d_reachable M\<^sub>S (initial M\<^sub>S)"
then have "s \<in> reachable M\<^sub>S (initial M\<^sub>S)"
using d_reachable_reachable by auto
then show "s \<in> nodes M\<^sub>S"
by blast
qed
ultimately have "d_reachable M\<^sub>S (initial M\<^sub>S) = {0,1}"
using example_nodes(1) by blast
fix f' :: "nat \<Rightarrow> nat list"
let ?f = "f'( 0 := [], 1 := [0])"
have "is_det_state_cover_ass M\<^sub>S ?f"
unfolding is_det_state_cover_ass.simps
proof
show "?f (initial M\<^sub>S) = []" by auto
show "\<forall>s\<in>d_reachable M\<^sub>S (initial M\<^sub>S). d_reaches M\<^sub>S (initial M\<^sub>S) (?f s) s"
proof
fix s assume "s\<in>d_reachable M\<^sub>S (initial M\<^sub>S)"
then have "s \<in> reachable M\<^sub>S (initial M\<^sub>S)"
using d_reachable_reachable by auto
then have "s \<in> nodes M\<^sub>S"
by blast
then have "s = 0 \<or> s = 1"
using example_nodes(1) by blast
then show "d_reaches M\<^sub>S (initial M\<^sub>S) (?f s) s"
proof
assume "s = 0"
then show "d_reaches M\<^sub>S (initial M\<^sub>S) (?f s) s"
using \<open>d_reaches M\<^sub>S (initial M\<^sub>S) [] (initial M\<^sub>S)\<close> by auto
next
assume "s = 1"
then show "d_reaches M\<^sub>S (initial M\<^sub>S) (?f s) s"
using \<open>d_reaches M\<^sub>S (initial M\<^sub>S) [0] 1\<close> by auto
qed
qed
qed
moreover have "V\<^sub>I = image ?f (d_reachable M\<^sub>S (initial M\<^sub>S))"
using \<open>d_reachable M\<^sub>S (initial M\<^sub>S) = {0,1}\<close> by auto
ultimately show ?thesis
unfolding is_det_state_cover.simps by blast
qed
abbreviation "\<Omega>\<^sub>I::(nat,nat) ATC set \<equiv> { Node 0 (\<lambda> y . Leaf) }"
lemma "applicable_set M\<^sub>S \<Omega>\<^sub>I"
by auto
lemma example_test_tools : "test_tools M\<^sub>S M\<^sub>I FAIL\<^sub>I PM\<^sub>I V\<^sub>I \<Omega>\<^sub>I"
using example_productF example_det_state_cover by auto
lemma OFSM_not_vacuous :
"\<exists> M :: (nat,nat,nat) FSM . OFSM M"
using example_OFSM(1) by blast
lemma fault_domain_not_vacuous :
"\<exists> (M2::(nat,nat,nat) FSM) (M1::(nat,nat,nat) FSM) m . asc_fault_domain M2 M1 m"
using example_fault_domain by blast
lemma test_tools_not_vacuous :
"\<exists> (M2::(nat,nat,nat) FSM)
(M1::(nat,nat,nat) FSM)
(FAIL::(nat\<times>nat))
(PM::(nat,nat,nat\<times>nat) FSM)
(V::(nat list set))
(\<Omega>::(nat,nat) ATC set) . test_tools M2 M1 FAIL PM V \<Omega>"
proof (rule exI, rule exI)
show "\<exists> FAIL PM V \<Omega>. test_tools M\<^sub>S M\<^sub>I FAIL PM V \<Omega>"
using example_test_tools by blast
qed
lemma precondition_not_vacuous :
shows "\<exists> (M2::(nat,nat,nat) FSM)
(M1::(nat,nat,nat) FSM)
(FAIL::(nat\<times>nat))
(PM::(nat,nat,nat\<times>nat) FSM)
(V::(nat list set))
(\<Omega>::(nat,nat) ATC set)
(m :: nat) .
OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega>"
proof (intro exI)
show "OFSM M\<^sub>I \<and> OFSM M\<^sub>S \<and> asc_fault_domain M\<^sub>S M\<^sub>I 2 \<and> test_tools M\<^sub>S M\<^sub>I FAIL\<^sub>I PM\<^sub>I V\<^sub>I \<Omega>\<^sub>I"
using example_OFSM(2,1) example_fault_domain example_test_tools by linarith
qed
end