Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory ASC_Hoare | |
imports ASC_Sufficiency "HOL-Hoare.Hoare_Logic" | |
begin | |
section \<open> Correctness of the Adaptive State Counting Algorithm in Hoare-Logic \<close> | |
text \<open> | |
In this section we give an example implementation of the adaptive state counting algorithm in a | |
simple WHILE-language and prove that this implementation produces a certain output if and only if | |
input FSM @{verbatim M1} is a reduction of input FSM @{verbatim M2}. | |
\<close> | |
lemma atc_io_reduction_on_sets_from_obs : | |
assumes "L\<^sub>i\<^sub>n M1 T \<subseteq> L\<^sub>i\<^sub>n M2 T" | |
and "(\<Union>io\<in>L\<^sub>i\<^sub>n M1 T. {io} \<times> B M1 io \<Omega>) \<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 T. {io} \<times> B M2 io \<Omega>)" | |
shows "atc_io_reduction_on_sets M1 T \<Omega> M2" | |
unfolding atc_io_reduction_on_sets.simps atc_io_reduction_on.simps | |
proof | |
fix iseq assume "iseq \<in> T" | |
have "L\<^sub>i\<^sub>n M1 {iseq} \<subseteq> L\<^sub>i\<^sub>n M2 {iseq}" | |
by (metis \<open>iseq \<in> T\<close> assms(1) bot.extremum insert_mono io_reduction_on_subset | |
mk_disjoint_insert) | |
moreover have "\<forall>io\<in>L\<^sub>i\<^sub>n M1 {iseq}. B M1 io \<Omega> \<subseteq> B M2 io \<Omega>" | |
proof | |
fix io assume "io \<in> L\<^sub>i\<^sub>n M1 {iseq}" | |
then have "io \<in> L\<^sub>i\<^sub>n M2 {iseq}" | |
using calculation by blast | |
show "B M1 io \<Omega> \<subseteq> B M2 io \<Omega> " | |
proof | |
fix x assume "x \<in> B M1 io \<Omega>" | |
have "io \<in> L\<^sub>i\<^sub>n M1 T" | |
using \<open>io \<in> L\<^sub>i\<^sub>n M1 {iseq}\<close> \<open>iseq \<in> T\<close> by auto | |
moreover have "(io,x) \<in> {io} \<times> B M1 io \<Omega>" | |
using \<open>x \<in> B M1 io \<Omega>\<close> by blast | |
ultimately have "(io,x) \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 T. {io} \<times> B M1 io \<Omega>)" | |
by blast | |
then have "(io,x) \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 T. {io} \<times> B M2 io \<Omega>)" | |
using assms(2) by blast | |
then have "(io,x) \<in> {io} \<times> B M2 io \<Omega>" | |
by blast | |
then show "x \<in> B M2 io \<Omega>" | |
by blast | |
qed | |
qed | |
ultimately show "L\<^sub>i\<^sub>n M1 {iseq} \<subseteq> L\<^sub>i\<^sub>n M2 {iseq} | |
\<and> (\<forall>io\<in>L\<^sub>i\<^sub>n M1 {iseq}. B M1 io \<Omega> \<subseteq> B M2 io \<Omega>)" | |
by linarith | |
qed | |
lemma atc_io_reduction_on_sets_to_obs : | |
assumes "atc_io_reduction_on_sets M1 T \<Omega> M2" | |
shows "L\<^sub>i\<^sub>n M1 T \<subseteq> L\<^sub>i\<^sub>n M2 T" | |
and "(\<Union>io\<in>L\<^sub>i\<^sub>n M1 T. {io} \<times> B M1 io \<Omega>) \<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 T. {io} \<times> B M2 io \<Omega>)" | |
proof | |
fix x assume "x \<in> L\<^sub>i\<^sub>n M1 T" | |
show "x \<in> L\<^sub>i\<^sub>n M2 T" | |
using assms unfolding atc_io_reduction_on_sets.simps atc_io_reduction_on.simps | |
proof - | |
assume a1: "\<forall>iseq\<in>T. L\<^sub>i\<^sub>n M1 {iseq} \<subseteq> L\<^sub>i\<^sub>n M2 {iseq} | |
\<and> (\<forall>io\<in>L\<^sub>i\<^sub>n M1 {iseq}. B M1 io \<Omega> \<subseteq> B M2 io \<Omega>)" | |
have f2: "x \<in> UNION T (language_state_for_input M1 (initial M1))" | |
by (metis (no_types) \<open>x \<in> L\<^sub>i\<^sub>n M1 T\<close> language_state_for_inputs_alt_def) | |
obtain aas :: "'a list set \<Rightarrow> ('a list \<Rightarrow> ('a \<times> 'b) list set) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> 'a list" | |
where | |
"\<forall>x0 x1 x2. (\<exists>v3. v3 \<in> x0 \<and> x2 \<in> x1 v3) = (aas x0 x1 x2 \<in> x0 \<and> x2 \<in> x1 (aas x0 x1 x2))" | |
by moura | |
then have "\<forall>ps f A. (ps \<notin> UNION A f \<or> aas A f ps \<in> A \<and> ps \<in> f (aas A f ps)) | |
\<and> (ps \<in> UNION A f \<or> (\<forall>as. as \<notin> A \<or> ps \<notin> f as))" | |
by blast | |
then show ?thesis | |
using f2 a1 by (metis (no_types) contra_subsetD language_state_for_input_alt_def | |
language_state_for_inputs_alt_def) | |
qed | |
next | |
show "(\<Union>io\<in>L\<^sub>i\<^sub>n M1 T. {io} \<times> B M1 io \<Omega>) \<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 T. {io} \<times> B M2 io \<Omega>)" | |
proof | |
fix iox assume "iox \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 T. {io} \<times> B M1 io \<Omega>)" | |
then obtain io x where "iox = (io,x)" | |
by blast | |
have "io \<in> L\<^sub>i\<^sub>n M1 T" | |
using \<open>iox = (io, x)\<close> \<open>iox \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 T. {io} \<times> B M1 io \<Omega>)\<close> by blast | |
have "(io,x) \<in> {io} \<times> B M1 io \<Omega>" | |
using \<open>iox = (io, x)\<close> \<open>iox \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 T. {io} \<times> B M1 io \<Omega>)\<close> by blast | |
then have "x \<in> B M1 io \<Omega>" | |
by blast | |
then have "x \<in> B M2 io \<Omega>" | |
using assms unfolding atc_io_reduction_on_sets.simps atc_io_reduction_on.simps | |
by (metis (no_types, lifting) UN_E \<open>io \<in> L\<^sub>i\<^sub>n M1 T\<close> language_state_for_input_alt_def | |
language_state_for_inputs_alt_def subsetCE) | |
then have "(io,x) \<in> {io} \<times>B M2 io \<Omega>" | |
by blast | |
then have "(io,x) \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 T. {io} \<times> B M2 io \<Omega>)" | |
using \<open>io \<in> L\<^sub>i\<^sub>n M1 T\<close> by auto | |
then show "iox \<in> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 T. {io} \<times> B M2 io \<Omega>)" | |
using \<open>iox = (io, x)\<close> by auto | |
qed | |
qed | |
lemma atc_io_reduction_on_sets_alt_def : | |
shows "atc_io_reduction_on_sets M1 T \<Omega> M2 = | |
(L\<^sub>i\<^sub>n M1 T \<subseteq> L\<^sub>i\<^sub>n M2 T | |
\<and> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 T. {io} \<times> B M1 io \<Omega>) | |
\<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 T. {io} \<times> B M2 io \<Omega>))" | |
using atc_io_reduction_on_sets_to_obs[of M1 T \<Omega> M2] | |
and atc_io_reduction_on_sets_from_obs[of M1 T M2 \<Omega>] | |
by blast | |
lemma asc_algorithm_correctness: | |
"VARS tsN cN rmN obs obsI obs\<^sub>\<Omega> obsI\<^sub>\<Omega> iter isReduction | |
{ | |
OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega> | |
} | |
tsN := {}; | |
cN := V; | |
rmN := {}; | |
obs := L\<^sub>i\<^sub>n M2 cN; | |
obsI := L\<^sub>i\<^sub>n M1 cN; | |
obs\<^sub>\<Omega> := (\<Union>io\<in>L\<^sub>i\<^sub>n M2 cN. {io} \<times> B M2 io \<Omega>); | |
obsI\<^sub>\<Omega> := (\<Union>io\<in>L\<^sub>i\<^sub>n M1 cN. {io} \<times> B M1 io \<Omega>); | |
iter := 1; | |
WHILE (cN \<noteq> {} \<and> obsI \<subseteq> obs \<and> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>) | |
INV { | |
0 < iter | |
\<and> tsN = TS M2 M1 \<Omega> V m (iter-1) | |
\<and> cN = C M2 M1 \<Omega> V m iter | |
\<and> rmN = RM M2 M1 \<Omega> V m (iter-1) | |
\<and> obs = L\<^sub>i\<^sub>n M2 (tsN \<union> cN) | |
\<and> obsI = L\<^sub>i\<^sub>n M1 (tsN \<union> cN) | |
\<and> obs\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>) | |
\<and> obsI\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>) | |
\<and> OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega> | |
} | |
DO | |
iter := iter + 1; | |
rmN := {xs' \<in> cN . | |
(\<not> (L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'})) | |
\<or> (\<forall> io \<in> L\<^sub>i\<^sub>n M1 {xs'} . | |
(\<exists> V'' \<in> N io M1 V . | |
(\<exists> S1 . | |
(\<exists> vs xs . | |
io = (vs@xs) | |
\<and> mcp (vs@xs) V'' vs | |
\<and> S1 \<subseteq> nodes M2 | |
\<and> (\<forall> s1 \<in> S1 . \<forall> s2 \<in> S1 . | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall> io1 \<in> RP M2 s1 vs xs V'' . | |
\<forall> io2 \<in> RP M2 s2 vs xs V'' . | |
B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega> )) | |
\<and> m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'' ))))}; | |
tsN := tsN \<union> cN; | |
cN := append_set (cN - rmN) (inputs M2) - tsN; | |
obs := obs \<union> L\<^sub>i\<^sub>n M2 cN; | |
obsI := obsI \<union> L\<^sub>i\<^sub>n M1 cN; | |
obs\<^sub>\<Omega> := obs\<^sub>\<Omega> \<union> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 cN. {io} \<times> B M2 io \<Omega>); | |
obsI\<^sub>\<Omega> := obsI\<^sub>\<Omega> \<union> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 cN. {io} \<times> B M1 io \<Omega>) | |
OD; | |
isReduction := ((obsI \<subseteq> obs) \<and> (obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>)) | |
{ | |
isReduction = M1 \<preceq> M2 \<comment>\<open>variable isReduction is used only as a return value, | |
it is true if and only if M1 is a reduction of M2\<close> | |
}" | |
proof (vcg) | |
assume precond : "OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega>" | |
have "{} = TS M2 M1 \<Omega> V m (1-1)" | |
"V = C M2 M1 \<Omega> V m 1" | |
"{} = RM M2 M1 \<Omega> V m (1-1)" | |
"L\<^sub>i\<^sub>n M2 V = L\<^sub>i\<^sub>n M2 ({} \<union> V)" | |
"L\<^sub>i\<^sub>n M1 V = L\<^sub>i\<^sub>n M1 ({} \<union> V)" | |
"(\<Union>io\<in>L\<^sub>i\<^sub>n M2 V. {io} \<times> B M2 io \<Omega>) | |
= (\<Union>io\<in>L\<^sub>i\<^sub>n M2 ({} \<union> V). {io} \<times> B M2 io \<Omega>)" | |
"(\<Union>io\<in>L\<^sub>i\<^sub>n M1 V. {io} \<times> B M1 io \<Omega>) | |
= (\<Union>io\<in>L\<^sub>i\<^sub>n M1 ({} \<union> V). {io} \<times> B M1 io \<Omega>)" | |
using precond by auto | |
moreover have "OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega> " | |
using precond by assumption | |
ultimately show "0 < (1::nat) \<and> | |
{} = TS M2 M1 \<Omega> V m (1 - 1) \<and> | |
V = C M2 M1 \<Omega> V m 1 \<and> | |
{} = RM M2 M1 \<Omega> V m (1 - 1) \<and> | |
L\<^sub>i\<^sub>n M2 V = L\<^sub>i\<^sub>n M2 ({} \<union> V) \<and> | |
L\<^sub>i\<^sub>n M1 V = L\<^sub>i\<^sub>n M1 ({} \<union> V) \<and> | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M2 V. {io} \<times> B M2 io \<Omega>) | |
= (\<Union>io\<in>L\<^sub>i\<^sub>n M2 ({} \<union> V). {io} \<times> B M2 io \<Omega>) \<and> | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M1 V. {io} \<times> B M1 io \<Omega>) | |
= (\<Union>io\<in>L\<^sub>i\<^sub>n M1 ({} \<union> V). {io} \<times> B M1 io \<Omega>) \<and> | |
OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega>" | |
by linarith+ | |
next | |
fix tsN cN rmN obs obsI obs\<^sub>\<Omega> obsI\<^sub>\<Omega> iter isReduction | |
assume precond : "(0 < iter \<and> | |
tsN = TS M2 M1 \<Omega> V m (iter - 1) \<and> | |
cN = C M2 M1 \<Omega> V m iter \<and> | |
rmN = RM M2 M1 \<Omega> V m (iter - 1) \<and> | |
obs = L\<^sub>i\<^sub>n M2 (tsN \<union> cN) \<and> | |
obsI = L\<^sub>i\<^sub>n M1 (tsN \<union> cN) \<and> | |
obs\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>) \<and> | |
obsI\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>) \<and> | |
OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega>) | |
\<and> cN \<noteq> {} \<and> obsI \<subseteq> obs \<and> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>" | |
then have "0 < iter" | |
"OFSM M1" | |
"OFSM M2" | |
"asc_fault_domain M2 M1 m" | |
"test_tools M2 M1 FAIL PM V \<Omega>" | |
"cN \<noteq> {}" | |
"obsI \<subseteq> obs" | |
"tsN = TS M2 M1 \<Omega> V m (iter-1)" | |
"cN = C M2 M1 \<Omega> V m iter" | |
"rmN = RM M2 M1 \<Omega> V m (iter-1)" | |
"obs = L\<^sub>i\<^sub>n M2 (tsN \<union> cN)" | |
"obsI = L\<^sub>i\<^sub>n M1 (tsN \<union> cN)" | |
"obs\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>)" | |
"obsI\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>)" | |
by linarith+ | |
obtain k where "iter = Suc k" | |
using gr0_implies_Suc[OF \<open>0 < iter\<close>] by blast | |
then have "cN = C M2 M1 \<Omega> V m (Suc k)" | |
"tsN = TS M2 M1 \<Omega> V m k" | |
using \<open>cN = C M2 M1 \<Omega> V m iter\<close> \<open>tsN = TS M2 M1 \<Omega> V m (iter-1)\<close> by auto | |
have "TS M2 M1 \<Omega> V m iter = TS M2 M1 \<Omega> V m (Suc k)" | |
"C M2 M1 \<Omega> V m iter = C M2 M1 \<Omega> V m (Suc k)" | |
"RM M2 M1 \<Omega> V m iter = RM M2 M1 \<Omega> V m (Suc k)" | |
using \<open>iter = Suc k\<close> by presburger+ | |
have rmN_calc[simp] : "{xs' \<in> cN. | |
\<not> io_reduction_on M1 {xs'} M2 \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. \<forall>io2\<in>RP M2 s2 vs xs V''. | |
B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')} = | |
RM M2 M1 \<Omega> V m iter" | |
proof - | |
have "{xs' \<in> cN. | |
\<not> io_reduction_on M1 {xs'} M2 \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. \<forall>io2\<in>RP M2 s2 vs xs V''. | |
B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')} = | |
{xs' \<in> C M2 M1 \<Omega> V m (Suc k). | |
\<not> io_reduction_on M1 {xs'} M2 \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. \<forall>io2\<in>RP M2 s2 vs xs V''. | |
B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs ((TS M2 M1 \<Omega> V m k) \<union> V) S1 \<Omega> V'')}" | |
using \<open>cN = C M2 M1 \<Omega> V m (Suc k)\<close> \<open>tsN = TS M2 M1 \<Omega> V m k\<close> by blast | |
moreover have "{xs' \<in> C M2 M1 \<Omega> V m (Suc k). | |
\<not> io_reduction_on M1 {xs'} M2 \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. \<forall>io2\<in>RP M2 s2 vs xs V''. | |
B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs ((TS M2 M1 \<Omega> V m k) \<union> V) S1 \<Omega> V'')} = | |
RM M2 M1 \<Omega> V m (Suc k)" | |
using RM.simps(2)[of M2 M1 \<Omega> V m k] by blast | |
ultimately have "{xs' \<in> cN. | |
\<not> io_reduction_on M1 {xs'} M2 \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. \<forall>io2\<in>RP M2 s2 vs xs V''. | |
B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')} = | |
RM M2 M1 \<Omega> V m (Suc k)" | |
by presburger | |
then show ?thesis | |
using \<open>iter = Suc k\<close> by presburger | |
qed | |
moreover have "RM M2 M1 \<Omega> V m iter = RM M2 M1 \<Omega> V m (iter + 1 - 1)" by simp | |
ultimately have rmN_calc' : "{xs' \<in> cN. | |
\<not> io_reduction_on M1 {xs'} M2 \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. \<forall>io2\<in>RP M2 s2 vs xs V''. | |
B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')} = | |
RM M2 M1 \<Omega> V m (iter + 1 - 1)" by presburger | |
have "tsN \<union> cN = TS M2 M1 \<Omega> V m (Suc k)" | |
proof (cases k) | |
case 0 | |
then show ?thesis | |
using \<open>tsN = TS M2 M1 \<Omega> V m k\<close> \<open>cN = C M2 M1 \<Omega> V m (Suc k)\<close> by auto | |
next | |
case (Suc nat) | |
then have "TS M2 M1 \<Omega> V m (Suc k) = TS M2 M1 \<Omega> V m k \<union> C M2 M1 \<Omega> V m (Suc k)" | |
using TS.simps(3) by blast | |
moreover have "tsN \<union> cN = TS M2 M1 \<Omega> V m k \<union> C M2 M1 \<Omega> V m (Suc k)" | |
using \<open>tsN = TS M2 M1 \<Omega> V m k\<close> \<open>cN = C M2 M1 \<Omega> V m (Suc k)\<close> by auto | |
ultimately show ?thesis | |
by auto | |
qed | |
then have tsN_calc : "tsN \<union> cN = TS M2 M1 \<Omega> V m iter" | |
using \<open>iter = Suc k\<close> by presburger | |
have cN_calc : "append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> io_reduction_on M1 {xs'} M2 \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN) = | |
C M2 M1 \<Omega> V m (iter + 1)" | |
proof - | |
have "append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> io_reduction_on M1 {xs'} M2 \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN) = | |
append_set | |
((C M2 M1 \<Omega> V m iter) - | |
(RM M2 M1 \<Omega> V m iter)) | |
(inputs M2) - | |
(TS M2 M1 \<Omega> V m iter) " | |
using \<open>cN = C M2 M1 \<Omega> V m iter\<close> \<open>tsN \<union> cN = TS M2 M1 \<Omega> V m iter\<close> rmN_calc by presburger | |
moreover have "append_set | |
((C M2 M1 \<Omega> V m iter) - | |
(RM M2 M1 \<Omega> V m iter)) | |
(inputs M2) - | |
(TS M2 M1 \<Omega> V m iter) = C M2 M1 \<Omega> V m (iter + 1)" | |
proof - | |
have "C M2 M1 \<Omega> V m (iter + 1) = C M2 M1 \<Omega> V m ((Suc k) + 1)" | |
using \<open>iter = Suc k\<close> by presburger+ | |
moreover have "(Suc k) + 1 = Suc (Suc k)" | |
by simp | |
ultimately have "C M2 M1 \<Omega> V m (iter + 1) = C M2 M1 \<Omega> V m (Suc (Suc k))" | |
by presburger | |
have "C M2 M1 \<Omega> V m (Suc (Suc k)) | |
= append_set (C M2 M1 \<Omega> V m (Suc k) - RM M2 M1 \<Omega> V m (Suc k)) (inputs M2) | |
- TS M2 M1 \<Omega> V m (Suc k)" | |
using C.simps(3)[of M2 M1 \<Omega> V m k] by linarith | |
show ?thesis | |
using Suc_eq_plus1 | |
\<open>C M2 M1 \<Omega> V m (Suc (Suc k)) | |
= append_set (C M2 M1 \<Omega> V m (Suc k) - RM M2 M1 \<Omega> V m (Suc k)) (inputs M2) | |
- TS M2 M1 \<Omega> V m (Suc k)\<close> | |
\<open>iter = Suc k\<close> | |
by presburger | |
qed | |
ultimately show ?thesis | |
by presburger | |
qed | |
have obs_calc : "obs \<union> | |
L\<^sub>i\<^sub>n M2 | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)) = | |
L\<^sub>i\<^sub>n M2 | |
(tsN \<union> cN \<union> | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)))" | |
proof - | |
have "\<And>A. L\<^sub>i\<^sub>n M2 (tsN \<union> cN \<union> A) = obs \<union> L\<^sub>i\<^sub>n M2 A" | |
by (metis (no_types) language_state_for_inputs_union precond) | |
then show ?thesis | |
by blast | |
qed | |
have obsI_calc : "obsI \<union> | |
L\<^sub>i\<^sub>n M1 | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)) = | |
L\<^sub>i\<^sub>n M1 | |
(tsN \<union> cN \<union> | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)))" | |
proof - | |
have "\<And>A. L\<^sub>i\<^sub>n M1 (tsN \<union> cN \<union> A) = obsI \<union> L\<^sub>i\<^sub>n M1 A" | |
by (metis (no_types) language_state_for_inputs_union precond) | |
then show ?thesis | |
by blast | |
qed | |
have obs\<^sub>\<Omega>_calc : "obs\<^sub>\<Omega> \<union> | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M2 | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)). | |
{io} \<times> B M2 io \<Omega>) = | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M2 | |
(tsN \<union> cN \<union> | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN))). | |
{io} \<times> B M2 io \<Omega>)" | |
using \<open>obs = L\<^sub>i\<^sub>n M2 (tsN \<union> cN)\<close> | |
\<open>obs\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>)\<close> | |
obs_calc | |
by blast | |
have obsI\<^sub>\<Omega>_calc : "obsI\<^sub>\<Omega> \<union> | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M1 | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)). | |
{io} \<times> B M1 io \<Omega>) = | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M1 | |
(tsN \<union> cN \<union> | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN))). | |
{io} \<times> B M1 io \<Omega>)" | |
using \<open>obsI = L\<^sub>i\<^sub>n M1 (tsN \<union> cN)\<close> | |
\<open>obsI\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>)\<close> | |
obsI_calc | |
by blast | |
have "0 < iter + 1" | |
using \<open>0 < iter\<close> by simp | |
have "tsN \<union> cN = TS M2 M1 \<Omega> V m (iter + 1 - 1)" | |
using tsN_calc by simp | |
from \<open>0 < iter + 1\<close> | |
\<open>tsN \<union> cN = TS M2 M1 \<Omega> V m (iter + 1 - 1)\<close> | |
cN_calc | |
rmN_calc' | |
obs_calc | |
obsI_calc | |
obs\<^sub>\<Omega>_calc | |
obsI\<^sub>\<Omega>_calc | |
\<open>OFSM M1\<close> | |
\<open>OFSM M2\<close> | |
\<open>asc_fault_domain M2 M1 m\<close> | |
\<open>test_tools M2 M1 FAIL PM V \<Omega>\<close> | |
show "0 < iter + 1 \<and> | |
tsN \<union> cN = TS M2 M1 \<Omega> V m (iter + 1 - 1) \<and> | |
append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN) = | |
C M2 M1 \<Omega> V m (iter + 1) \<and> | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. \<forall>io2\<in>RP M2 s2 vs xs V''. | |
B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')} = | |
RM M2 M1 \<Omega> V m (iter + 1 - 1) \<and> | |
obs \<union> | |
L\<^sub>i\<^sub>n M2 | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)) = | |
L\<^sub>i\<^sub>n M2 | |
(tsN \<union> cN \<union> | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN))) \<and> | |
obsI \<union> | |
L\<^sub>i\<^sub>n M1 | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)) = | |
L\<^sub>i\<^sub>n M1 | |
(tsN \<union> cN \<union> | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN))) \<and> | |
obs\<^sub>\<Omega> \<union> | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M2 | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)). | |
{io} \<times> B M2 io \<Omega>) = | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M2 | |
(tsN \<union> cN \<union> | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN))). | |
{io} \<times> B M2 io \<Omega>) \<and> | |
obsI\<^sub>\<Omega> \<union> | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M1 | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN)). | |
{io} \<times> B M1 io \<Omega>) = | |
(\<Union>io\<in>L\<^sub>i\<^sub>n M1 | |
(tsN \<union> cN \<union> | |
(append_set | |
(cN - | |
{xs' \<in> cN. | |
\<not> L\<^sub>i\<^sub>n M1 {xs'} \<subseteq> L\<^sub>i\<^sub>n M2 {xs'} \<or> | |
(\<forall>io\<in>L\<^sub>i\<^sub>n M1 {xs'}. | |
\<exists>V''\<in>N io M1 V. | |
\<exists>S1 vs xs. | |
io = vs @ xs \<and> | |
mcp (vs @ xs) V'' vs \<and> | |
S1 \<subseteq> nodes M2 \<and> | |
(\<forall>s1\<in>S1. | |
\<forall>s2\<in>S1. | |
s1 \<noteq> s2 \<longrightarrow> | |
(\<forall>io1\<in>RP M2 s1 vs xs V''. | |
\<forall>io2\<in>RP M2 s2 vs xs V''. B M1 io1 \<Omega> \<noteq> B M1 io2 \<Omega>)) \<and> | |
m < LB M2 M1 vs xs (tsN \<union> V) S1 \<Omega> V'')}) | |
(inputs M2) - | |
(tsN \<union> cN))). | |
{io} \<times> B M1 io \<Omega>) \<and> | |
OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega>" | |
by linarith | |
next | |
fix tsN cN rmN obs obsI obs\<^sub>\<Omega> obsI\<^sub>\<Omega> iter isReduction | |
assume precond : "(0 < iter \<and> | |
tsN = TS M2 M1 \<Omega> V m (iter - 1) \<and> | |
cN = C M2 M1 \<Omega> V m iter \<and> | |
rmN = RM M2 M1 \<Omega> V m (iter - 1) \<and> | |
obs = L\<^sub>i\<^sub>n M2 (tsN \<union> cN) \<and> | |
obsI = L\<^sub>i\<^sub>n M1 (tsN \<union> cN) \<and> | |
obs\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>) \<and> | |
obsI\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>) \<and> | |
OFSM M1 \<and> OFSM M2 \<and> asc_fault_domain M2 M1 m \<and> test_tools M2 M1 FAIL PM V \<Omega>) \<and> | |
\<not> (cN \<noteq> {} \<and> obsI \<subseteq> obs \<and> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>)" | |
then have "0 < iter" | |
"OFSM M1" | |
"OFSM M2" | |
"asc_fault_domain M2 M1 m" | |
"test_tools M2 M1 FAIL PM V \<Omega>" | |
"cN = {} \<or> \<not> obsI \<subseteq> obs \<or> \<not> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>" | |
"tsN = TS M2 M1 \<Omega> V m (iter-1)" | |
"cN = C M2 M1 \<Omega> V m iter" | |
"rmN = RM M2 M1 \<Omega> V m (iter-1)" | |
"obs = L\<^sub>i\<^sub>n M2 (tsN \<union> cN)" | |
"obsI = L\<^sub>i\<^sub>n M1 (tsN \<union> cN)" | |
"obs\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>)" | |
"obsI\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>)" | |
by linarith+ | |
show "(obsI \<subseteq> obs \<and> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>) = M1 \<preceq> M2" | |
proof (cases "cN = {}") | |
case True | |
then have "C M2 M1 \<Omega> V m iter = {}" | |
using \<open>cN = C M2 M1 \<Omega> V m iter\<close> by auto | |
have "is_det_state_cover M2 V" | |
using \<open>test_tools M2 M1 FAIL PM V \<Omega>\<close> by auto | |
then have "[] \<in> V" | |
using det_state_cover_initial[of M2 V] by simp | |
then have "V \<noteq> {}" | |
by blast | |
have "Suc 0 < iter" | |
proof (rule ccontr) | |
assume "\<not> Suc 0 < iter" | |
then have "iter = Suc 0" | |
using \<open>0 < iter\<close> by auto | |
then have "C M2 M1 \<Omega> V m (Suc 0) = {}" | |
using \<open>C M2 M1 \<Omega> V m iter = {}\<close> by auto | |
moreover have "C M2 M1 \<Omega> V m (Suc 0) = V" | |
by auto | |
ultimately show"False" | |
using \<open>V \<noteq> {}\<close> by blast | |
qed | |
obtain k where "iter = Suc k" | |
using gr0_implies_Suc[OF \<open>0 < iter\<close>] by blast | |
then have "Suc 0 < Suc k" | |
using \<open>Suc 0 < iter\<close> by auto | |
then have "0 < k" | |
by simp | |
then obtain k' where "k = Suc k'" | |
using gr0_implies_Suc by blast | |
have "iter = Suc (Suc k')" | |
using \<open>iter = Suc k\<close> \<open>k = Suc k'\<close> by simp | |
have "TS M2 M1 \<Omega> V m (Suc (Suc k')) = TS M2 M1 \<Omega> V m (Suc k') \<union> C M2 M1 \<Omega> V m (Suc (Suc k'))" | |
using TS.simps(3)[of M2 M1 \<Omega> V m k'] by blast | |
then have "TS M2 M1 \<Omega> V m iter = TS M2 M1 \<Omega> V m (Suc k')" | |
using True \<open>cN = C M2 M1 \<Omega> V m iter\<close> \<open>iter = Suc (Suc k')\<close> by blast | |
moreover have "Suc k' = iter - 1" | |
using \<open>iter = Suc (Suc k')\<close> by presburger | |
ultimately have "TS M2 M1 \<Omega> V m iter = TS M2 M1 \<Omega> V m (iter - 1)" | |
by auto | |
then have "tsN = TS M2 M1 \<Omega> V m iter" | |
using \<open>tsN = TS M2 M1 \<Omega> V m (iter-1)\<close> by simp | |
then have "TS M2 M1 \<Omega> V m iter = TS M2 M1 \<Omega> V m (iter - 1)" | |
using \<open>tsN = TS M2 M1 \<Omega> V m (iter - 1)\<close> by auto | |
then have "final_iteration M2 M1 \<Omega> V m (iter-1)" | |
using \<open>0 < iter\<close> by auto | |
have "M1 \<preceq> M2 = atc_io_reduction_on_sets M1 tsN \<Omega> M2" | |
using asc_main_theorem[OF \<open>OFSM M1\<close> \<open>OFSM M2\<close> | |
\<open>asc_fault_domain M2 M1 m\<close> | |
\<open>test_tools M2 M1 FAIL PM V \<Omega>\<close> | |
\<open>final_iteration M2 M1 \<Omega> V m (iter-1)\<close>] | |
using \<open>tsN = TS M2 M1 \<Omega> V m (iter - 1)\<close> | |
by blast | |
moreover have "tsN \<union> cN = tsN" | |
using \<open>cN = {}\<close> by blast | |
ultimately have "M1 \<preceq> M2 = atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2" | |
by presburger | |
have "obsI \<subseteq> obs \<equiv> L\<^sub>i\<^sub>n M1 (tsN \<union> cN) \<subseteq> L\<^sub>i\<^sub>n M2 (tsN \<union> cN)" | |
by (simp add: \<open>obs = L\<^sub>i\<^sub>n M2 (tsN \<union> cN)\<close> \<open>obsI = L\<^sub>i\<^sub>n M1 (tsN \<union> cN)\<close>) | |
have "obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega> \<equiv> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>) | |
\<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>)" | |
by (simp add: \<open>obsI\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>)\<close> | |
\<open>obs\<^sub>\<Omega> = (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>)\<close>) | |
have "(obsI \<subseteq> obs \<and> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>) = atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2" | |
proof | |
assume "obsI \<subseteq> obs \<and> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>" | |
show "atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2" | |
using atc_io_reduction_on_sets_from_obs[of M1 "tsN \<union> cN" M2 \<Omega>] | |
using \<open>obsI \<subseteq> obs \<and> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>\<close> \<open>obsI \<subseteq> obs \<equiv> L\<^sub>i\<^sub>n M1 (tsN \<union> cN) \<subseteq> L\<^sub>i\<^sub>n M2 (tsN \<union> cN)\<close> | |
\<open>obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega> \<equiv> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>) | |
\<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>)\<close> | |
by linarith | |
next | |
assume "atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2" | |
show "obsI \<subseteq> obs \<and> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>" | |
using atc_io_reduction_on_sets_to_obs[of M1 \<open>tsN \<union> cN\<close> \<Omega> M2] | |
\<open>atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2\<close> | |
\<open>obsI \<subseteq> obs \<equiv> L\<^sub>i\<^sub>n M1 (tsN \<union> cN) \<subseteq> L\<^sub>i\<^sub>n M2 (tsN \<union> cN)\<close> | |
\<open>obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega> \<equiv> (\<Union>io\<in>L\<^sub>i\<^sub>n M1 (tsN \<union> cN). {io} \<times> B M1 io \<Omega>) | |
\<subseteq> (\<Union>io\<in>L\<^sub>i\<^sub>n M2 (tsN \<union> cN). {io} \<times> B M2 io \<Omega>)\<close> | |
by blast | |
qed | |
then show ?thesis | |
using \<open>M1 \<preceq> M2 = atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2\<close> by linarith | |
next | |
case False | |
then have "\<not> obsI \<subseteq> obs \<or> \<not> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>" | |
using \<open>cN = {} \<or> \<not> obsI \<subseteq> obs \<or> \<not> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>\<close> by auto | |
have "\<not> atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2" | |
using atc_io_reduction_on_sets_to_obs[of M1 "tsN \<union> cN" \<Omega> M2] | |
\<open>\<not> obsI \<subseteq> obs \<or> \<not> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>\<close> precond | |
by fastforce | |
have "\<not> M1 \<preceq> M2" | |
proof | |
assume "M1 \<preceq> M2" | |
have "atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2" | |
using asc_soundness[OF \<open>OFSM M1\<close> \<open>OFSM M2\<close>] \<open>M1 \<preceq> M2\<close> by blast | |
then show "False" | |
using \<open>\<not> atc_io_reduction_on_sets M1 (tsN \<union> cN) \<Omega> M2\<close> by blast | |
qed | |
then show ?thesis | |
using \<open>\<not> obsI \<subseteq> obs \<or> \<not> obsI\<^sub>\<Omega> \<subseteq> obs\<^sub>\<Omega>\<close> by blast | |
qed | |
qed | |
end |