Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Joshua Schneider, ETH Zurich *) | |
subsection \<open>Option\<close> | |
theory Applicative_Option imports | |
Applicative | |
"HOL-Library.Adhoc_Overloading" | |
begin | |
fun ap_option :: "('a \<Rightarrow> 'b) option \<Rightarrow> 'a option \<Rightarrow> 'b option" | |
where | |
"ap_option (Some f) (Some x) = Some (f x)" | |
| "ap_option _ _ = None" | |
abbreviation (input) pure_option :: "'a \<Rightarrow> 'a option" | |
where "pure_option \<equiv> Some" | |
adhoc_overloading Applicative.pure pure_option | |
adhoc_overloading Applicative.ap ap_option | |
lemma some_ap_option: "ap_option (Some f) x = map_option f x" | |
by (cases x) simp_all | |
lemma ap_some_option: "ap_option f (Some x) = map_option (\<lambda>g. g x) f" | |
by (cases f) simp_all | |
lemma ap_option_transfer[transfer_rule]: | |
"rel_fun (rel_option (rel_fun A B)) (rel_fun (rel_option A) (rel_option B)) ap_option ap_option" | |
by(auto elim!: option.rel_cases simp add: rel_fun_def) | |
applicative option (C, W) | |
for | |
pure: Some | |
ap: ap_option | |
rel: rel_option | |
set: set_option | |
proof - | |
include applicative_syntax | |
{ fix x :: "'a option" | |
show "pure (\<lambda>x. x) \<diamondop> x = x" by (cases x) simp_all | |
next | |
fix g :: "('b \<Rightarrow> 'c) option" and f :: "('a \<Rightarrow> 'b) option" and x | |
show "pure (\<lambda>g f x. g (f x)) \<diamondop> g \<diamondop> f \<diamondop> x = g \<diamondop> (f \<diamondop> x)" | |
by (cases g f x rule: option.exhaust[case_product option.exhaust, case_product option.exhaust]) simp_all | |
next | |
fix f :: "('b \<Rightarrow> 'a \<Rightarrow> 'c) option" and x y | |
show "pure (\<lambda>f x y. f y x) \<diamondop> f \<diamondop> x \<diamondop> y = f \<diamondop> y \<diamondop> x" | |
by (cases f x y rule: option.exhaust[case_product option.exhaust, case_product option.exhaust]) simp_all | |
next | |
fix f :: "('a \<Rightarrow> 'a \<Rightarrow> 'b) option" and x | |
show "pure (\<lambda>f x. f x x) \<diamondop> f \<diamondop> x = f \<diamondop> x \<diamondop> x" | |
by (cases f x rule: option.exhaust[case_product option.exhaust]) simp_all | |
next | |
fix R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | |
show "rel_fun R (rel_option R) pure pure" by transfer_prover | |
next | |
fix R and f :: "('a \<Rightarrow> 'b) option" and g :: "('a \<Rightarrow> 'c) option" and x | |
assume [transfer_rule]: "rel_option (rel_fun (eq_on (set_option x)) R) f g" | |
have [transfer_rule]: "rel_option (eq_on (set_option x)) x x" by (auto intro: option.rel_refl_strong) | |
show "rel_option R (f \<diamondop> x) (g \<diamondop> x)" by transfer_prover | |
} | |
qed (simp add: some_ap_option ap_some_option) | |
lemma map_option_ap_conv[applicative_unfold]: "map_option f x = ap_option (pure f) x" | |
by (cases x rule: option.exhaust) simp_all | |
no_adhoc_overloading Applicative.pure pure_option \<comment> \<open>We do not want to print all occurrences of @{const "Some"} as @{const "pure"}\<close> | |
end | |