Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Joshua Schneider, ETH Zurich *) | |
section \<open>Formalisation of idiomatic terms and lifting\<close> | |
subsection \<open>Immediate joinability under a relation\<close> | |
theory Joinable | |
imports Main | |
begin | |
subsubsection \<open>Definition and basic properties\<close> | |
definition joinable :: "('a \<times> 'b) set \<Rightarrow> ('a \<times> 'a) set" | |
where "joinable R = {(x, y). \<exists>z. (x, z) \<in> R \<and> (y, z) \<in> R}" | |
lemma joinable_simp: "(x, y) \<in> joinable R \<longleftrightarrow> (\<exists>z. (x, z) \<in> R \<and> (y, z) \<in> R)" | |
unfolding joinable_def by simp | |
lemma joinableI: "(x, z) \<in> R \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, y) \<in> joinable R" | |
unfolding joinable_simp by blast | |
lemma joinableD: "(x, y) \<in> joinable R \<Longrightarrow> \<exists>z. (x, z) \<in> R \<and> (y, z) \<in> R" | |
unfolding joinable_simp . | |
lemma joinableE: | |
assumes "(x, y) \<in> joinable R" | |
obtains z where "(x, z) \<in> R" and "(y, z) \<in> R" | |
using assms unfolding joinable_simp by blast | |
lemma refl_on_joinable: "refl_on {x. \<exists>y. (x, y) \<in> R} (joinable R)" | |
by (auto intro!: refl_onI simp only: joinable_simp) | |
lemma refl_joinable_iff: "(\<forall>x. \<exists>y. (x, y) \<in> R) = refl (joinable R)" | |
by (auto intro!: refl_onI dest: refl_onD simp add: joinable_simp) | |
lemma refl_joinable: "refl R \<Longrightarrow> refl (joinable R)" | |
using refl_joinable_iff by (blast dest: refl_onD) | |
lemma joinable_refl: "refl R \<Longrightarrow> (x, x) \<in> joinable R" | |
using refl_joinable by (blast dest: refl_onD) | |
lemma sym_joinable: "sym (joinable R)" | |
by (auto intro!: symI simp only: joinable_simp) | |
lemma joinable_sym: "(x, y) \<in> joinable R \<Longrightarrow> (y, x) \<in> joinable R" | |
using sym_joinable by (rule symD) | |
lemma joinable_mono: "R \<subseteq> S \<Longrightarrow> joinable R \<subseteq> joinable S" | |
by (rule subrelI) (auto simp only: joinable_simp) | |
lemma refl_le_joinable: | |
assumes "refl R" | |
shows "R \<subseteq> joinable R" | |
proof (rule subrelI) | |
fix x y | |
assume "(x, y) \<in> R" | |
moreover from \<open>refl R\<close> have "(y, y) \<in> R" by (blast dest: refl_onD) | |
ultimately show "(x, y) \<in> joinable R" by (rule joinableI) | |
qed | |
lemma joinable_subst: | |
assumes R_subst: "\<And>x y. (x, y) \<in> R \<Longrightarrow> (P x, P y) \<in> R" | |
assumes joinable: "(x, y) \<in> joinable R" | |
shows "(P x, P y) \<in> joinable R" | |
proof - | |
from joinable obtain z where xz: "(x, z) \<in> R" and yz: "(y, z) \<in> R" by (rule joinableE) | |
from R_subst xz have "(P x, P z) \<in> R" . | |
moreover from R_subst yz have "(P y, P z) \<in> R" . | |
ultimately show ?thesis by (rule joinableI) | |
qed | |
subsubsection \<open>Confluence\<close> | |
definition confluent :: "'a rel \<Rightarrow> bool" | |
where "confluent R \<longleftrightarrow> (\<forall>x y y'. (x, y) \<in> R \<and> (x, y') \<in> R \<longrightarrow> (y, y') \<in> joinable R)" | |
lemma confluentI: | |
"(\<And>x y y'. (x, y) \<in> R \<Longrightarrow> (x, y') \<in> R \<Longrightarrow> \<exists>z. (y, z) \<in> R \<and> (y', z) \<in> R) \<Longrightarrow> confluent R" | |
unfolding confluent_def by (blast intro: joinableI) | |
lemma confluentD: | |
"confluent R \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (x,y') \<in> R \<Longrightarrow> (y, y') \<in> joinable R" | |
unfolding confluent_def by blast | |
lemma confluentE: | |
assumes "confluent R" and "(x, y) \<in> R" and "(x, y') \<in> R" | |
obtains z where "(y, z) \<in> R" and "(y', z) \<in> R" | |
using assms unfolding confluent_def by (blast elim: joinableE) | |
lemma trans_joinable: | |
assumes "trans R" and "confluent R" | |
shows "trans (joinable R)" | |
proof (rule transI) | |
fix x y z | |
assume "(x, y) \<in> joinable R" | |
then obtain u where xu: "(x, u) \<in> R" and yu: "(y, u) \<in> R" by (rule joinableE) | |
assume "(y, z) \<in> joinable R" | |
then obtain v where yv: "(y, v) \<in> R" and zv: "(z, v) \<in> R" by (rule joinableE) | |
from yu yv \<open>confluent R\<close> obtain w where uw: "(u, w) \<in> R" and vw: "(v, w) \<in> R" | |
by (blast elim: confluentE) | |
from xu uw \<open>trans R\<close> have "(x, w) \<in> R" by (blast elim: transE) | |
moreover from zv vw \<open>trans R\<close> have "(z, w) \<in> R" by (blast elim: transE) | |
ultimately show "(x, z) \<in> joinable R" by (rule joinableI) | |
qed | |
subsubsection \<open>Relation to reflexive transitive symmetric closure\<close> | |
lemma joinable_le_rtscl: "joinable (R\<^sup>*) \<subseteq> (R \<union> R\<inverse>)\<^sup>*" | |
proof (rule subrelI) | |
fix x y | |
assume "(x, y) \<in> joinable (R\<^sup>*)" | |
then obtain z where xz: "(x, z) \<in> R\<^sup>*" and yz: "(y,z) \<in> R\<^sup>*" by (rule joinableE) | |
from xz have "(x, z) \<in> (R \<union> R\<inverse>)\<^sup>*" by (blast intro: in_rtrancl_UnI) | |
moreover from yz have "(z, y) \<in> (R \<union> R\<inverse>)\<^sup>*" by (blast intro: in_rtrancl_UnI rtrancl_converseI) | |
ultimately show "(x, y) \<in> (R \<union> R\<inverse>)\<^sup>*" by (rule rtrancl_trans) | |
qed | |
theorem joinable_eq_rtscl: | |
assumes "confluent (R\<^sup>*)" | |
shows "joinable (R\<^sup>*) = (R \<union> R\<inverse>)\<^sup>*" | |
proof | |
show "joinable (R\<^sup>*) \<subseteq> (R \<union> R\<inverse>)\<^sup>*" using joinable_le_rtscl . | |
next | |
show "joinable (R\<^sup>*) \<supseteq> (R \<union> R\<inverse>)\<^sup>*" proof (rule subrelI) | |
fix x y | |
assume "(x, y) \<in> (R \<union> R\<inverse>)\<^sup>*" | |
thus "(x, y) \<in> joinable (R\<^sup>*)" proof (induction set: rtrancl) | |
case base | |
show "(x, x) \<in> joinable (R\<^sup>*)" using joinable_refl refl_rtrancl . | |
next | |
case (step y z) | |
have "R \<subseteq> joinable (R\<^sup>*)" using refl_le_joinable refl_rtrancl by fast | |
with \<open>(y, z) \<in> R \<union> R\<inverse>\<close> have "(y, z) \<in> joinable (R\<^sup>*)" using joinable_sym by fast | |
with \<open>(x, y) \<in> joinable (R\<^sup>*)\<close> show "(x, z) \<in> joinable (R\<^sup>*)" | |
using trans_joinable trans_rtrancl \<open>confluent (R\<^sup>*)\<close> by (blast dest: transD) | |
qed | |
qed | |
qed | |
subsubsection \<open>Predicate version\<close> | |
definition joinablep :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" | |
where "joinablep P x y \<longleftrightarrow> (\<exists>z. P x z \<and> P y z)" | |
lemma joinablep_joinable[pred_set_conv]: | |
"joinablep (\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> joinable R)" | |
by (fastforce simp only: joinablep_def joinable_simp) | |
lemma reflp_joinablep: "reflp P \<Longrightarrow> reflp (joinablep P)" | |
by (blast intro: reflpI joinable_refl[to_pred] refl_onI[to_pred] dest: reflpD) | |
lemma joinablep_refl: "reflp P \<Longrightarrow> joinablep P x x" | |
using reflp_joinablep by (rule reflpD) | |
lemma reflp_le_joinablep: "reflp P \<Longrightarrow> P \<le> joinablep P" | |
by (blast intro!: refl_le_joinable[to_pred] refl_onI[to_pred] dest: reflpD) | |
end | |