Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Bernoulli.thy | |
Author: Lukas Bulwahn <lukas.bulwahn-at-gmail.com> | |
Author: Manuel Eberl <manuel@pruvisto.org> | |
*) | |
section \<open>Bernoulli numbers\<close> | |
theory Bernoulli | |
imports Complex_Main | |
begin | |
subsection \<open>Preliminaries\<close> | |
lemma power_numeral_reduce: "a ^ numeral n = a * a ^ pred_numeral n" | |
by (simp only: numeral_eq_Suc power_Suc) | |
lemma fact_diff_Suc: "n < Suc m \<Longrightarrow> fact (Suc m - n) = of_nat (Suc m - n) * fact (m - n)" | |
by (subst fact_reduce) auto | |
lemma of_nat_binomial_Suc: | |
assumes "k \<le> n" | |
shows "(of_nat (Suc n choose k) :: 'a :: field_char_0) = | |
of_nat (Suc n) / of_nat (Suc n - k) * of_nat (n choose k)" | |
using assms by (simp add: binomial_fact divide_simps fact_diff_Suc of_nat_diff del: of_nat_Suc) | |
lemma integrals_eq: | |
assumes "f 0 = g 0" | |
assumes "\<And> x. ((\<lambda>x. f x - g x) has_real_derivative 0) (at x)" | |
shows "f x = g x" | |
proof - | |
show "f x = g x" | |
proof (cases "x \<noteq> 0") | |
case True | |
from assms DERIV_const_ratio_const[OF this, of "\<lambda>x. f x - g x" 0] | |
show ?thesis by auto | |
qed (simp add: assms) | |
qed | |
lemma sum_diff: "((\<Sum>i\<le>n::nat. f (i + 1) - f i)::'a::field) = f (n + 1) - f 0" | |
by (induct n) (auto simp add: field_simps) | |
lemma Rats_sum: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<rat>) \<Longrightarrow> sum f A \<in> \<rat>" | |
by (induction A rule: infinite_finite_induct) simp_all | |
subsection \<open>Bernoulli Numbers and Bernoulli Polynomials\<close> | |
declare sum.cong [fundef_cong] | |
fun bernoulli :: "nat \<Rightarrow> real" | |
where | |
"bernoulli 0 = (1::real)" | |
| "bernoulli (Suc n) = (-1 / (n + 2)) * (\<Sum>k \<le> n. ((n + 2 choose k) * bernoulli k))" | |
declare bernoulli.simps[simp del] | |
lemmas bernoulli_0 [simp] = bernoulli.simps(1) | |
lemmas bernoulli_Suc = bernoulli.simps(2) | |
lemma bernoulli_1 [simp]: "bernoulli 1 = -1/2" by (simp add: bernoulli_Suc) | |
lemma bernoulli_Suc_0 [simp]: "bernoulli (Suc 0) = -1/2" by (simp add: bernoulli_Suc) | |
text \<open> | |
The ``normal'' Bernoulli numbers are the negative Bernoulli numbers $B_n^{-}$ we just defined | |
(so called because $B_1^{-} = -\frac{1}{2}$). There is also another convention, the | |
positive Bernoulli numbers $B_n^{+}$, which differ from the negative ones only in that | |
$B_1^{+} = \frac{1}{2}$. Both conventions have their justification, since a number of theorems | |
are easier to state with one than the other. | |
\<close> | |
definition bernoulli' where | |
"bernoulli' n = (if n = 1 then 1/2 else bernoulli n)" | |
lemma bernoulli'_0 [simp]: "bernoulli' 0 = 1" by (simp add: bernoulli'_def) | |
lemma bernoulli'_1 [simp]: "bernoulli' (Suc 0) = 1/2" | |
by (simp add: bernoulli'_def) | |
lemma bernoulli_conv_bernoulli': "n \<noteq> 1 \<Longrightarrow> bernoulli n = bernoulli' n" | |
by (simp add: bernoulli'_def) | |
lemma bernoulli'_conv_bernoulli: "n \<noteq> 1 \<Longrightarrow> bernoulli' n = bernoulli n" | |
by (simp add: bernoulli'_def) | |
lemma bernoulli_conv_bernoulli'_if: | |
"n \<noteq> 1 \<Longrightarrow> bernoulli n = (if n = 1 then -1/2 else bernoulli' n)" | |
by (simp add: bernoulli'_def) | |
lemma bernoulli_in_Rats: "bernoulli n \<in> \<rat>" | |
proof (induction n rule: less_induct) | |
case (less n) | |
thus ?case | |
by (cases n) (auto simp: bernoulli_Suc intro!: Rats_sum Rats_divide) | |
qed | |
lemma bernoulli'_in_Rats: "bernoulli' n \<in> \<rat>" | |
by (simp add: bernoulli'_def bernoulli_in_Rats) | |
definition bernpoly :: "nat \<Rightarrow> 'a \<Rightarrow> 'a :: real_algebra_1" where | |
"bernpoly n = (\<lambda>x. \<Sum>k \<le> n. of_nat (n choose k) * of_real (bernoulli k) * x ^ (n - k))" | |
lemma bernpoly_altdef: | |
"bernpoly n = (\<lambda>x. \<Sum>k\<le>n. of_nat (n choose k) * of_real (bernoulli (n - k)) * x ^ k)" | |
proof | |
fix x :: 'a | |
have "bernpoly n x = (\<Sum>k\<le>n. of_nat (n choose (n - k)) * | |
of_real (bernoulli (n - k)) * x ^ (n - (n - k)))" | |
unfolding bernpoly_def by (rule sum.reindex_bij_witness[of _ "\<lambda>k. n - k" "\<lambda>k. n - k"]) simp_all | |
also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * of_real (bernoulli (n - k)) * x ^ k)" | |
by (intro sum.cong refl) (simp_all add: binomial_symmetric [symmetric]) | |
finally show "bernpoly n x = \<dots>" . | |
qed | |
lemma bernoulli_Suc': | |
"bernoulli (Suc n) = -1/(real n + 2) * (\<Sum>k\<le>n. real (n + 2 choose (k + 2)) * bernoulli (n - k))" | |
proof - | |
have "bernoulli (Suc n) = - 1 / (real n + 2) * (\<Sum>k\<le>n. real (n + 2 choose k) * bernoulli k)" | |
unfolding bernoulli.simps .. | |
also have "(\<Sum>k\<le>n. real (n + 2 choose k) * bernoulli k) = | |
(\<Sum>k\<le>n. real (n + 2 choose (n - k)) * bernoulli (n - k))" | |
by (rule sum.reindex_bij_witness[of _ "\<lambda>k. n - k" "\<lambda>k. n - k"]) simp_all | |
also have "\<dots> = (\<Sum>k\<le>n. real (n + 2 choose (k + 2)) * bernoulli (n - k))" | |
by (intro sum.cong refl, subst binomial_symmetric) simp_all | |
finally show ?thesis . | |
qed | |
subsection \<open>Basic Observations on Bernoulli Polynomials\<close> | |
lemma bernpoly_0 [simp]: "bernpoly n 0 = (of_real (bernoulli n) :: 'a :: real_algebra_1)" | |
proof (cases n) | |
case 0 | |
then show "bernpoly n 0 = of_real (bernoulli n)" | |
unfolding bernpoly_def bernoulli.simps by auto | |
next | |
case (Suc n') | |
have "(\<Sum>k\<le>n'. of_nat (Suc n' choose k) * of_real (bernoulli k) * 0 ^ (Suc n' - k)) = (0::'a)" | |
proof (intro sum.neutral ballI) | |
fix k assume "k \<in> {..n'}" | |
thus "of_nat (Suc n' choose k) * of_real (bernoulli k) * (0::'a) ^ (Suc n' - k) = 0" | |
by (cases "Suc n' - k") auto | |
qed | |
with Suc show ?thesis | |
unfolding bernpoly_def by simp | |
qed | |
lemma continuous_on_bernpoly [continuous_intros]: | |
"continuous_on A (bernpoly n :: 'a \<Rightarrow> 'a :: real_normed_algebra_1)" | |
unfolding bernpoly_def by (auto intro!: continuous_intros) | |
lemma isCont_bernpoly [continuous_intros]: | |
"isCont (bernpoly n :: 'a \<Rightarrow> 'a :: real_normed_algebra_1) x" | |
unfolding bernpoly_def by (auto intro!: continuous_intros) | |
lemma has_field_derivative_bernpoly: | |
"(bernpoly (Suc n) has_field_derivative | |
(of_nat (n + 1) * bernpoly n x :: 'a :: real_normed_field)) (at x)" | |
proof - | |
have "(bernpoly (Suc n) has_field_derivative | |
(\<Sum>k\<le>n. of_nat (Suc n - k) * x ^ (n - k) * (of_nat (Suc n choose k) * | |
of_real (bernoulli k)))) (at x)" (is "(_ has_field_derivative ?D) _") | |
unfolding bernpoly_def by (rule DERIV_cong) (fast intro!: derivative_intros, simp) | |
also have "?D = of_nat (n + 1) * bernpoly n x" unfolding bernpoly_def | |
by (subst sum_distrib_left, intro sum.cong refl, subst of_nat_binomial_Suc) simp_all | |
ultimately show ?thesis by (auto simp del: of_nat_Suc One_nat_def) | |
qed | |
lemmas has_field_derivative_bernpoly' [derivative_intros] = | |
DERIV_chain'[OF _ has_field_derivative_bernpoly] | |
lemma sum_binomial_times_bernoulli: | |
"(\<Sum>k\<le>n. ((Suc n) choose k) * bernoulli k) = (if n = 0 then 1 else 0)" | |
proof (cases n) | |
case (Suc m) | |
then show ?thesis | |
by (simp add: bernoulli_Suc) | |
(simp add: field_simps add_2_eq_Suc'[symmetric] del: add_2_eq_Suc add_2_eq_Suc') | |
qed simp_all | |
lemma sum_binomial_times_bernoulli': | |
"(\<Sum>k<n. real (n choose k) * bernoulli k) = (if n = 1 then 1 else 0)" | |
proof (cases n) | |
case (Suc m) | |
have "(\<Sum>k<n. real (n choose k) * bernoulli k) = | |
(\<Sum>k\<le>m. real (Suc m choose k) * bernoulli k)" | |
unfolding Suc lessThan_Suc_atMost .. | |
also have "\<dots> = (if n = 1 then 1 else 0)" | |
by (subst sum_binomial_times_bernoulli) (simp add: Suc) | |
finally show ?thesis . | |
qed simp_all | |
lemma binomial_unroll: | |
"n > 0 \<Longrightarrow> (n choose k) = (if k = 0 then 1 else (n - 1) choose (k - 1) + ((n - 1) choose k))" | |
by (auto simp add: gr0_conv_Suc) | |
lemma sum_unroll: | |
"(\<Sum>k\<le>n::nat. f k) = (if n = 0 then f 0 else f n + (\<Sum>k\<le>n - 1. f k))" | |
by (cases n) (simp_all add: add_ac) | |
lemma bernoulli_unroll: | |
"n > 0 \<Longrightarrow> bernoulli n = - 1 / (real n + 1) * (\<Sum>k\<le>n - 1. real (n + 1 choose k) * bernoulli k)" | |
by (cases n) (simp add: bernoulli_Suc)+ | |
lemmas bernoulli_unroll_all = binomial_unroll bernoulli_unroll sum_unroll bernpoly_def | |
lemma bernpoly_1_1: "bernpoly 1 1 = of_real (1/2)" | |
proof - | |
have *: "(1 :: 'a) = of_real 1" by simp | |
have "bernpoly 1 (1::'a) = 1 - of_real (1 / 2)" | |
by (simp add: bernoulli_unroll_all) | |
also have "\<dots> = of_real (1 - 1 / 2)" | |
by (simp only: * of_real_diff) | |
also have "1 - 1 / 2 = (1 / 2 :: real)" | |
by simp | |
finally show ?thesis . | |
qed | |
subsection \<open>Sum of Powers with Bernoulli Polynomials\<close> | |
(* TODO: Generalisation not possible here because mean-value theorem | |
is only available for reals *) | |
lemma diff_bernpoly: | |
fixes x :: real | |
shows "bernpoly n (x + 1) - bernpoly n x = of_nat n * x ^ (n - 1)" | |
proof (induct n arbitrary: x) | |
case 0 | |
show ?case unfolding bernpoly_def by auto | |
next | |
case (Suc n) | |
have "bernpoly (Suc n) (0 + 1) - bernpoly (Suc n) (0 :: real) = | |
(\<Sum>k\<le>n. of_real (real (Suc n choose k) * bernoulli k))" | |
unfolding bernpoly_0 unfolding bernpoly_def by simp | |
also have "\<dots> = of_nat (Suc n) * 0 ^ n" | |
by (simp only: of_real_sum [symmetric] sum_binomial_times_bernoulli) simp | |
finally have const: "bernpoly (Suc n) (0 + 1) - bernpoly (Suc n) 0 = \<dots>" | |
by simp | |
have hyps': "of_nat (Suc n) * bernpoly n (x + 1) - | |
of_nat (Suc n) * bernpoly n x = | |
of_nat n * of_nat (Suc n) * x ^ (n - Suc 0)" for x :: real | |
unfolding right_diff_distrib[symmetric] | |
by (subst Suc) (simp_all add: algebra_simps) | |
have "((\<lambda>x. bernpoly (Suc n) (x + 1) - bernpoly (Suc n) x - of_nat (Suc n) * x ^ n) | |
has_field_derivative 0) (at x)" for x :: real | |
by (rule derivative_eq_intros refl)+ (insert hyps'[of x], simp add: algebra_simps) | |
from integrals_eq[OF const this] show ?case by simp | |
qed | |
lemma bernpoly_of_real: "bernpoly n (of_real x) = of_real (bernpoly n x)" | |
by (simp add: bernpoly_def) | |
lemma bernpoly_1: | |
assumes "n \<noteq> 1" | |
shows "bernpoly n 1 = of_real (bernoulli n)" | |
proof - | |
have "bernpoly n 1 = bernoulli n" | |
proof (cases "n \<ge> 2") | |
case False | |
with assms have "n = 0" by auto | |
thus ?thesis by (simp add: bernpoly_def) | |
next | |
case True | |
with diff_bernpoly[of n 0] show ?thesis | |
by (simp add: power_0_left bernpoly_0) | |
qed | |
hence "bernpoly n (of_real 1) = of_real (bernoulli n)" | |
by (simp only: bernpoly_of_real) | |
thus ?thesis by simp | |
qed | |
lemma bernpoly_1': "bernpoly n 1 = of_real (bernoulli' n)" | |
using bernpoly_1_1 [where ?'a = 'a] | |
by (cases "n = 1") (simp_all add: bernpoly_1 bernoulli'_def) | |
theorem sum_of_powers: | |
"(\<Sum>k\<le>n::nat. (real k) ^ m) = (bernpoly (Suc m) (n + 1) - bernpoly (Suc m) 0) / (m + 1)" | |
proof - | |
from diff_bernpoly[of "Suc m", simplified] have "(m + (1::real)) * (\<Sum>k\<le>n. (real k) ^ m) = (\<Sum>k\<le>n. bernpoly (Suc m) (real k + 1) - bernpoly (Suc m) (real k))" | |
by (auto simp add: sum_distrib_left intro!: sum.cong) | |
also have "... = (\<Sum>k\<le>n. bernpoly (Suc m) (real (k + 1)) - bernpoly (Suc m) (real k))" | |
by (simp add: add_ac) | |
also have "... = bernpoly (Suc m) (n + 1) - bernpoly (Suc m) 0" | |
by (simp only: sum_diff[where f="\<lambda>k. bernpoly (Suc m) (real k)"]) simp | |
finally show ?thesis by (auto simp add: field_simps intro!: eq_divide_imp) | |
qed | |
lemma sum_of_powers_nat_aux: | |
assumes "real a = b / c" "real b' = b" "real c' = c" | |
shows "a = b' div c'" | |
proof (cases "c = 0") | |
case False | |
with assms have "real (a * c') = real b'" by (simp add: field_simps) | |
hence "b' = a * c'" by (subst (asm) of_nat_eq_iff) simp | |
with False assms show ?thesis by simp | |
qed (insert assms, simp_all) | |
subsection \<open>Instances for Square And Cubic Numbers\<close> | |
theorem sum_of_squares: "real (\<Sum>k\<le>n::nat. k ^ 2) = real (2 * n ^ 3 + 3 * n ^ 2 + n) / 6" | |
by (simp only: of_nat_sum of_nat_power sum_of_powers) | |
(simp add: bernoulli_unroll_all field_simps power2_eq_square power_numeral_reduce) | |
corollary sum_of_squares_nat: "(\<Sum>k\<le>n::nat. k ^ 2) = (2 * n ^ 3 + 3 * n ^ 2 + n) div 6" | |
by (rule sum_of_powers_nat_aux[OF sum_of_squares]) simp_all | |
theorem sum_of_cubes: "real (\<Sum>k\<le>n::nat. k ^ 3) = real (n ^ 2 + n) ^ 2 / 4" | |
by (simp only: of_nat_sum of_nat_power sum_of_powers) | |
(simp add: bernoulli_unroll_all field_simps power2_eq_square power_numeral_reduce) | |
corollary sum_of_cubes_nat: "(\<Sum>k\<le>n::nat. k ^ 3) = (n ^ 2 + n) ^ 2 div 4" | |
by (rule sum_of_powers_nat_aux[OF sum_of_cubes]) simp_all | |
end | |