Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: InternalEquivalence | |
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2019 | |
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu> | |
*) | |
section "Internal Equivalences" | |
theory InternalEquivalence | |
imports Bicategory | |
begin | |
text \<open> | |
An \emph{internal equivalence} in a bicategory consists of antiparallel 1-cells \<open>f\<close> and \<open>g\<close> | |
together with invertible 2-cells \<open>\<guillemotleft>\<eta> : src f \<Rightarrow> g \<star> f\<guillemotright>\<close> and \<open>\<guillemotleft>\<epsilon> : f \<star> g \<Rightarrow> src g\<guillemotright>\<close>. | |
Objects in a bicategory are said to be \emph{equivalent} if they are connected by an | |
internal equivalence. | |
In this section we formalize the definition of internal equivalence and the related notions | |
``equivalence map'' and ``equivalent objects'', and we establish some basic facts about | |
these notions. | |
\<close> | |
subsection "Definition of Equivalence" | |
text \<open> | |
The following locale is defined to prove some basic facts about an equivalence | |
(or an adjunction) in a bicategory that are ``syntactic'' in the sense that they depend | |
only on the configuration (source, target, domain, codomain) of the arrows | |
involved and not on further properties such as the triangle identities (for adjunctions) | |
or assumptions about invertibility (for equivalences). Proofs about adjunctions and | |
equivalences become more automatic once we have introduction and simplification rules in | |
place about this syntax. | |
\<close> | |
locale adjunction_data_in_bicategory = | |
bicategory + | |
fixes f :: 'a | |
and g :: 'a | |
and \<eta> :: 'a | |
and \<epsilon> :: 'a | |
assumes ide_left [simp]: "ide f" | |
and ide_right [simp]: "ide g" | |
and unit_in_vhom: "\<guillemotleft>\<eta> : src f \<Rightarrow> g \<star> f\<guillemotright>" | |
and counit_in_vhom: "\<guillemotleft>\<epsilon> : f \<star> g \<Rightarrow> src g\<guillemotright>" | |
begin | |
(* | |
* TODO: It is difficult to orient the following equations to make them useful as | |
* default simplifications, so they have to be cited explicitly where they are used. | |
*) | |
lemma antipar (*[simp]*): | |
shows "trg g = src f" and "src g = trg f" | |
apply (metis counit_in_vhom hseqE ideD(1) ide_right src.preserves_reflects_arr | |
vconn_implies_hpar(3)) | |
by (metis arrI not_arr_null seq_if_composable src.preserves_reflects_arr | |
unit_in_vhom vconn_implies_hpar(1) vconn_implies_hpar(3)) | |
lemma counit_in_hom [intro]: | |
shows "\<guillemotleft>\<epsilon> : trg f \<rightarrow> trg f\<guillemotright>" and "\<guillemotleft>\<epsilon> : f \<star> g \<Rightarrow> trg f\<guillemotright>" | |
using counit_in_vhom vconn_implies_hpar antipar by auto | |
lemma unit_in_hom [intro]: | |
shows "\<guillemotleft>\<eta> : src f \<rightarrow> src f\<guillemotright>" and "\<guillemotleft>\<eta> : src f \<Rightarrow> g \<star> f\<guillemotright>" | |
using unit_in_vhom vconn_implies_hpar antipar by auto | |
lemma unit_simps [simp]: | |
shows "arr \<eta>" and "dom \<eta> = src f" and "cod \<eta> = g \<star> f" | |
and "src \<eta> = src f" and "trg \<eta> = src f" | |
using unit_in_hom antipar by auto | |
lemma counit_simps [simp]: | |
shows "arr \<epsilon>" and "dom \<epsilon> = f \<star> g" and "cod \<epsilon> = trg f" | |
and "src \<epsilon> = trg f" and "trg \<epsilon> = trg f" | |
using counit_in_hom antipar by auto | |
text \<open> | |
The expressions found in the triangle identities for an adjunction come up | |
relatively frequently, so it is useful to have established some basic facts | |
about them, even if the triangle identities themselves have not actually been | |
introduced as assumptions in the current context. | |
\<close> | |
lemma triangle_in_hom: | |
shows "\<guillemotleft>(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) : f \<star> src f \<Rightarrow> trg f \<star> f\<guillemotright>" | |
and "\<guillemotleft>(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) : trg g \<star> g \<Rightarrow> g \<star> src g\<guillemotright>" | |
and "\<guillemotleft>\<l>[f] \<cdot> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[f] : f \<Rightarrow> f\<guillemotright>" | |
and "\<guillemotleft>\<r>[g] \<cdot> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g] : g \<Rightarrow> g\<guillemotright>" | |
using antipar by auto | |
lemma triangle_equiv_form: | |
shows "(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f] \<longleftrightarrow> | |
\<l>[f] \<cdot> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[f] = f" | |
and "(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g] \<longleftrightarrow> | |
\<r>[g] \<cdot> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g] = g" | |
proof - | |
show "(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f] \<longleftrightarrow> | |
\<l>[f] \<cdot> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[f] = f" | |
proof | |
assume 1: "(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]" | |
have "\<l>[f] \<cdot> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[f] = | |
\<l>[f] \<cdot> ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)) \<cdot> \<r>\<^sup>-\<^sup>1[f]" | |
using comp_assoc by simp | |
also have "... = \<l>[f] \<cdot> (\<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]) \<cdot> \<r>\<^sup>-\<^sup>1[f]" | |
using 1 by simp | |
also have "... = f" | |
using comp_assoc comp_arr_inv' comp_inv_arr' iso_lunit iso_runit | |
comp_arr_dom comp_cod_arr | |
by simp | |
finally show "\<l>[f] \<cdot> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[f] = f" | |
by simp | |
next | |
assume 2: "\<l>[f] \<cdot> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[f] = f" | |
have "\<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f] = \<l>\<^sup>-\<^sup>1[f] \<cdot> f \<cdot> \<r>[f]" | |
using comp_cod_arr by simp | |
also have "... = (\<l>\<^sup>-\<^sup>1[f] \<cdot> \<l>[f]) \<cdot> ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)) \<cdot> (\<r>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f])" | |
using 2 comp_assoc by (metis (no_types, lifting)) | |
also have "... = (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)" | |
using comp_arr_inv' comp_inv_arr' iso_lunit iso_runit comp_arr_dom comp_cod_arr | |
hseqI' antipar | |
by (metis ide_left in_homE lunit_simps(4) runit_simps(4) triangle_in_hom(1)) | |
finally show "(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]" | |
by simp | |
qed | |
show "(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g] \<longleftrightarrow> | |
\<r>[g] \<cdot> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g] = g" | |
proof | |
assume 1: "(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]" | |
have "\<r>[g] \<cdot> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g] = | |
\<r>[g] \<cdot> ((g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g)) \<cdot> \<l>\<^sup>-\<^sup>1[g]" | |
using comp_assoc by simp | |
also have "... = \<r>[g] \<cdot> (\<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]) \<cdot> \<l>\<^sup>-\<^sup>1[g]" | |
using 1 by simp | |
also have "... = g" | |
using comp_assoc comp_arr_inv' comp_inv_arr' iso_lunit iso_runit | |
comp_arr_dom comp_cod_arr | |
by simp | |
finally show "\<r>[g] \<cdot> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g] = g" | |
by simp | |
next | |
assume 2: "\<r>[g] \<cdot> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g] = g" | |
have "\<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g] = \<r>\<^sup>-\<^sup>1[g] \<cdot> g \<cdot> \<l>[g]" | |
using comp_cod_arr by simp | |
also have "... = \<r>\<^sup>-\<^sup>1[g] \<cdot> (\<r>[g] \<cdot> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g]) \<cdot> \<l>[g]" | |
using 2 by simp | |
also have "... = (\<r>\<^sup>-\<^sup>1[g] \<cdot> \<r>[g]) \<cdot> ((g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g)) \<cdot> (\<l>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g])" | |
using comp_assoc by simp | |
also have "... = (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g)" | |
using comp_arr_inv' comp_inv_arr' iso_lunit iso_runit comp_arr_dom comp_cod_arr | |
hseqI' antipar | |
by (metis ide_right in_homE lunit_simps(4) runit_simps(4) triangle_in_hom(2)) | |
finally show "(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]" | |
by simp | |
qed | |
qed | |
end | |
locale equivalence_in_bicategory = | |
adjunction_data_in_bicategory + | |
assumes unit_is_iso [simp]: "iso \<eta>" | |
and counit_is_iso [simp]: "iso \<epsilon>" | |
begin | |
lemma dual_equivalence: | |
shows "equivalence_in_bicategory V H \<a> \<i> src trg g f (inv \<epsilon>) (inv \<eta>)" | |
using antipar by unfold_locales auto | |
end | |
abbreviation (in bicategory) internal_equivalence | |
where "internal_equivalence f g \<phi> \<psi> \<equiv> equivalence_in_bicategory V H \<a> \<i> src trg f g \<phi> \<psi>" | |
subsection "Quasi-Inverses and Equivalence Maps" | |
text \<open> | |
Antiparallel 1-cells \<open>f\<close> and \<open>g\<close> are \emph{quasi-inverses} if they can be extended to | |
an internal equivalence. We will use the term \emph{equivalence map} to refer to a 1-cell | |
that has a quasi-inverse. | |
\<close> | |
context bicategory | |
begin | |
definition quasi_inverses | |
where "quasi_inverses f g \<equiv> \<exists>\<phi> \<psi>. internal_equivalence f g \<phi> \<psi>" | |
lemma quasi_inversesI: | |
assumes "ide f" and "ide g" | |
and "src f \<cong> g \<star> f" and "f \<star> g \<cong> trg f" | |
shows "quasi_inverses f g" | |
proof (unfold quasi_inverses_def) | |
have 1: "src g = trg f" | |
using assms ideD(1) isomorphic_implies_ide(2) by blast | |
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : src f \<Rightarrow> g \<star> f\<guillemotright> \<and> iso \<phi>" | |
using assms isomorphic_def by auto | |
obtain \<psi> where \<psi>: "\<guillemotleft>\<psi> : f \<star> g \<Rightarrow> trg f\<guillemotright> \<and> iso \<psi>" | |
using assms isomorphic_def by auto | |
have "equivalence_in_bicategory V H \<a> \<i> src trg f g \<phi> \<psi>" | |
using assms 1 \<phi> \<psi> by unfold_locales auto | |
thus "\<exists>\<phi> \<psi>. internal_equivalence f g \<phi> \<psi>" by auto | |
qed | |
lemma quasi_inversesE: | |
assumes "quasi_inverses f g" | |
and "\<lbrakk>ide f; ide g; src f \<cong> g \<star> f; f \<star> g \<cong> trg f\<rbrakk> \<Longrightarrow> T" | |
shows T | |
proof - | |
obtain \<phi> \<psi> where \<phi>\<psi>: "internal_equivalence f g \<phi> \<psi>" | |
using assms quasi_inverses_def by auto | |
interpret \<phi>\<psi>: equivalence_in_bicategory V H \<a> \<i> src trg f g \<phi> \<psi> | |
using \<phi>\<psi> by simp | |
have "ide f \<and> ide g" | |
by simp | |
moreover have "src f \<cong> g \<star> f" | |
using isomorphic_def \<phi>\<psi>.unit_in_hom by auto | |
moreover have "f \<star> g \<cong> trg f" | |
using isomorphic_def \<phi>\<psi>.counit_in_hom by auto | |
ultimately show T | |
using assms by blast | |
qed | |
lemma quasi_inverse_unique: | |
assumes "quasi_inverses f g" and "quasi_inverses f g'" | |
shows "isomorphic g g'" | |
proof - | |
obtain \<phi> \<psi> where \<phi>\<psi>: "internal_equivalence f g \<phi> \<psi>" | |
using assms quasi_inverses_def by auto | |
interpret \<phi>\<psi>: equivalence_in_bicategory V H \<a> \<i> src trg f g \<phi> \<psi> | |
using \<phi>\<psi> by simp | |
obtain \<phi>' \<psi>' where \<phi>'\<psi>': "internal_equivalence f g' \<phi>' \<psi>'" | |
using assms quasi_inverses_def by auto | |
interpret \<phi>'\<psi>': equivalence_in_bicategory V H \<a> \<i> src trg f g' \<phi>' \<psi>' | |
using \<phi>'\<psi>' by simp | |
have "\<guillemotleft>\<r>[g'] \<cdot> (g' \<star> \<psi>) \<cdot> \<a>[g', f, g] \<cdot> (\<phi>' \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g] : g \<Rightarrow> g'\<guillemotright>" | |
using \<phi>\<psi>.unit_in_hom \<phi>\<psi>.unit_is_iso \<phi>\<psi>.antipar \<phi>'\<psi>'.antipar | |
by (intro comp_in_homI' hseqI') auto | |
moreover have "iso (\<r>[g'] \<cdot> (g' \<star> \<psi>) \<cdot> \<a>[g', f, g] \<cdot> (\<phi>' \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g])" | |
using \<phi>\<psi>.unit_in_hom \<phi>\<psi>.unit_is_iso \<phi>\<psi>.antipar \<phi>'\<psi>'.antipar | |
by (intro isos_compose) auto | |
ultimately show ?thesis | |
using isomorphic_def by auto | |
qed | |
lemma quasi_inverses_symmetric: | |
assumes "quasi_inverses f g" | |
shows "quasi_inverses g f" | |
using assms quasi_inverses_def equivalence_in_bicategory.dual_equivalence by metis | |
definition equivalence_map | |
where "equivalence_map f \<equiv> \<exists>g \<eta> \<epsilon>. equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>" | |
lemma equivalence_mapI: | |
assumes "quasi_inverses f g" | |
shows "equivalence_map f" | |
using assms quasi_inverses_def equivalence_map_def by auto | |
lemma equivalence_mapE: | |
assumes "equivalence_map f" | |
obtains g where "quasi_inverses f g" | |
using assms equivalence_map_def quasi_inverses_def by auto | |
lemma equivalence_map_is_ide: | |
assumes "equivalence_map f" | |
shows "ide f" | |
using assms adjunction_data_in_bicategory.ide_left equivalence_in_bicategory_def | |
equivalence_map_def | |
by fastforce | |
lemma obj_is_equivalence_map: | |
assumes "obj a" | |
shows "equivalence_map a" | |
using assms | |
by (metis equivalence_mapI isomorphic_symmetric objE obj_self_composable(2) quasi_inversesI) | |
lemma equivalence_respects_iso: | |
assumes "equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>" | |
and "\<guillemotleft>\<phi> : f \<Rightarrow> f'\<guillemotright>" and "iso \<phi>" and "\<guillemotleft>\<psi> : g \<Rightarrow> g'\<guillemotright>" and "iso \<psi>" | |
shows "internal_equivalence f' g' ((g' \<star> \<phi>) \<cdot> (\<psi> \<star> f) \<cdot> \<eta>) (\<epsilon> \<cdot> (inv \<phi> \<star> g) \<cdot> (f' \<star> inv \<psi>))" | |
proof - | |
interpret E: equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon> | |
using assms by auto | |
show ?thesis | |
proof | |
show f': "ide f'" using assms by auto | |
show g': "ide g'" using assms by auto | |
show 1: "\<guillemotleft>(g' \<star> \<phi>) \<cdot> (\<psi> \<star> f) \<cdot> \<eta> : src f' \<Rightarrow> g' \<star> f'\<guillemotright>" | |
using assms f' g' E.unit_in_hom E.antipar(2) vconn_implies_hpar(3) | |
apply (intro comp_in_homI) | |
apply auto | |
by (intro hcomp_in_vhom) auto | |
show "iso ((g' \<star> \<phi>) \<cdot> (\<psi> \<star> f) \<cdot> \<eta>)" | |
using assms 1 g' vconn_implies_hpar(3) E.antipar(2) iso_hcomp | |
by (intro isos_compose) auto | |
show 1: "\<guillemotleft>\<epsilon> \<cdot> (inv \<phi> \<star> g) \<cdot> (f' \<star> inv \<psi>) : f' \<star> g' \<Rightarrow> src g'\<guillemotright>" | |
using assms f' ide_in_hom(2) vconn_implies_hpar(3-4) E.antipar(1-2) | |
by (intro comp_in_homI) auto | |
show "iso (\<epsilon> \<cdot> (inv \<phi> \<star> g) \<cdot> (f' \<star> inv \<psi>))" | |
using assms 1 isos_compose | |
by (metis E.counit_is_iso E.ide_right arrI f' hseqE ide_is_iso iso_hcomp | |
iso_inv_iso seqE) | |
qed | |
qed | |
lemma equivalence_map_preserved_by_iso: | |
assumes "equivalence_map f" and "f \<cong> f'" | |
shows "equivalence_map f'" | |
proof - | |
obtain g \<eta> \<epsilon> where E: "equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>" | |
using assms equivalence_map_def by auto | |
interpret E: equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon> | |
using E by auto | |
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : f \<Rightarrow> f'\<guillemotright> \<and> iso \<phi>" | |
using assms isomorphic_def isomorphic_symmetric by blast | |
have "equivalence_in_bicategory V H \<a> \<i> src trg f' g | |
((g \<star> \<phi>) \<cdot> (g \<star> f) \<cdot> \<eta>) (\<epsilon> \<cdot> (inv \<phi> \<star> g) \<cdot> (f' \<star> inv g))" | |
using E \<phi> equivalence_respects_iso [of f g \<eta> \<epsilon> \<phi> f' g g] by fastforce | |
thus ?thesis | |
using equivalence_map_def by auto | |
qed | |
lemma equivalence_preserved_by_iso_right: | |
assumes "equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>" | |
and "\<guillemotleft>\<phi> : g \<Rightarrow> g'\<guillemotright>" and "iso \<phi>" | |
shows "equivalence_in_bicategory V H \<a> \<i> src trg f g' ((\<phi> \<star> f) \<cdot> \<eta>) (\<epsilon> \<cdot> (f \<star> inv \<phi>))" | |
proof | |
interpret E: equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon> | |
using assms by auto | |
show "ide f" by simp | |
show "ide g'" | |
using assms(2) isomorphic_def by auto | |
show "\<guillemotleft>(\<phi> \<star> f) \<cdot> \<eta> : src f \<Rightarrow> g' \<star> f\<guillemotright>" | |
using assms E.antipar(2) E.ide_left by blast | |
show "\<guillemotleft>\<epsilon> \<cdot> (f \<star> inv \<phi>) : f \<star> g' \<Rightarrow> src g'\<guillemotright>" | |
using assms vconn_implies_hpar(3-4) E.counit_in_vhom E.antipar(1) ide_in_hom(2) | |
by (intro comp_in_homI, auto) | |
show "iso ((\<phi> \<star> f) \<cdot> \<eta>)" | |
using assms E.antipar isos_compose by auto | |
show "iso (\<epsilon> \<cdot> (f \<star> inv \<phi>))" | |
using assms E.antipar isos_compose by auto | |
qed | |
lemma equivalence_preserved_by_iso_left: | |
assumes "equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>" | |
and "\<guillemotleft>\<phi> : f \<Rightarrow> f'\<guillemotright>" and "iso \<phi>" | |
shows "equivalence_in_bicategory V H \<a> \<i> src trg f' g ((g \<star> \<phi>) \<cdot> \<eta>) (\<epsilon> \<cdot> (inv \<phi> \<star> g))" | |
proof | |
interpret E: equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon> | |
using assms by auto | |
show "ide f'" | |
using assms by auto | |
show "ide g" | |
by simp | |
show "\<guillemotleft>(g \<star> \<phi>) \<cdot> \<eta> : src f' \<Rightarrow> g \<star> f'\<guillemotright>" | |
using assms E.unit_in_hom E.antipar by auto | |
show "\<guillemotleft>\<epsilon> \<cdot> (inv \<phi> \<star> g) : f' \<star> g \<Rightarrow> src g\<guillemotright>" | |
using assms E.counit_in_hom E.antipar ide_in_hom(2) vconn_implies_hpar(3) by auto | |
show "iso ((g \<star> \<phi>) \<cdot> \<eta>)" | |
using assms E.antipar isos_compose by auto | |
show "iso (\<epsilon> \<cdot> (inv \<phi> \<star> g))" | |
using assms E.antipar isos_compose by auto | |
qed | |
definition some_quasi_inverse | |
where "some_quasi_inverse f = (SOME g. quasi_inverses f g)" | |
notation some_quasi_inverse ("_\<^sup>~" [1000] 1000) | |
lemma quasi_inverses_some_quasi_inverse: | |
assumes "equivalence_map f" | |
shows "quasi_inverses f f\<^sup>~" | |
and "quasi_inverses f\<^sup>~ f" | |
using assms some_quasi_inverse_def quasi_inverses_def equivalence_map_def | |
someI_ex [of "\<lambda>g. quasi_inverses f g"] quasi_inverses_symmetric | |
by auto | |
lemma quasi_inverse_antipar: | |
assumes "equivalence_map f" | |
shows "src f\<^sup>~ = trg f" and "trg f\<^sup>~ = src f" | |
proof - | |
obtain \<phi> \<psi> where \<phi>\<psi>: "equivalence_in_bicategory V H \<a> \<i> src trg f f\<^sup>~ \<phi> \<psi>" | |
using assms equivalence_map_def quasi_inverses_some_quasi_inverse quasi_inverses_def | |
by blast | |
interpret \<phi>\<psi>: equivalence_in_bicategory V H \<a> \<i> src trg f \<open>f\<^sup>~\<close> \<phi> \<psi> | |
using \<phi>\<psi> by simp | |
show "src f\<^sup>~ = trg f" | |
using \<phi>\<psi>.antipar by simp | |
show "trg f\<^sup>~ = src f" | |
using \<phi>\<psi>.antipar by simp | |
qed | |
lemma quasi_inverse_in_hom [intro]: | |
assumes "equivalence_map f" | |
shows "\<guillemotleft>f\<^sup>~ : trg f \<rightarrow> src f\<guillemotright>" | |
and "\<guillemotleft>f\<^sup>~ : f\<^sup>~ \<Rightarrow> f\<^sup>~\<guillemotright>" | |
using assms equivalence_mapE | |
apply (intro in_homI in_hhomI) | |
apply (metis equivalence_map_is_ide ideD(1) not_arr_null quasi_inverse_antipar(2) | |
src.preserves_ide trg.is_extensional) | |
apply (simp_all add: quasi_inverse_antipar) | |
using assms quasi_inversesE quasi_inverses_some_quasi_inverse(2) by blast | |
lemma quasi_inverse_simps [simp]: | |
assumes "equivalence_map f" | |
shows "equivalence_map f\<^sup>~" and "ide f\<^sup>~" | |
and "src f\<^sup>~ = trg f" and "trg f\<^sup>~ = src f" | |
and "dom f\<^sup>~ = f\<^sup>~" and "cod f\<^sup>~ = f\<^sup>~" | |
using assms equivalence_mapE quasi_inverse_in_hom quasi_inverses_some_quasi_inverse | |
equivalence_map_is_ide | |
apply auto | |
by (meson equivalence_mapI) | |
lemma quasi_inverse_quasi_inverse: | |
assumes "equivalence_map f" | |
shows "(f\<^sup>~)\<^sup>~ \<cong> f" | |
proof - | |
have "quasi_inverses f\<^sup>~ (f\<^sup>~)\<^sup>~" | |
using assms quasi_inverses_some_quasi_inverse by simp | |
moreover have "quasi_inverses f\<^sup>~ f" | |
using assms quasi_inverses_some_quasi_inverse quasi_inverses_symmetric by simp | |
ultimately show ?thesis | |
using quasi_inverse_unique by simp | |
qed | |
lemma comp_quasi_inverse: | |
assumes "equivalence_map f" | |
shows "f\<^sup>~ \<star> f \<cong> src f" and "f \<star> f\<^sup>~ \<cong> trg f" | |
proof - | |
obtain \<phi> \<psi> where \<phi>\<psi>: "equivalence_in_bicategory V H \<a> \<i> src trg f f\<^sup>~ \<phi> \<psi>" | |
using assms equivalence_map_def quasi_inverses_some_quasi_inverse | |
quasi_inverses_def | |
by blast | |
interpret \<phi>\<psi>: equivalence_in_bicategory V H \<a> \<i> src trg f \<open>f\<^sup>~\<close> \<phi> \<psi> | |
using \<phi>\<psi> by simp | |
show "f\<^sup>~ \<star> f \<cong> src f" | |
using quasi_inverses_some_quasi_inverse quasi_inverses_def | |
\<phi>\<psi>.unit_in_hom \<phi>\<psi>.unit_is_iso isomorphic_def | |
by blast | |
show "f \<star> f\<^sup>~ \<cong> trg f" | |
using quasi_inverses_some_quasi_inverse quasi_inverses_def | |
\<phi>\<psi>.counit_in_hom \<phi>\<psi>.counit_is_iso isomorphic_def | |
by blast | |
qed | |
lemma quasi_inverse_transpose: | |
assumes "ide f" and "ide g" and "ide h" and "f \<star> g \<cong> h" | |
shows "equivalence_map g \<Longrightarrow> f \<cong> h \<star> g\<^sup>~" | |
and "equivalence_map f \<Longrightarrow> g \<cong> f\<^sup>~ \<star> h" | |
proof - | |
have 1: "src f = trg g" | |
using assms equivalence_map_is_ide by fastforce | |
show "equivalence_map g \<Longrightarrow> f \<cong> h \<star> g\<^sup>~" | |
proof - | |
assume g: "equivalence_map g" | |
have 2: "ide g\<^sup>~" | |
using g by simp | |
have "f \<cong> f \<star> src f" | |
using assms isomorphic_unit_right isomorphic_symmetric by blast | |
also have "... \<cong> f \<star> trg g" | |
using assms 1 isomorphic_reflexive by auto | |
also have "... \<cong> f \<star> g \<star> g\<^sup>~" | |
using assms g 1 comp_quasi_inverse(2) isomorphic_symmetric hcomp_ide_isomorphic | |
by simp | |
also have "... \<cong> (f \<star> g) \<star> g\<^sup>~" | |
using assms g 1 2 assoc'_in_hom [of f g "g\<^sup>~"] iso_assoc' isomorphic_def by auto | |
also have "... \<cong> h \<star> g\<^sup>~" | |
using assms g 1 2 | |
by (simp add: hcomp_isomorphic_ide) | |
finally show ?thesis by blast | |
qed | |
show "equivalence_map f \<Longrightarrow> g \<cong> f\<^sup>~ \<star> h" | |
proof - | |
assume f: "equivalence_map f" | |
have 2: "ide f\<^sup>~" | |
using f by simp | |
have "g \<cong> src f \<star> g" | |
using assms 1 isomorphic_unit_left isomorphic_symmetric by metis | |
also have "... \<cong> (f\<^sup>~ \<star> f) \<star> g" | |
using assms f 1 comp_quasi_inverse(1) [of f] isomorphic_symmetric | |
hcomp_isomorphic_ide | |
by simp | |
also have "... \<cong> f\<^sup>~ \<star> f \<star> g" | |
using assms f 1 assoc_in_hom [of "f\<^sup>~" f g] iso_assoc isomorphic_def by auto | |
also have "... \<cong> f\<^sup>~ \<star> h" | |
using assms f 1 equivalence_map_is_ide quasi_inverses_some_quasi_inverse | |
hcomp_ide_isomorphic | |
by simp | |
finally show ?thesis by blast | |
qed | |
qed | |
end | |
subsection "Composing Equivalences" | |
locale composite_equivalence_in_bicategory = | |
bicategory V H \<a> \<i> src trg + | |
fg: equivalence_in_bicategory V H \<a> \<i> src trg f g \<zeta> \<xi> + | |
hk: equivalence_in_bicategory V H \<a> \<i> src trg h k \<sigma> \<tau> | |
for V :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<cdot>" 55) | |
and H :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<star>" 53) | |
and \<a> :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>[_, _, _]") | |
and \<i> :: "'a \<Rightarrow> 'a" ("\<i>[_]") | |
and src :: "'a \<Rightarrow> 'a" | |
and trg :: "'a \<Rightarrow> 'a" | |
and f :: "'a" | |
and g :: "'a" | |
and \<zeta> :: "'a" | |
and \<xi> :: "'a" | |
and h :: "'a" | |
and k :: "'a" | |
and \<sigma> :: "'a" | |
and \<tau> :: "'a" + | |
assumes composable: "src h = trg f" | |
begin | |
abbreviation \<eta> | |
where "\<eta> \<equiv> \<a>\<^sup>-\<^sup>1[g, k, h \<star> f] \<cdot> (g \<star> \<a>[k, h, f]) \<cdot> (g \<star> \<sigma> \<star> f) \<cdot> (g \<star> \<l>\<^sup>-\<^sup>1[f]) \<cdot> \<zeta>" | |
abbreviation \<epsilon> | |
where "\<epsilon> \<equiv> \<tau> \<cdot> (h \<star> \<l>[k]) \<cdot> (h \<star> \<xi> \<star> k) \<cdot> (h \<star> \<a>\<^sup>-\<^sup>1[f, g, k]) \<cdot> \<a>[h, f, g \<star> k]" | |
interpretation adjunction_data_in_bicategory V H \<a> \<i> src trg \<open>h \<star> f\<close> \<open>g \<star> k\<close> \<eta> \<epsilon> | |
proof | |
show "ide (h \<star> f)" | |
using composable by simp | |
show "ide (g \<star> k)" | |
using fg.antipar hk.antipar composable by simp | |
show "\<guillemotleft>\<eta> : src (h \<star> f) \<Rightarrow> (g \<star> k) \<star> h \<star> f\<guillemotright>" | |
using fg.antipar hk.antipar composable by fastforce | |
show "\<guillemotleft>\<epsilon> : (h \<star> f) \<star> g \<star> k \<Rightarrow> src (g \<star> k)\<guillemotright>" | |
using fg.antipar hk.antipar composable by fastforce | |
qed | |
interpretation equivalence_in_bicategory V H \<a> \<i> src trg \<open>h \<star> f\<close> \<open>g \<star> k\<close> \<eta> \<epsilon> | |
proof | |
show "iso \<eta>" | |
using fg.antipar hk.antipar composable fg.unit_is_iso hk.unit_is_iso iso_hcomp | |
iso_lunit' hseq_char | |
by (intro isos_compose, auto) | |
show "iso \<epsilon>" | |
using fg.antipar hk.antipar composable fg.counit_is_iso hk.counit_is_iso iso_hcomp | |
iso_lunit hseq_char | |
by (intro isos_compose, auto) | |
qed | |
lemma is_equivalence: | |
shows "equivalence_in_bicategory V H \<a> \<i> src trg (h \<star> f) (g \<star> k) \<eta> \<epsilon>" | |
.. | |
sublocale equivalence_in_bicategory V H \<a> \<i> src trg \<open>h \<star> f\<close> \<open>g \<star> k\<close> \<eta> \<epsilon> | |
using is_equivalence by simp | |
end | |
context bicategory | |
begin | |
lemma equivalence_maps_compose: | |
assumes "equivalence_map f" and "equivalence_map f'" and "src f' = trg f" | |
shows "equivalence_map (f' \<star> f)" | |
proof - | |
obtain g \<phi> \<psi> where fg: "equivalence_in_bicategory V H \<a> \<i> src trg f g \<phi> \<psi>" | |
using assms(1) equivalence_map_def by auto | |
interpret fg: equivalence_in_bicategory V H \<a> \<i> src trg f g \<phi> \<psi> | |
using fg by auto | |
obtain g' \<phi>' \<psi>' where f'g': "equivalence_in_bicategory V H \<a> \<i> src trg f' g' \<phi>' \<psi>'" | |
using assms(2) equivalence_map_def by auto | |
interpret f'g': equivalence_in_bicategory V H \<a> \<i> src trg f' g' \<phi>' \<psi>' | |
using f'g' by auto | |
interpret composite_equivalence_in_bicategory V H \<a> \<i> src trg f g \<phi> \<psi> f' g' \<phi>' \<psi>' | |
using assms(3) by (unfold_locales, auto) | |
show ?thesis | |
using equivalence_map_def equivalence_in_bicategory_axioms by auto | |
qed | |
lemma quasi_inverse_hcomp': | |
assumes "equivalence_map f" and "equivalence_map f'" and "equivalence_map (f \<star> f')" | |
and "quasi_inverses f g" and "quasi_inverses f' g'" | |
shows "quasi_inverses (f \<star> f') (g' \<star> g)" | |
proof - | |
obtain \<phi> \<psi> where g: "internal_equivalence f g \<phi> \<psi>" | |
using assms quasi_inverses_def by auto | |
interpret g: equivalence_in_bicategory V H \<a> \<i> src trg f g \<phi> \<psi> | |
using g by simp | |
obtain \<phi>' \<psi>' where g': "internal_equivalence f' g' \<phi>' \<psi>'" | |
using assms quasi_inverses_def by auto | |
interpret g': equivalence_in_bicategory V H \<a> \<i> src trg f' g' \<phi>' \<psi>' | |
using g' by simp | |
interpret gg': composite_equivalence_in_bicategory V H \<a> \<i> src trg f' g' \<phi>' \<psi>' f g \<phi> \<psi> | |
using assms equivalence_map_is_ide [of "f \<star> f'"] | |
apply unfold_locales | |
using ideD(1) by fastforce | |
show ?thesis | |
unfolding quasi_inverses_def | |
using gg'.equivalence_in_bicategory_axioms by auto | |
qed | |
lemma quasi_inverse_hcomp: | |
assumes "equivalence_map f" and "equivalence_map f'" and "equivalence_map (f \<star> f')" | |
shows "(f \<star> f')\<^sup>~ \<cong> f'\<^sup>~ \<star> f\<^sup>~" | |
using assms quasi_inverses_some_quasi_inverse quasi_inverse_hcomp' quasi_inverse_unique | |
by metis | |
lemma quasi_inverse_respects_isomorphic: | |
assumes "equivalence_map f" and "equivalence_map f'" and "f \<cong> f'" | |
shows "f\<^sup>~ \<cong> f'\<^sup>~" | |
proof - | |
have hpar: "src f = src f' \<and> trg f = trg f'" | |
using assms isomorphic_implies_hpar by simp | |
have "f\<^sup>~ \<cong> f\<^sup>~ \<star> trg f" | |
using isomorphic_unit_right | |
by (metis assms(1) isomorphic_symmetric quasi_inverse_simps(2-3)) | |
also have "... \<cong> f\<^sup>~ \<star> f' \<star> f'\<^sup>~" | |
proof - | |
have "trg f \<cong> f' \<star> f'\<^sup>~" | |
using assms quasi_inverse_hcomp | |
by (simp add: comp_quasi_inverse(2) hpar isomorphic_symmetric) | |
thus ?thesis | |
using assms hpar hcomp_ide_isomorphic isomorphic_implies_hpar(2) by auto | |
qed | |
also have "... \<cong> (f\<^sup>~ \<star> f') \<star> f'\<^sup>~" | |
using assms hcomp_assoc_isomorphic hpar isomorphic_implies_ide(2) isomorphic_symmetric | |
by auto | |
also have "... \<cong> (f\<^sup>~ \<star> f) \<star> f'\<^sup>~" | |
proof - | |
have "f\<^sup>~ \<star> f' \<cong> f\<^sup>~ \<star> f" | |
using assms isomorphic_symmetric hcomp_ide_isomorphic isomorphic_implies_hpar(1) | |
by auto | |
thus ?thesis | |
using assms hcomp_isomorphic_ide isomorphic_implies_hpar(1) by auto | |
qed | |
also have "... \<cong> src f \<star> f'\<^sup>~" | |
proof - | |
have "f\<^sup>~ \<star> f \<cong> src f" | |
using assms comp_quasi_inverse by simp | |
thus ?thesis | |
using assms hcomp_isomorphic_ide isomorphic_implies_hpar by simp | |
qed | |
also have "... \<cong> f'\<^sup>~" | |
using assms isomorphic_unit_left | |
by (metis hpar quasi_inverse_simps(2,4)) | |
finally show ?thesis by blast | |
qed | |
end | |
subsection "Equivalent Objects" | |
context bicategory | |
begin | |
definition equivalent_objects | |
where "equivalent_objects a b \<equiv> \<exists>f. \<guillemotleft>f : a \<rightarrow> b\<guillemotright> \<and> equivalence_map f" | |
lemma equivalent_objects_reflexive: | |
assumes "obj a" | |
shows "equivalent_objects a a" | |
using assms | |
by (metis equivalent_objects_def ide_in_hom(1) objE obj_is_equivalence_map) | |
lemma equivalent_objects_symmetric: | |
assumes "equivalent_objects a b" | |
shows "equivalent_objects b a" | |
using assms | |
by (metis equivalent_objects_def in_hhomE quasi_inverse_in_hom(1) quasi_inverse_simps(1)) | |
lemma equivalent_objects_transitive [trans]: | |
assumes "equivalent_objects a b" and "equivalent_objects b c" | |
shows "equivalent_objects a c" | |
proof - | |
obtain f where f: "\<guillemotleft>f : a \<rightarrow> b\<guillemotright> \<and> equivalence_map f" | |
using assms equivalent_objects_def by auto | |
obtain g where g: "\<guillemotleft>g : b \<rightarrow> c\<guillemotright> \<and> equivalence_map g" | |
using assms equivalent_objects_def by auto | |
have "\<guillemotleft>g \<star> f : a \<rightarrow> c\<guillemotright> \<and> equivalence_map (g \<star> f)" | |
using f g equivalence_maps_compose by auto | |
thus ?thesis | |
using equivalent_objects_def by auto | |
qed | |
end | |
subsection "Transporting Arrows along Equivalences" | |
text \<open> | |
We show in this section that transporting the arrows of one hom-category to another | |
along connecting equivalence maps yields an equivalence of categories. | |
This is useful, because it seems otherwise hard to establish that the transporting | |
functor is full. | |
\<close> | |
locale two_equivalences_in_bicategory = | |
bicategory V H \<a> \<i> src trg + | |
e\<^sub>0: equivalence_in_bicategory V H \<a> \<i> src trg e\<^sub>0 d\<^sub>0 \<eta>\<^sub>0 \<epsilon>\<^sub>0 + | |
e\<^sub>1: equivalence_in_bicategory V H \<a> \<i> src trg e\<^sub>1 d\<^sub>1 \<eta>\<^sub>1 \<epsilon>\<^sub>1 | |
for V :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<cdot>" 55) | |
and H :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<star>" 53) | |
and \<a> :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>[_, _, _]") | |
and \<i> :: "'a \<Rightarrow> 'a" ("\<i>[_]") | |
and src :: "'a \<Rightarrow> 'a" | |
and trg :: "'a \<Rightarrow> 'a" | |
and e\<^sub>0 :: "'a" | |
and d\<^sub>0 :: "'a" | |
and \<eta>\<^sub>0 :: "'a" | |
and \<epsilon>\<^sub>0 :: "'a" | |
and e\<^sub>1 :: "'a" | |
and d\<^sub>1 :: "'a" | |
and \<eta>\<^sub>1 :: "'a" | |
and \<epsilon>\<^sub>1 :: "'a" | |
begin | |
interpretation hom: subcategory V \<open>\<lambda>\<mu>. \<guillemotleft>\<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>\<close> | |
using hhom_is_subcategory by simp | |
(* TODO: The preceding interpretation somehow brings in unwanted notation. *) | |
no_notation in_hom ("\<guillemotleft>_ : _ \<rightarrow> _\<guillemotright>") | |
interpretation hom': subcategory V \<open>\<lambda>\<mu>. \<guillemotleft>\<mu> : trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>\<close> | |
using hhom_is_subcategory by simp | |
no_notation in_hom ("\<guillemotleft>_ : _ \<rightarrow> _\<guillemotright>") | |
abbreviation (input) F | |
where "F \<equiv> \<lambda>\<mu>. e\<^sub>1 \<star> \<mu> \<star> d\<^sub>0" | |
interpretation F: "functor" hom.comp hom'.comp F | |
proof | |
show 1: "\<And>f. hom.arr f \<Longrightarrow> hom'.arr (e\<^sub>1 \<star> f \<star> d\<^sub>0)" | |
using hom.arr_char hom'.arr_char in_hhom_def e\<^sub>0.antipar(1-2) by simp | |
show "\<And>f. \<not> hom.arr f \<Longrightarrow> e\<^sub>1 \<star> f \<star> d\<^sub>0 = hom'.null" | |
using 1 hom.arr_char hom'.null_char in_hhom_def | |
by (metis e\<^sub>0.antipar(1) hseqE hseq_char' hcomp_simps(2)) | |
show "\<And>f. hom.arr f \<Longrightarrow> hom'.dom (e\<^sub>1 \<star> f \<star> d\<^sub>0) = e\<^sub>1 \<star> hom.dom f \<star> d\<^sub>0" | |
using hom.arr_char hom.dom_char hom'.arr_char hom'.dom_char | |
by (metis 1 hcomp_simps(3) e\<^sub>0.ide_right e\<^sub>1.ide_left hom'.inclusion hseq_char ide_char) | |
show "\<And>f. hom.arr f \<Longrightarrow> hom'.cod (e\<^sub>1 \<star> f \<star> d\<^sub>0) = e\<^sub>1 \<star> hom.cod f \<star> d\<^sub>0" | |
using hom.arr_char hom.cod_char hom'.arr_char hom'.cod_char | |
by (metis 1 hcomp_simps(4) e\<^sub>0.ide_right e\<^sub>1.ide_left hom'.inclusion hseq_char ide_char) | |
show "\<And>g f. hom.seq g f \<Longrightarrow> | |
e\<^sub>1 \<star> hom.comp g f \<star> d\<^sub>0 = hom'.comp (e\<^sub>1 \<star> g \<star> d\<^sub>0) (e\<^sub>1 \<star> f \<star> d\<^sub>0)" | |
using 1 hom.seq_char hom.arr_char hom.comp_char hom'.arr_char hom'.comp_char | |
whisker_left [of e\<^sub>1] whisker_right [of d\<^sub>0] | |
apply auto | |
apply (metis hseq_char seqE src_vcomp) | |
by (metis hseq_char hseq_char') | |
qed | |
abbreviation (input) G | |
where "G \<equiv> \<lambda>\<mu>'. d\<^sub>1 \<star> \<mu>' \<star> e\<^sub>0" | |
interpretation G: "functor" hom'.comp hom.comp G | |
proof | |
show 1: "\<And>f. hom'.arr f \<Longrightarrow> hom.arr (d\<^sub>1 \<star> f \<star> e\<^sub>0)" | |
using hom.arr_char hom'.arr_char in_hhom_def e\<^sub>1.antipar(1) e\<^sub>1.antipar(2) | |
by simp | |
show "\<And>f. \<not> hom'.arr f \<Longrightarrow> d\<^sub>1 \<star> f \<star> e\<^sub>0 = hom.null" | |
using 1 hom.arr_char hom'.null_char in_hhom_def | |
by (metis e\<^sub>1.antipar(2) hom'.arrI hom.null_char hseqE hseq_char' hcomp_simps(2)) | |
show "\<And>f. hom'.arr f \<Longrightarrow> hom.dom (d\<^sub>1 \<star> f \<star> e\<^sub>0) = d\<^sub>1 \<star> hom'.dom f \<star> e\<^sub>0" | |
using 1 hom.arr_char hom.dom_char hom'.arr_char hom'.dom_char | |
by (metis hcomp_simps(3) e\<^sub>0.ide_left e\<^sub>1.ide_right hom.inclusion hseq_char ide_char) | |
show "\<And>f. hom'.arr f \<Longrightarrow> hom.cod (d\<^sub>1 \<star> f \<star> e\<^sub>0) = d\<^sub>1 \<star> hom'.cod f \<star> e\<^sub>0" | |
using 1 hom.arr_char hom.cod_char hom'.arr_char hom'.cod_char | |
by (metis hcomp_simps(4) e\<^sub>0.ide_left e\<^sub>1.ide_right hom.inclusion hseq_char ide_char) | |
show "\<And>g f. hom'.seq g f \<Longrightarrow> | |
d\<^sub>1 \<star> hom'.comp g f \<star> e\<^sub>0 = hom.comp (d\<^sub>1 \<star> g \<star> e\<^sub>0) (d\<^sub>1 \<star> f \<star> e\<^sub>0)" | |
using 1 hom'.seq_char hom'.arr_char hom'.comp_char hom.arr_char hom.comp_char | |
whisker_left [of d\<^sub>1] whisker_right [of e\<^sub>0] | |
apply auto | |
apply (metis hseq_char seqE src_vcomp) | |
by (metis hseq_char hseq_char') | |
qed | |
interpretation GF: composite_functor hom.comp hom'.comp hom.comp F G .. | |
interpretation FG: composite_functor hom'.comp hom.comp hom'.comp G F .. | |
abbreviation (input) \<phi>\<^sub>0 | |
where "\<phi>\<^sub>0 f \<equiv> (d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, f \<star> d\<^sub>0, e\<^sub>0]) \<cdot> \<a>[d\<^sub>1, e\<^sub>1, (f \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[f, d\<^sub>0, e\<^sub>0]) \<cdot> (\<eta>\<^sub>1 \<star> f \<star> \<eta>\<^sub>0) \<cdot> \<l>\<^sup>-\<^sup>1[f \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[f]" | |
lemma \<phi>\<^sub>0_in_hom: | |
assumes "\<guillemotleft>f : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" and "ide f" | |
shows "\<guillemotleft>\<phi>\<^sub>0 f : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
and "\<guillemotleft>\<phi>\<^sub>0 f : f \<Rightarrow> d\<^sub>1 \<star> (e\<^sub>1 \<star> f \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<phi>\<^sub>0 f : f \<Rightarrow> d\<^sub>1 \<star> (e\<^sub>1 \<star> f \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
using assms e\<^sub>0.antipar e\<^sub>1.antipar by fastforce | |
thus "\<guillemotleft>\<phi>\<^sub>0 f : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
using assms src_dom [of "\<phi>\<^sub>0 f"] trg_dom [of "\<phi>\<^sub>0 f"] | |
by (metis arrI dom_comp in_hhom_def runit'_simps(4) seqE) | |
qed | |
lemma iso_\<phi>\<^sub>0: | |
assumes "\<guillemotleft>f : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" and "ide f" | |
shows "iso (\<phi>\<^sub>0 f)" | |
using assms iso_lunit' iso_runit' e\<^sub>0.antipar e\<^sub>1.antipar | |
by (intro isos_compose) auto | |
interpretation \<phi>: transformation_by_components hom.comp hom.comp hom.map \<open>G o F\<close> \<phi>\<^sub>0 | |
proof | |
fix f | |
assume f: "hom.ide f" | |
show "hom.in_hom (\<phi>\<^sub>0 f) (hom.map f) (GF.map f)" | |
proof (unfold hom.in_hom_char, intro conjI) | |
show "hom.arr (hom.map f)" | |
using f by simp | |
show "hom.arr (GF.map f)" | |
using f by simp | |
show "hom.arr (\<phi>\<^sub>0 f)" | |
using f hom.ide_char hom.arr_char \<phi>\<^sub>0_in_hom by simp | |
show "\<guillemotleft>\<phi>\<^sub>0 f : hom.map f \<Rightarrow> GF.map f\<guillemotright>" | |
using f hom.ide_char hom.arr_char hom'.ide_char hom'.arr_char F.preserves_arr | |
\<phi>\<^sub>0_in_hom | |
by auto | |
qed | |
next | |
fix \<mu> | |
assume \<mu>: "hom.arr \<mu>" | |
show "hom.comp (\<phi>\<^sub>0 (hom.cod \<mu>)) (hom.map \<mu>) = | |
hom.comp (GF.map \<mu>) (\<phi>\<^sub>0 (hom.dom \<mu>))" | |
proof - | |
have "hom.comp (\<phi>\<^sub>0 (hom.cod \<mu>)) (hom.map \<mu>) = \<phi>\<^sub>0 (cod \<mu>) \<cdot> \<mu>" | |
proof - | |
have "hom.map \<mu> = \<mu>" | |
using \<mu> by simp | |
moreover have "\<phi>\<^sub>0 (hom.cod \<mu>) = \<phi>\<^sub>0 (cod \<mu>)" | |
using \<mu> hom.arr_char hom.cod_char by simp | |
moreover have "hom.arr (\<phi>\<^sub>0 (cod \<mu>))" | |
using \<mu> hom.arr_char \<phi>\<^sub>0_in_hom [of "cod \<mu>"] | |
by (metis hom.arr_cod hom.cod_simp ide_cod in_hhom_def) | |
moreover have "seq (\<phi>\<^sub>0 (cod \<mu>)) \<mu>" | |
proof | |
show 1: "\<guillemotleft>\<mu> : dom \<mu> \<Rightarrow> cod \<mu>\<guillemotright>" | |
using \<mu> hom.arr_char by auto | |
show "\<guillemotleft>\<phi>\<^sub>0 (cod \<mu>) : cod \<mu> \<Rightarrow> d\<^sub>1 \<star> (e\<^sub>1 \<star> cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
using \<mu> hom.arr_char \<phi>\<^sub>0_in_hom | |
by (metis 1 arrI hom.arr_cod hom.cod_simp ide_cod) | |
qed | |
ultimately show ?thesis | |
using \<mu> hom.comp_char by simp | |
qed | |
also have "... = (d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> \<a>[d\<^sub>1, e\<^sub>1, (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[cod \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> (\<eta>\<^sub>1 \<star> cod \<mu> \<star> \<eta>\<^sub>0) \<cdot> | |
\<l>\<^sup>-\<^sup>1[cod \<mu> \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[cod \<mu>] \<cdot> \<mu>" | |
using \<mu> hom.arr_char comp_assoc by auto | |
also have "... = ((d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> \<a>[d\<^sub>1, e\<^sub>1, (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[cod \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> (\<eta>\<^sub>1 \<star> cod \<mu> \<star> \<eta>\<^sub>0) \<cdot> | |
\<l>\<^sup>-\<^sup>1[cod \<mu> \<star> src e\<^sub>0] \<cdot> (\<mu> \<star> src e\<^sub>0)) \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
using \<mu> hom.arr_char runit'_naturality [of \<mu>] comp_assoc by auto | |
also have "... = ((d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> \<a>[d\<^sub>1, e\<^sub>1, (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[cod \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> (\<eta>\<^sub>1 \<star> cod \<mu> \<star> \<eta>\<^sub>0) \<cdot> | |
(src e\<^sub>1 \<star> \<mu> \<star> src e\<^sub>0) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu> \<star> src e\<^sub>0]) \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
using \<mu> hom.arr_char lunit'_naturality [of "\<mu> \<star> src e\<^sub>0"] by force | |
also have "... = ((d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> \<a>[d\<^sub>1, e\<^sub>1, (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[cod \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> (\<eta>\<^sub>1 \<star> cod \<mu> \<star> \<eta>\<^sub>0) \<cdot> | |
(src e\<^sub>1 \<star> \<mu> \<star> src e\<^sub>0)) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu> \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
using comp_assoc by simp | |
also have "... = ((d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> \<a>[d\<^sub>1, e\<^sub>1, (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[cod \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> ((d\<^sub>1 \<star> e\<^sub>1) \<star> \<mu> \<star> d\<^sub>0 \<star> e\<^sub>0)) \<cdot> | |
(\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu> \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
proof - | |
have "(\<eta>\<^sub>1 \<star> cod \<mu> \<star> \<eta>\<^sub>0) \<cdot> (src e\<^sub>1 \<star> \<mu> \<star> src e\<^sub>0) = \<eta>\<^sub>1 \<star> \<mu> \<star> \<eta>\<^sub>0" | |
using \<mu> hom.arr_char comp_arr_dom comp_cod_arr | |
interchange [of \<eta>\<^sub>1 "src e\<^sub>1" "cod \<mu> \<star> \<eta>\<^sub>0" "\<mu> \<star> src e\<^sub>0"] | |
interchange [of "cod \<mu>" \<mu> \<eta>\<^sub>0 "src e\<^sub>0"] | |
by (metis e\<^sub>0.unit_in_hom(1) e\<^sub>0.unit_simps(2) e\<^sub>1.unit_simps(1) e\<^sub>1.unit_simps(2) | |
hseqI' in_hhom_def) | |
also have "... = ((d\<^sub>1 \<star> e\<^sub>1) \<star> \<mu> \<star> d\<^sub>0 \<star> e\<^sub>0) \<cdot> (\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0)" | |
proof - | |
have "\<eta>\<^sub>1 \<star> \<mu> \<star> \<eta>\<^sub>0 = (d\<^sub>1 \<star> e\<^sub>1) \<cdot> \<eta>\<^sub>1 \<star> \<mu> \<cdot> dom \<mu> \<star> (d\<^sub>0 \<star> e\<^sub>0) \<cdot> \<eta>\<^sub>0" | |
using \<mu> hom.arr_char comp_arr_dom comp_cod_arr by auto | |
also have "... = (d\<^sub>1 \<star> e\<^sub>1) \<cdot> \<eta>\<^sub>1 \<star> (\<mu> \<star> d\<^sub>0 \<star> e\<^sub>0) \<cdot> (dom \<mu> \<star> \<eta>\<^sub>0)" | |
using \<mu> hom.arr_char comp_cod_arr | |
interchange [of \<mu> "dom \<mu>" "d\<^sub>0 \<star> e\<^sub>0" \<eta>\<^sub>0] | |
by auto | |
also have "... = ((d\<^sub>1 \<star> e\<^sub>1) \<star> \<mu> \<star> d\<^sub>0 \<star> e\<^sub>0) \<cdot> (\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0)" | |
using \<mu> hom.arr_char comp_arr_dom comp_cod_arr | |
interchange [of "d\<^sub>1 \<star> e\<^sub>1" \<eta>\<^sub>1 "\<mu> \<star> d\<^sub>0 \<star> e\<^sub>0" "dom \<mu> \<star> \<eta>\<^sub>0"] | |
interchange [of \<mu> "dom \<mu>" "d\<^sub>0 \<star> e\<^sub>0" \<eta>\<^sub>0] | |
by (metis e\<^sub>0.unit_in_hom(1) e\<^sub>0.unit_simps(1) e\<^sub>0.unit_simps(3) e\<^sub>1.unit_simps(1) | |
e\<^sub>1.unit_simps(3) hom.inclusion hseqI) | |
finally show ?thesis by simp | |
qed | |
finally have "(\<eta>\<^sub>1 \<star> cod \<mu> \<star> \<eta>\<^sub>0) \<cdot> (src e\<^sub>1 \<star> \<mu> \<star> src e\<^sub>0) = | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> \<mu> \<star> d\<^sub>0 \<star> e\<^sub>0) \<cdot> (\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0)" | |
by simp | |
thus ?thesis | |
using comp_assoc by simp | |
qed | |
also have "... = ((d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> \<a>[d\<^sub>1, e\<^sub>1, (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> (\<mu> \<star> d\<^sub>0) \<star> e\<^sub>0) \<cdot> ((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[dom \<mu>, d\<^sub>0, e\<^sub>0])) \<cdot> | |
(\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu> \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
using \<mu> hom.arr_char e\<^sub>0.antipar e\<^sub>1.antipar assoc'_naturality [of \<mu> d\<^sub>0 e\<^sub>0] | |
whisker_left [of "d\<^sub>1 \<star> e\<^sub>1" "\<a>\<^sup>-\<^sup>1[cod \<mu>, d\<^sub>0, e\<^sub>0]" "\<mu> \<star> d\<^sub>0 \<star> e\<^sub>0"] | |
whisker_left [of "d\<^sub>1 \<star> e\<^sub>1" "(\<mu> \<star> d\<^sub>0) \<star> e\<^sub>0" "\<a>\<^sup>-\<^sup>1[dom \<mu>, d\<^sub>0, e\<^sub>0]"] | |
by auto | |
also have "... = ((d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> \<a>[d\<^sub>1, e\<^sub>1, (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> | |
((d\<^sub>1 \<star> e\<^sub>1) \<star> (\<mu> \<star> d\<^sub>0) \<star> e\<^sub>0)) \<cdot> ((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[dom \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> | |
(\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu> \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
using comp_assoc by simp | |
also have "... = ((d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> (d\<^sub>1 \<star> e\<^sub>1 \<star> (\<mu> \<star> d\<^sub>0) \<star> e\<^sub>0) \<cdot> | |
\<a>[d\<^sub>1, e\<^sub>1, (dom \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0]) \<cdot> ((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[dom \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> | |
(\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu> \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
using \<mu> hom.arr_char e\<^sub>0.antipar e\<^sub>1.antipar | |
assoc_naturality [of d\<^sub>1 e\<^sub>1 "(\<mu> \<star> d\<^sub>0) \<star> e\<^sub>0"] hseqI | |
by auto | |
also have "... = ((d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]) \<cdot> (d\<^sub>1 \<star> e\<^sub>1 \<star> (\<mu> \<star> d\<^sub>0) \<star> e\<^sub>0)) \<cdot> | |
\<a>[d\<^sub>1, e\<^sub>1, (dom \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> ((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[dom \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> | |
(\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu> \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
using comp_assoc by simp | |
also have "... = ((d\<^sub>1 \<star> (e\<^sub>1 \<star> \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0) \<cdot> (d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, dom \<mu> \<star> d\<^sub>0, e\<^sub>0])) \<cdot> | |
\<a>[d\<^sub>1, e\<^sub>1, (dom \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] \<cdot> ((d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[dom \<mu>, d\<^sub>0, e\<^sub>0]) \<cdot> | |
(\<eta>\<^sub>1 \<star> dom \<mu> \<star> \<eta>\<^sub>0) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu> \<star> src e\<^sub>0] \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>]" | |
using \<mu> hom.arr_char e\<^sub>0.antipar e\<^sub>1.antipar | |
assoc'_naturality [of e\<^sub>1 "\<mu> \<star> d\<^sub>0" e\<^sub>0] | |
whisker_left [of d\<^sub>1 "\<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0]" "e\<^sub>1 \<star> (\<mu> \<star> d\<^sub>0) \<star> e\<^sub>0"] | |
whisker_left [of d\<^sub>1 "(e\<^sub>1 \<star> \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0" "\<a>\<^sup>-\<^sup>1[e\<^sub>1, dom \<mu> \<star> d\<^sub>0, e\<^sub>0]"] | |
by auto | |
also have "... = hom.comp (GF.map \<mu>) (\<phi>\<^sub>0 (hom.dom \<mu>))" | |
proof - | |
have "hom.arr (GF.map \<mu>)" | |
using \<mu> by blast | |
moreover have "hom.arr (\<phi>\<^sub>0 (hom.dom \<mu>))" | |
using \<mu> hom.arr_char hom.in_hom_char \<phi>\<^sub>0_in_hom(1) hom.dom_closed hom.dom_simp | |
hom.inclusion ide_dom | |
by metis | |
moreover have "seq (GF.map \<mu>) (\<phi>\<^sub>0 (hom.dom \<mu>))" | |
proof | |
show "\<guillemotleft>\<phi>\<^sub>0 (hom.dom \<mu>) : dom \<mu> \<Rightarrow> d\<^sub>1 \<star> (e\<^sub>1 \<star> dom \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
using \<mu> hom.arr_char hom.dom_char hom.in_hom_char \<phi>\<^sub>0_in_hom hom.dom_closed | |
hom.dom_simp hom.inclusion ide_dom | |
by metis | |
show "\<guillemotleft>GF.map \<mu> : d\<^sub>1 \<star> (e\<^sub>1 \<star> dom \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0 \<Rightarrow> d\<^sub>1 \<star> (e\<^sub>1 \<star> cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
using \<mu> hom.arr_char hom'.arr_char F.preserves_arr | |
apply simp | |
apply (intro hcomp_in_vhom) | |
by (auto simp add: e\<^sub>0.antipar e\<^sub>1.antipar in_hhom_def) | |
qed | |
ultimately show ?thesis | |
using \<mu> hom.comp_char comp_assoc hom.dom_simp by auto | |
qed | |
finally show ?thesis by blast | |
qed | |
qed | |
lemma transformation_by_components_\<phi>\<^sub>0: | |
shows "transformation_by_components hom.comp hom.comp hom.map (G o F) \<phi>\<^sub>0" | |
.. | |
interpretation \<phi>: natural_isomorphism hom.comp hom.comp hom.map \<open>G o F\<close> \<phi>.map | |
proof | |
fix f | |
assume "hom.ide f" | |
hence f: "ide f \<and> \<guillemotleft>f : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
using hom.ide_char hom.arr_char by simp | |
show "hom.iso (\<phi>.map f)" | |
proof (unfold hom.iso_char hom.arr_char, intro conjI) | |
show "iso (\<phi>.map f)" | |
using f iso_\<phi>\<^sub>0 \<phi>.map_simp_ide hom.ide_char hom.arr_char by simp | |
moreover show "\<guillemotleft>\<phi>.map f : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
using f hom.ide_char hom.arr_char by blast | |
ultimately show "\<guillemotleft>inv (\<phi>.map f) : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
by auto | |
qed | |
qed | |
lemma natural_isomorphism_\<phi>: | |
shows "natural_isomorphism hom.comp hom.comp hom.map (G o F) \<phi>.map" | |
.. | |
definition \<phi> | |
where "\<phi> \<equiv> \<phi>.map" | |
lemma \<phi>_ide_simp: | |
assumes "\<guillemotleft>f : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" and "ide f" | |
shows "\<phi> f = \<phi>\<^sub>0 f" | |
unfolding \<phi>_def | |
using assms hom.ide_char hom.arr_char by simp | |
lemma \<phi>_components_are_iso: | |
assumes "\<guillemotleft>f : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" and "ide f" | |
shows "iso (\<phi> f)" | |
using assms \<phi>_def \<phi>.components_are_iso hom.ide_char hom.arr_char hom.iso_char | |
by simp | |
lemma \<phi>_eq: | |
shows "\<phi> = (\<lambda>\<mu>. if \<guillemotleft>\<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright> then \<phi>\<^sub>0 (cod \<mu>) \<cdot> \<mu> else null)" | |
proof | |
fix \<mu> | |
have "\<not> \<guillemotleft>\<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright> \<Longrightarrow> \<phi>.map \<mu> = null" | |
using hom.comp_char hom.null_char hom.arr_char | |
by (simp add: \<phi>.is_extensional) | |
moreover have "\<guillemotleft>\<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright> \<Longrightarrow> \<phi>.map \<mu> = \<phi>\<^sub>0 (cod \<mu>) \<cdot> \<mu>" | |
unfolding \<phi>.map_def | |
apply auto | |
using hom.comp_char hom.arr_char hom.dom_simp hom.cod_simp | |
apply simp | |
by (metis (no_types, lifting) \<phi>\<^sub>0_in_hom(1) hom.cod_closed hom.inclusion ide_cod local.ext) | |
ultimately show "\<phi> \<mu> = (if \<guillemotleft>\<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright> then \<phi>\<^sub>0 (cod \<mu>) \<cdot> \<mu> else null)" | |
unfolding \<phi>_def by auto | |
qed | |
lemma \<phi>_in_hom [intro]: | |
assumes "\<guillemotleft>\<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
shows "\<guillemotleft>\<phi> \<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
and "\<guillemotleft>\<phi> \<mu> : dom \<mu> \<Rightarrow> d\<^sub>1 \<star> (e\<^sub>1 \<star> cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<phi> \<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
using assms \<phi>_eq \<phi>_def hom.arr_char \<phi>.preserves_reflects_arr by presburger | |
show "\<guillemotleft>\<phi> \<mu> : dom \<mu> \<Rightarrow> d\<^sub>1 \<star> (e\<^sub>1 \<star> cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
unfolding \<phi>_eq | |
using assms apply simp | |
apply (intro comp_in_homI) | |
apply auto | |
proof - | |
show "\<guillemotleft>\<r>\<^sup>-\<^sup>1[cod \<mu>] : cod \<mu> \<Rightarrow> cod \<mu> \<star> src e\<^sub>0\<guillemotright>" | |
using assms by auto | |
show "\<guillemotleft>\<l>\<^sup>-\<^sup>1[cod \<mu> \<star> src e\<^sub>0] : cod \<mu> \<star> src e\<^sub>0 \<Rightarrow> src e\<^sub>1 \<star> cod \<mu> \<star> src e\<^sub>0\<guillemotright>" | |
using assms by auto | |
show "\<guillemotleft>\<eta>\<^sub>1 \<star> cod \<mu> \<star> \<eta>\<^sub>0 : src e\<^sub>1 \<star> cod \<mu> \<star> src e\<^sub>0 \<Rightarrow> (d\<^sub>1 \<star> e\<^sub>1) \<star> cod \<mu> \<star> (d\<^sub>0 \<star> e\<^sub>0)\<guillemotright>" | |
using assms e\<^sub>0.unit_in_hom(2) e\<^sub>1.unit_in_hom(2) | |
apply (intro hcomp_in_vhom) | |
apply auto | |
by fastforce | |
show "\<guillemotleft>(d\<^sub>1 \<star> e\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[cod \<mu>, d\<^sub>0, e\<^sub>0] : | |
(d\<^sub>1 \<star> e\<^sub>1) \<star> cod \<mu> \<star> d\<^sub>0 \<star> e\<^sub>0 \<Rightarrow> (d\<^sub>1 \<star> e\<^sub>1) \<star> (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
using assms assoc'_in_hom e\<^sub>0.antipar(1-2) e\<^sub>1.antipar(2) | |
apply (intro hcomp_in_vhom) by auto | |
show "\<guillemotleft>\<a>[d\<^sub>1, e\<^sub>1, (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0] : | |
(d\<^sub>1 \<star> e\<^sub>1) \<star> (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0 \<Rightarrow> d\<^sub>1 \<star> e\<^sub>1 \<star> (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
using assms assoc_in_hom e\<^sub>0.antipar(1-2) e\<^sub>1.antipar(2) by auto | |
show "\<guillemotleft>d\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[e\<^sub>1, cod \<mu> \<star> d\<^sub>0, e\<^sub>0] : | |
d\<^sub>1 \<star> e\<^sub>1 \<star> (cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0 \<Rightarrow> d\<^sub>1 \<star> (e\<^sub>1 \<star> cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0\<guillemotright>" | |
using assms assoc'_in_hom [of "d\<^sub>1" "e\<^sub>1 \<star> cod \<mu> \<star> d\<^sub>0" "e\<^sub>0"] | |
e\<^sub>0.antipar(1-2) e\<^sub>1.antipar(1-2) | |
apply (intro hcomp_in_vhom) | |
apply auto | |
by fastforce | |
qed | |
qed | |
lemma \<phi>_simps [simp]: | |
assumes "\<guillemotleft>\<mu> : src e\<^sub>0 \<rightarrow> src e\<^sub>1\<guillemotright>" | |
shows "arr (\<phi> \<mu>)" | |
and "src (\<phi> \<mu>) = src e\<^sub>0" and "trg (\<phi> \<mu>) = src e\<^sub>1" | |
and "dom (\<phi> \<mu>) = dom \<mu>" and "cod (\<phi> \<mu>) = d\<^sub>1 \<star> (e\<^sub>1 \<star> cod \<mu> \<star> d\<^sub>0) \<star> e\<^sub>0" | |
using assms \<phi>_in_hom by auto | |
interpretation d\<^sub>0: equivalence_in_bicategory V H \<a> \<i> src trg d\<^sub>0 e\<^sub>0 \<open>inv \<epsilon>\<^sub>0\<close> \<open>inv \<eta>\<^sub>0\<close> | |
using e\<^sub>0.dual_equivalence by simp | |
interpretation d\<^sub>1: equivalence_in_bicategory V H \<a> \<i> src trg d\<^sub>1 e\<^sub>1 \<open>inv \<epsilon>\<^sub>1\<close> \<open>inv \<eta>\<^sub>1\<close> | |
using e\<^sub>1.dual_equivalence by simp | |
interpretation d\<^sub>0e\<^sub>0: two_equivalences_in_bicategory V H \<a> \<i> src trg | |
d\<^sub>0 e\<^sub>0 \<open>inv \<epsilon>\<^sub>0\<close> \<open>inv \<eta>\<^sub>0\<close> d\<^sub>1 e\<^sub>1 \<open>inv \<epsilon>\<^sub>1\<close> \<open>inv \<eta>\<^sub>1\<close> | |
.. | |
interpretation \<psi>: inverse_transformation hom'.comp hom'.comp hom'.map \<open>F o G\<close> d\<^sub>0e\<^sub>0.\<phi> | |
proof - | |
interpret \<psi>': natural_isomorphism hom'.comp hom'.comp hom'.map \<open>F o G\<close> d\<^sub>0e\<^sub>0.\<phi> | |
using d\<^sub>0e\<^sub>0.natural_isomorphism_\<phi> e\<^sub>0.antipar e\<^sub>1.antipar d\<^sub>0e\<^sub>0.\<phi>_eq d\<^sub>0e\<^sub>0.\<phi>_def by metis | |
show "inverse_transformation hom'.comp hom'.comp hom'.map (F o G) d\<^sub>0e\<^sub>0.\<phi>" | |
.. | |
qed | |
definition \<psi> | |
where "\<psi> \<equiv> \<psi>.map" | |
lemma \<psi>_ide_simp: | |
assumes "\<guillemotleft>f': trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>" and "ide f'" | |
shows "\<psi> f' = \<r>[f'] \<cdot> \<l>[f' \<star> trg e\<^sub>0] \<cdot> (\<epsilon>\<^sub>1 \<star> f' \<star> \<epsilon>\<^sub>0) \<cdot> ((e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>[f', e\<^sub>0, d\<^sub>0]) \<cdot> | |
\<a>\<^sup>-\<^sup>1[e\<^sub>1, d\<^sub>1, (f' \<star> e\<^sub>0) \<star> d\<^sub>0] \<cdot> (e\<^sub>1 \<star> \<a>[d\<^sub>1, f' \<star> e\<^sub>0, d\<^sub>0])" | |
proof - | |
have "hom'.ide f'" | |
using assms hom'.ide_char hom'.arr_char by simp | |
hence "\<psi>.map f' = hom'.inv (d\<^sub>0e\<^sub>0.\<phi> f')" | |
using assms by simp | |
also have "... = inv (d\<^sub>0e\<^sub>0.\<phi> f')" | |
using hom'.inv_char \<open>hom'.ide f'\<close> by simp | |
also have "... = inv (d\<^sub>0e\<^sub>0.\<phi>\<^sub>0 f')" | |
using assms e\<^sub>0.antipar e\<^sub>1.antipar d\<^sub>0e\<^sub>0.\<phi>_eq d\<^sub>0e\<^sub>0.\<phi>_ide_simp [of f'] by simp | |
also have "... = ((((inv \<r>\<^sup>-\<^sup>1[f'] \<cdot> inv \<l>\<^sup>-\<^sup>1[f' \<star> trg e\<^sub>0]) \<cdot> inv (inv \<epsilon>\<^sub>1 \<star> f' \<star> inv \<epsilon>\<^sub>0)) \<cdot> | |
inv ((e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[f', e\<^sub>0, d\<^sub>0])) \<cdot> inv \<a>[e\<^sub>1, d\<^sub>1, (f' \<star> e\<^sub>0) \<star> d\<^sub>0]) \<cdot> | |
inv (e\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[d\<^sub>1, f' \<star> e\<^sub>0, d\<^sub>0])" | |
proof - | |
text \<open>There has to be a better way to do this.\<close> | |
have 1: "\<And>A B C D E F. | |
\<lbrakk> iso A; iso B; iso C; iso D; iso E; iso F; | |
arr (((((A \<cdot> B) \<cdot> C) \<cdot> D) \<cdot> E) \<cdot> F) \<rbrakk> \<Longrightarrow> | |
inv (((((A \<cdot> B) \<cdot> C) \<cdot> D) \<cdot> E) \<cdot> F) = | |
inv F \<cdot> inv E \<cdot> inv D \<cdot> inv C \<cdot> inv B \<cdot> inv A" | |
using inv_comp isos_compose seqE by metis | |
have "arr (d\<^sub>0e\<^sub>0.\<phi>\<^sub>0 f')" | |
using assms e\<^sub>0.antipar(2) e\<^sub>1.antipar(2) d\<^sub>0e\<^sub>0.iso_\<phi>\<^sub>0 [of f'] iso_is_arr by simp | |
moreover have "iso \<r>\<^sup>-\<^sup>1[f']" | |
using assms iso_runit' by simp | |
moreover have "iso \<l>\<^sup>-\<^sup>1[f' \<star> trg e\<^sub>0]" | |
using assms iso_lunit' by auto | |
moreover have "iso (inv \<epsilon>\<^sub>1 \<star> f' \<star> inv \<epsilon>\<^sub>0)" | |
using assms e\<^sub>0.antipar(2) e\<^sub>1.antipar(2) in_hhom_def by simp | |
moreover have "iso ((e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[f', e\<^sub>0, d\<^sub>0])" | |
using assms e\<^sub>0.antipar e\<^sub>1.antipar(1) e\<^sub>1.antipar(2) in_hhom_def iso_hcomp | |
by (metis calculation(1) e\<^sub>0.ide_left e\<^sub>0.ide_right e\<^sub>1.ide_left e\<^sub>1.ide_right hseqE | |
ide_is_iso iso_assoc' seqE) | |
moreover have "iso \<a>[e\<^sub>1, d\<^sub>1, (f' \<star> e\<^sub>0) \<star> d\<^sub>0]" | |
using assms e\<^sub>0.antipar e\<^sub>1.antipar by auto | |
moreover have "iso (e\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[d\<^sub>1, f' \<star> e\<^sub>0, d\<^sub>0])" | |
using assms e\<^sub>0.antipar e\<^sub>1.antipar | |
by (metis calculation(1) e\<^sub>0.ide_left e\<^sub>0.ide_right e\<^sub>1.ide_left e\<^sub>1.ide_right | |
iso_hcomp ide_hcomp hseqE ideD(1) ide_is_iso in_hhomE iso_assoc' | |
seqE hcomp_simps(1-2)) | |
ultimately show ?thesis | |
using 1 [of "e\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[d\<^sub>1, f' \<star> e\<^sub>0, d\<^sub>0]" "\<a>[e\<^sub>1, d\<^sub>1, (f' \<star> e\<^sub>0) \<star> d\<^sub>0]" | |
"(e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[f', e\<^sub>0, d\<^sub>0]" "inv \<epsilon>\<^sub>1 \<star> f' \<star> inv \<epsilon>\<^sub>0" "\<l>\<^sup>-\<^sup>1[f' \<star> trg e\<^sub>0]" "\<r>\<^sup>-\<^sup>1[f']"] | |
comp_assoc | |
by (metis e\<^sub>0.antipar(2)) | |
qed | |
also have "... = inv \<r>\<^sup>-\<^sup>1[f'] \<cdot> inv \<l>\<^sup>-\<^sup>1[f' \<star> trg e\<^sub>0] \<cdot> inv (inv \<epsilon>\<^sub>1 \<star> f' \<star> inv \<epsilon>\<^sub>0) \<cdot> | |
inv ((e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>\<^sup>-\<^sup>1[f', e\<^sub>0, d\<^sub>0]) \<cdot> inv \<a>[e\<^sub>1, d\<^sub>1, (f' \<star> e\<^sub>0) \<star> d\<^sub>0] \<cdot> | |
inv (e\<^sub>1 \<star> \<a>\<^sup>-\<^sup>1[d\<^sub>1, f' \<star> e\<^sub>0, d\<^sub>0])" | |
using comp_assoc by simp | |
also have "... = \<r>[f'] \<cdot> \<l>[f' \<star> trg e\<^sub>0] \<cdot> (\<epsilon>\<^sub>1 \<star> f' \<star> \<epsilon>\<^sub>0) \<cdot> ((e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>[f', e\<^sub>0, d\<^sub>0]) \<cdot> | |
\<a>\<^sup>-\<^sup>1[e\<^sub>1, d\<^sub>1, (f' \<star> e\<^sub>0) \<star> d\<^sub>0] \<cdot> (e\<^sub>1 \<star> \<a>[d\<^sub>1, f' \<star> e\<^sub>0, d\<^sub>0])" | |
proof - | |
have "inv \<r>\<^sup>-\<^sup>1[f'] = \<r>[f']" | |
using assms inv_inv iso_runit by blast | |
moreover have "inv \<l>\<^sup>-\<^sup>1[f' \<star> trg e\<^sub>0] = \<l>[f' \<star> trg e\<^sub>0]" | |
using assms iso_lunit by auto | |
moreover have "inv (inv \<epsilon>\<^sub>1 \<star> f' \<star> inv \<epsilon>\<^sub>0) = \<epsilon>\<^sub>1 \<star> f' \<star> \<epsilon>\<^sub>0" | |
proof - | |
have "src (inv \<epsilon>\<^sub>1) = trg f'" | |
using assms(1) e\<^sub>1.antipar(2) by auto | |
moreover have "src f' = trg (inv \<epsilon>\<^sub>0)" | |
using assms(1) e\<^sub>0.antipar(2) by auto | |
ultimately show ?thesis | |
using assms(2) e\<^sub>0.counit_is_iso e\<^sub>1.counit_is_iso by simp | |
qed | |
ultimately show ?thesis | |
using assms e\<^sub>0.antipar e\<^sub>1.antipar by auto | |
qed | |
finally show ?thesis | |
using \<psi>_def by simp | |
qed | |
lemma \<psi>_components_are_iso: | |
assumes "\<guillemotleft>f' : trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>" and "ide f'" | |
shows "iso (\<psi> f')" | |
using assms \<psi>_def \<psi>.components_are_iso hom'.ide_char hom'.arr_char hom'.iso_char | |
by simp | |
lemma \<psi>_eq: | |
shows "\<psi> = (\<lambda>\<mu>'. if \<guillemotleft>\<mu>': trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright> then | |
\<mu>' \<cdot> \<r>[dom \<mu>'] \<cdot> \<l>[dom \<mu>' \<star> trg e\<^sub>0] \<cdot> (\<epsilon>\<^sub>1 \<star> dom \<mu>' \<star> \<epsilon>\<^sub>0) \<cdot> | |
((e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>[dom \<mu>', e\<^sub>0, d\<^sub>0]) \<cdot> \<a>\<^sup>-\<^sup>1[e\<^sub>1, d\<^sub>1, (dom \<mu>' \<star> e\<^sub>0) \<star> d\<^sub>0] \<cdot> | |
(e\<^sub>1 \<star> \<a>[d\<^sub>1, dom \<mu>' \<star> e\<^sub>0, d\<^sub>0]) | |
else null)" | |
proof | |
fix \<mu>' | |
have "\<not> \<guillemotleft>\<mu>': trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright> \<Longrightarrow> \<psi>.map \<mu>' = null" | |
using \<psi>.is_extensional hom'.arr_char hom'.null_char by simp | |
moreover have "\<guillemotleft>\<mu>': trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright> \<Longrightarrow> | |
\<psi>.map \<mu>' = \<mu>' \<cdot> \<r>[dom \<mu>'] \<cdot> \<l>[dom \<mu>' \<star> trg e\<^sub>0] \<cdot> (\<epsilon>\<^sub>1 \<star> dom \<mu>' \<star> \<epsilon>\<^sub>0) \<cdot> | |
((e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>[dom \<mu>', e\<^sub>0, d\<^sub>0]) \<cdot> \<a>\<^sup>-\<^sup>1[e\<^sub>1, d\<^sub>1, (dom \<mu>' \<star> e\<^sub>0) \<star> d\<^sub>0] \<cdot> | |
(e\<^sub>1 \<star> \<a>[d\<^sub>1, dom \<mu>' \<star> e\<^sub>0, d\<^sub>0])" | |
proof - | |
assume \<mu>': "\<guillemotleft>\<mu>': trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>" | |
have "\<guillemotleft>\<psi>.map (dom \<mu>') : trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>" | |
using \<mu>' hom'.arr_char hom'.dom_closed by auto | |
moreover have "seq \<mu>' (\<psi>.map (dom \<mu>'))" | |
proof - | |
have "hom'.seq \<mu>' (\<psi>.map (dom \<mu>'))" | |
using \<mu>' \<psi>.preserves_cod hom'.arrI hom'.dom_simp hom'.cod_simp | |
apply (intro hom'.seqI) by auto | |
thus ?thesis | |
using hom'.seq_char by blast | |
qed | |
ultimately show ?thesis | |
using \<mu>' \<psi>.is_natural_1 [of \<mu>'] hom'.comp_char hom'.arr_char hom'.dom_closed | |
\<psi>_ide_simp [of "dom \<mu>'"] hom'.dom_simp hom'.cod_simp | |
apply auto | |
by (metis \<psi>_def hom'.inclusion ide_dom) | |
qed | |
ultimately show "\<psi> \<mu>' = (if \<guillemotleft>\<mu>' : trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright> then | |
\<mu>' \<cdot> \<r>[dom \<mu>'] \<cdot> \<l>[dom \<mu>' \<star> trg e\<^sub>0] \<cdot> (\<epsilon>\<^sub>1 \<star> dom \<mu>' \<star> \<epsilon>\<^sub>0) \<cdot> | |
((e\<^sub>1 \<star> d\<^sub>1) \<star> \<a>[dom \<mu>', e\<^sub>0, d\<^sub>0]) \<cdot> | |
\<a>\<^sup>-\<^sup>1[e\<^sub>1, d\<^sub>1, (dom \<mu>' \<star> e\<^sub>0) \<star> d\<^sub>0] \<cdot> | |
(e\<^sub>1 \<star> \<a>[d\<^sub>1, dom \<mu>' \<star> e\<^sub>0, d\<^sub>0]) | |
else null)" | |
unfolding \<psi>_def by argo | |
qed | |
lemma \<psi>_in_hom [intro]: | |
assumes "\<guillemotleft>\<mu>' : trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>" | |
shows "\<guillemotleft>\<psi> \<mu>' : trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>" | |
and "\<guillemotleft>\<psi> \<mu>' : e\<^sub>1 \<star> (d\<^sub>1 \<star> dom \<mu>' \<star> e\<^sub>0) \<star> d\<^sub>0 \<Rightarrow> cod \<mu>'\<guillemotright>" | |
proof - | |
have 0: "\<psi> \<mu>' = \<psi>.map \<mu>'" | |
using \<psi>_def by auto | |
hence 1: "hom'.arr (\<psi> \<mu>')" | |
using assms hom'.arr_char \<psi>.preserves_reflects_arr by auto | |
show "\<guillemotleft>\<psi> \<mu>' : trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>" | |
using 1 hom'.arr_char by blast | |
show "\<guillemotleft>\<psi> \<mu>' : e\<^sub>1 \<star> (d\<^sub>1 \<star> dom \<mu>' \<star> e\<^sub>0) \<star> d\<^sub>0 \<Rightarrow> cod \<mu>'\<guillemotright>" | |
using assms 0 1 \<psi>.preserves_hom hom'.in_hom_char hom'.arr_char | |
e\<^sub>0.antipar e\<^sub>1.antipar \<psi>.preserves_dom \<psi>.preserves_cod hom'.dom_char | |
apply (intro in_homI) | |
apply auto[1] | |
proof - | |
show "dom (\<psi> \<mu>') = e\<^sub>1 \<star> (d\<^sub>1 \<star> dom \<mu>' \<star> e\<^sub>0) \<star> d\<^sub>0" | |
proof - | |
have "hom'.dom (\<psi> \<mu>') = FG.map (hom'.dom \<mu>')" | |
using assms 0 \<psi>.preserves_dom hom'.arr_char | |
by (metis (no_types, lifting)) | |
thus ?thesis | |
using assms 0 1 hom.arr_char hom'.arr_char hom'.dom_char G.preserves_arr | |
hom'.dom_closed | |
by auto | |
qed | |
show "cod (\<psi> \<mu>') = cod \<mu>'" | |
proof - | |
have "hom'.cod (\<psi> \<mu>') = cod \<mu>'" | |
using assms 0 \<psi>.preserves_cod hom'.arr_char hom'.cod_simp by auto | |
thus ?thesis | |
using assms 0 1 hom'.arr_char hom'.cod_char G.preserves_arr hom'.cod_closed by auto | |
qed | |
qed | |
qed | |
lemma \<psi>_simps [simp]: | |
assumes "\<guillemotleft>\<mu>' : trg e\<^sub>0 \<rightarrow> trg e\<^sub>1\<guillemotright>" | |
shows "arr (\<psi> \<mu>')" | |
and "src (\<psi> \<mu>') = trg e\<^sub>0" and "trg (\<psi> \<mu>') = trg e\<^sub>1" | |
and "dom (\<psi> \<mu>') = e\<^sub>1 \<star> (d\<^sub>1 \<star> dom \<mu>' \<star> e\<^sub>0) \<star> d\<^sub>0" and "cod (\<psi> \<mu>') = cod \<mu>'" | |
using assms \<psi>_in_hom by auto | |
interpretation equivalence_of_categories hom'.comp hom.comp F G \<phi> \<psi> | |
proof - | |
interpret \<phi>: natural_isomorphism hom.comp hom.comp hom.map \<open>G o F\<close> \<phi> | |
using \<phi>.natural_isomorphism_axioms \<phi>_def by simp | |
interpret \<psi>: natural_isomorphism hom'.comp hom'.comp \<open>F o G\<close> hom'.map \<psi> | |
using \<psi>.natural_isomorphism_axioms \<psi>_def by simp | |
show "equivalence_of_categories hom'.comp hom.comp F G \<phi> \<psi>" | |
.. | |
qed | |
lemma induces_equivalence_of_hom_categories: | |
shows "equivalence_of_categories hom'.comp hom.comp F G \<phi> \<psi>" | |
.. | |
lemma equivalence_functor_F: | |
shows "equivalence_functor hom.comp hom'.comp F" | |
proof - | |
interpret \<phi>': inverse_transformation hom.comp hom.comp hom.map \<open>G o F\<close> \<phi> .. | |
interpret \<psi>': inverse_transformation hom'.comp hom'.comp \<open>F o G\<close> hom'.map \<psi> .. | |
interpret E: equivalence_of_categories hom.comp hom'.comp G F \<psi>'.map \<phi>'.map .. | |
show ?thesis | |
using E.equivalence_functor_axioms by simp | |
qed | |
lemma equivalence_functor_G: | |
shows "equivalence_functor hom'.comp hom.comp G" | |
using equivalence_functor_axioms by simp | |
end | |
context bicategory | |
begin | |
text \<open> | |
We now use the just-established equivalence of hom-categories to prove some cancellation | |
laws for equivalence maps. It is relatively straightforward to prove these results | |
directly, without using the just-established equivalence, but the proofs are somewhat | |
longer that way. | |
\<close> | |
lemma equivalence_cancel_left: | |
assumes "equivalence_map e" | |
and "par \<mu> \<mu>'" and "src e = trg \<mu>" and "e \<star> \<mu> = e \<star> \<mu>'" | |
shows "\<mu> = \<mu>'" | |
proof - | |
obtain d \<eta> \<epsilon> where d\<eta>\<epsilon>: "equivalence_in_bicategory V H \<a> \<i> src trg e d \<eta> \<epsilon>" | |
using assms equivalence_map_def by auto | |
interpret e: equivalence_in_bicategory V H \<a> \<i> src trg e d \<eta> \<epsilon> | |
using d\<eta>\<epsilon> by simp | |
interpret i: equivalence_in_bicategory V H \<a> \<i> src trg | |
\<open>src \<mu>\<close> \<open>src \<mu>\<close> \<open>inv \<i>[src \<mu>]\<close> \<open>\<i>[src \<mu>]\<close> | |
using assms iso_unit obj_src | |
by unfold_locales simp_all | |
interpret two_equivalences_in_bicategory V H \<a> \<i> src trg | |
\<open>src \<mu>\<close> \<open>src \<mu>\<close> \<open>inv \<i>[src \<mu>]\<close> \<open>\<i>[src \<mu>]\<close> e d \<eta> \<epsilon> | |
.. | |
interpret hom: subcategory V \<open>\<lambda>\<mu>'. in_hhom \<mu>' (src (src \<mu>)) (src e)\<close> | |
using hhom_is_subcategory by blast | |
interpret hom': subcategory V \<open>\<lambda>\<mu>'. in_hhom \<mu>' (trg (src \<mu>)) (trg e)\<close> | |
using hhom_is_subcategory by blast | |
interpret F: equivalence_functor hom.comp hom'.comp \<open>\<lambda>\<mu>'. e \<star> \<mu>' \<star> src \<mu>\<close> | |
using equivalence_functor_F by simp | |
have "F \<mu> = F \<mu>'" | |
using assms hom.arr_char | |
apply simp | |
by (metis e.ide_left hcomp_reassoc(2) i.ide_right ideD(1) src_dom trg_dom trg_src) | |
moreover have "hom.par \<mu> \<mu>'" | |
using assms hom.arr_char hom.dom_char hom.cod_char | |
by (metis (no_types, lifting) in_hhomI src_dom src_src trg_dom) | |
ultimately show "\<mu> = \<mu>'" | |
using F.is_faithful by blast | |
qed | |
lemma equivalence_cancel_right: | |
assumes "equivalence_map e" | |
and "par \<mu> \<mu>'" and "src \<mu> = trg e" and "\<mu> \<star> e = \<mu>' \<star> e" | |
shows "\<mu> = \<mu>'" | |
proof - | |
obtain d \<eta> \<epsilon> where d\<eta>\<epsilon>: "equivalence_in_bicategory V H \<a> \<i> src trg e d \<eta> \<epsilon>" | |
using assms equivalence_map_def by auto | |
interpret e: equivalence_in_bicategory V H \<a> \<i> src trg e d \<eta> \<epsilon> | |
using d\<eta>\<epsilon> by simp | |
interpret i: equivalence_in_bicategory V H \<a> \<i> src trg | |
\<open>trg \<mu>\<close> \<open>trg \<mu>\<close> \<open>inv \<i>[trg \<mu>]\<close> \<open>\<i>[trg \<mu>]\<close> | |
using assms iso_unit obj_src | |
by unfold_locales simp_all | |
interpret two_equivalences_in_bicategory V H \<a> \<i> src trg | |
e d \<eta> \<epsilon> \<open>trg \<mu>\<close> \<open>trg \<mu>\<close> \<open>inv \<i>[trg \<mu>]\<close> \<open>\<i>[trg \<mu>]\<close> | |
.. | |
interpret hom: subcategory V \<open>\<lambda>\<mu>'. in_hhom \<mu>' (trg e) (trg (trg \<mu>))\<close> | |
using hhom_is_subcategory by blast | |
interpret hom': subcategory V \<open>\<lambda>\<mu>'. in_hhom \<mu>' (src e) (src (trg \<mu>))\<close> | |
using hhom_is_subcategory by blast | |
interpret G: equivalence_functor hom.comp hom'.comp \<open>\<lambda>\<mu>'. trg \<mu> \<star> \<mu>' \<star> e\<close> | |
using equivalence_functor_G by simp | |
have "G \<mu> = G \<mu>'" | |
using assms hom.arr_char by simp | |
moreover have "hom.par \<mu> \<mu>'" | |
using assms hom.arr_char hom.dom_char hom.cod_char | |
by (metis (no_types, lifting) in_hhomI src_dom trg_dom trg_trg) | |
ultimately show "\<mu> = \<mu>'" | |
using G.is_faithful by blast | |
qed | |
lemma equivalence_isomorphic_cancel_left: | |
assumes "equivalence_map e" and "ide f" and "ide f'" | |
and "src f = src f'" and "src e = trg f" and "e \<star> f \<cong> e \<star> f'" | |
shows "f \<cong> f'" | |
proof - | |
have ef': "src e = trg f'" | |
using assms R.as_nat_iso.components_are_iso iso_is_arr isomorphic_implies_hpar(2) | |
by blast | |
obtain d \<eta> \<epsilon> where e: "equivalence_in_bicategory V H \<a> \<i> src trg e d \<eta> \<epsilon>" | |
using assms equivalence_map_def by auto | |
interpret e: equivalence_in_bicategory V H \<a> \<i> src trg e d \<eta> \<epsilon> | |
using e by simp | |
interpret i: equivalence_in_bicategory V H \<a> \<i> src trg | |
\<open>src f\<close> \<open>src f\<close> \<open>inv \<i>[src f]\<close> \<open>\<i>[src f]\<close> | |
using assms iso_unit obj_src | |
by unfold_locales auto | |
interpret two_equivalences_in_bicategory V H \<a> \<i> src trg | |
\<open>src f\<close> \<open>src f\<close> \<open>inv \<i>[src f]\<close> \<open>\<i>[src f]\<close> e d \<eta> \<epsilon> | |
.. | |
interpret hom: subcategory V \<open>\<lambda>\<mu>'. in_hhom \<mu>' (src (src f)) (src e)\<close> | |
using hhom_is_subcategory by blast | |
interpret hom': subcategory V \<open>\<lambda>\<mu>'. in_hhom \<mu>' (trg (src f)) (trg e)\<close> | |
using hhom_is_subcategory by blast | |
interpret F: equivalence_functor hom.comp hom'.comp \<open>\<lambda>\<mu>'. e \<star> \<mu>' \<star> src f\<close> | |
using equivalence_functor_F by simp | |
have 1: "F f \<cong> F f'" | |
proof - | |
have "F f \<cong> (e \<star> f) \<star> src f" | |
using assms hcomp_assoc_isomorphic equivalence_map_is_ide isomorphic_symmetric | |
by auto | |
also have "... \<cong> (e \<star> f') \<star> src f'" | |
using assms ef' by (simp add: hcomp_isomorphic_ide) | |
also have "... \<cong> F f'" | |
using assms ef' hcomp_assoc_isomorphic equivalence_map_is_ide by auto | |
finally show ?thesis by blast | |
qed | |
show "f \<cong> f'" | |
proof - | |
obtain \<psi> where \<psi>: "\<guillemotleft>\<psi> : F f \<Rightarrow> F f'\<guillemotright> \<and> iso \<psi>" | |
using 1 isomorphic_def by auto | |
have 2: "hom'.iso \<psi>" | |
using assms \<psi> hom'.iso_char hom'.arr_char vconn_implies_hpar(1,2) | |
by auto | |
have 3: "hom'.in_hom \<psi> (F f) (F f')" | |
using assms 2 \<psi> ef' hom'.in_hom_char hom'.arr_char | |
by (metis F.preserves_reflects_arr hom'.iso_is_arr hom.arr_char i.antipar(1) | |
ideD(1) ide_in_hom(1) trg_src) | |
obtain \<phi> where \<phi>: "hom.in_hom \<phi> f f' \<and> F \<phi> = \<psi>" | |
using assms 3 \<psi> F.is_full F.preserves_reflects_arr hom'.in_hom_char hom.ide_char | |
by fastforce | |
have "hom.iso \<phi>" | |
using 2 \<phi> F.reflects_iso by auto | |
thus ?thesis | |
using \<phi> isomorphic_def hom.in_hom_char hom.arr_char hom.iso_char by auto | |
qed | |
qed | |
lemma equivalence_isomorphic_cancel_right: | |
assumes "equivalence_map e" and "ide f" and "ide f'" | |
and "trg f = trg f'" and "src f = trg e" and "f \<star> e \<cong> f' \<star> e" | |
shows "f \<cong> f'" | |
proof - | |
have f'e: "src f' = trg e" | |
using assms R.as_nat_iso.components_are_iso iso_is_arr isomorphic_implies_hpar(2) | |
by blast | |
obtain d \<eta> \<epsilon> where d\<eta>\<epsilon>: "equivalence_in_bicategory V H \<a> \<i> src trg e d \<eta> \<epsilon>" | |
using assms equivalence_map_def by auto | |
interpret e: equivalence_in_bicategory V H \<a> \<i> src trg e d \<eta> \<epsilon> | |
using d\<eta>\<epsilon> by simp | |
interpret i: equivalence_in_bicategory V H \<a> \<i> src trg | |
\<open>trg f\<close> \<open>trg f\<close> \<open>inv \<i>[trg f]\<close> \<open>\<i>[trg f]\<close> | |
using assms iso_unit obj_src | |
by unfold_locales auto | |
interpret two_equivalences_in_bicategory V H \<a> \<i> src trg | |
e d \<eta> \<epsilon> \<open>trg f\<close> \<open>trg f\<close> \<open>inv \<i>[trg f]\<close> \<open>\<i>[trg f]\<close> | |
.. | |
interpret hom: subcategory V \<open>\<lambda>\<mu>'. in_hhom \<mu>' (trg e) (trg (trg f))\<close> | |
using hhom_is_subcategory by blast | |
interpret hom': subcategory V \<open>\<lambda>\<mu>'. in_hhom \<mu>' (src e) (src (trg f))\<close> | |
using hhom_is_subcategory by blast | |
interpret G: equivalence_functor hom.comp hom'.comp \<open>\<lambda>\<mu>'. trg f \<star> \<mu>' \<star> e\<close> | |
using equivalence_functor_G by simp | |
have 1: "G f \<cong> G f'" | |
using assms hcomp_isomorphic_ide hcomp_ide_isomorphic by simp | |
show "f \<cong> f'" | |
proof - | |
obtain \<psi> where \<psi>: "\<guillemotleft>\<psi> : G f \<Rightarrow> G f'\<guillemotright> \<and> iso \<psi>" | |
using 1 isomorphic_def by auto | |
have 2: "hom'.iso \<psi>" | |
using assms \<psi> hom'.iso_char hom'.arr_char vconn_implies_hpar(1-2) by auto | |
have 3: "hom'.in_hom \<psi> (G f) (G f')" | |
using assms 2 \<psi> f'e hom'.in_hom_char hom'.arr_char | |
by (metis G.preserves_arr hom'.iso_is_arr hom.ideI hom.ide_char ideD(1) | |
ide_in_hom(1) trg_trg) | |
obtain \<phi> where \<phi>: "hom.in_hom \<phi> f f' \<and> G \<phi> = \<psi>" | |
using assms 3 \<psi> G.is_full G.preserves_reflects_arr hom'.in_hom_char hom.ide_char | |
by fastforce | |
have "hom.iso \<phi>" | |
using 2 \<phi> G.reflects_iso by auto | |
thus ?thesis | |
using \<phi> isomorphic_def hom.in_hom_char hom.arr_char hom.iso_char by auto | |
qed | |
qed | |
end | |
end | |