Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.2 kB
import analysis.normed_space.banach
import analysis.mean_inequalities_pow
import normed_group.normed_with_aut
/-!
# p-Banach spaces
A `p`-Banach space is just like an ordinary Banach space,
except that the axiom `∥c • v∥ = ∥c∥ * ∥v∥` is replaced by `∥c • v∥ = ∥c∥^p * ∥v∥`.
In other words, a `p`-Banach space is a complete topological vector space
whose topology is induced by a `p`-norm.
In this file, we define `p`-normed spaces, called `normed_space'`,
and we prove that every `p`-normed space is also `p'`-normed, for `0 < p' ≤ p`.
-/
noncomputable theory
open_locale nnreal
section
structure has_p_norm (V : Type*) (p : ℝ)
[add_comm_group V] [module ℝ V] [uniform_space V] extends has_norm V :=
(norm_smul : ∀ (α : ℝ) (v : V), ∥α • v∥ = |α|^p • ∥v∥)
(triangle : ∀ (v w : V), ∥v+w∥ ≤ ∥v∥ + ∥w∥)
(uniformity : uniformity V = ⨅ (ε : ℝ) (H : ε > 0),
filter.principal {p : V × V | ∥p.fst - p.snd∥ < ε})
variables (V : Type*) (p : ℝ) [add_comm_group V] [module ℝ V] [uniform_space V]
def has_p_norm.seminormed_add_comm_group [fact (0 < p)] (h : has_p_norm V p) : seminormed_add_comm_group V :=
{ to_uniform_space := by apply_instance,
uniformity_dist := h.uniformity,
to_add_comm_group := by apply_instance,
.. @seminormed_add_comm_group.of_core V _ h.to_has_norm $
have hp0 : p ≠ 0 := (fact.out _ : 0 < p).ne',
{ norm_zero := by simpa only [zero_smul, abs_zero, real.zero_rpow hp0] using h.norm_smul 0 0,
triangle := h.triangle,
norm_neg := λ v, by simpa only [neg_smul, one_smul, abs_neg, abs_one, real.one_rpow]
using h.norm_smul (-1) v } }
structure p_banach : Prop :=
(exists_p_norm : nonempty (has_p_norm V p))
[topological_add_group : topological_add_group V]
[continuous_smul : has_continuous_smul ℝ V]
[complete : complete_space V]
[separated : separated_space V]
end
structure pBanach (p : ℝ) :=
(V : Type*)
[add_comm_group' : add_comm_group V]
[module' : module ℝ V]
[uniform_space' : uniform_space V]
(p_banach' : p_banach V p)
namespace pBanach
variables (p : ℝ) (V : pBanach p)
instance : has_coe_to_sort (pBanach p) (Type*) := ⟨λ X, X.V⟩
instance : _root_.add_comm_group V := V.add_comm_group'
instance : _root_.module ℝ V := V.module'
instance : _root_.uniform_space V := V.uniform_space'
instance : _root_.topological_add_group V := V.p_banach'.topological_add_group
instance : _root_.has_continuous_smul ℝ V := V.p_banach'.continuous_smul
instance : _root_.complete_space V := V.p_banach'.complete
instance : _root_.separated_space V := V.p_banach'.separated
variables {p}
/-- Highly non-canonical! -/
def choose_seminormed_add_comm_group [fact (0 < p)] : seminormed_add_comm_group V :=
(classical.choice V.p_banach'.exists_p_norm).seminormed_add_comm_group V p
@[simps] def smul_normed_hom [fact (0 < p)] (x : ℝ) :
@normed_add_group_hom V V V.choose_seminormed_add_comm_group V.choose_seminormed_add_comm_group :=
{ to_fun := λ v, x • v,
map_add' := λ v₁ v₂, smul_add _ _ _,
bound' := ⟨|x|^p, λ v, by rw [has_p_norm.norm_smul, smul_eq_mul]⟩ }
/-- Highly non-canonical! -/
def choose_normed_with_aut [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] :
normed_with_aut (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ :=
{ T :=
{ hom := smul_normed_hom V x,
inv := smul_normed_hom V (x⁻¹),
hom_inv_id' := by { ext v, dsimp, rw [← mul_smul, inv_mul_cancel, one_smul],
exact_mod_cast (fact.out _ : 0 < x).ne' },
inv_hom_id' := by { ext v, dsimp, rw [← mul_smul, mul_inv_cancel, one_smul],
exact_mod_cast (fact.out _ : 0 < x).ne' } } ,
norm_T := λ v, by { dsimp, rw [has_p_norm.norm_smul, smul_eq_mul], congr' 2,
rw abs_eq_self, exact x.coe_nonneg } }
@[simp]
lemma choose_normed_with_aut_T_hom [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] (v : V) :
(@normed_with_aut.T (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ (V.choose_normed_with_aut x)).hom v =
x • v := rfl
@[simp]
lemma choose_normed_with_aut_T_inv [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] (v : V) :
(@normed_with_aut.T (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ (V.choose_normed_with_aut x)).inv v =
x⁻¹ • v := rfl
end pBanach
-- noncomputable
-- def pBanach'_is_qBanach' (V: Type*) (p : ℝ) [fact (0 < p)] [fact (p ≤ 1)] (q : ℝ) [fact (0 < q)]
-- [fact (q ≤ 1)] [add_comm_group V] [module ℝ V] [uniform_space V] [has_continuous_smul ℝ V]
-- [topological_add_group V] [complete_space V] (hp : pBanach' V p) : pBanach' V q :=
-- begin
-- cases hp,
-- let Hp_norm := hp.some,
-- let ψ := Hp_norm.norm,
-- use λ v : V, (ψ v)^(q/p),--[FAE] Why λ v, ((h_p_norm.norm) v)^(q/p) does not work?
-- intros α v,
-- dsimp only [ψ],
-- admit,
-- admit,
-- rw [Hp_norm.p_norm α v, smul_eq_mul, real.mul_rpow, ← real.rpow_mul, mul_div_cancel'],
-- exacts [refl _, ne_of_gt (fact.out _), abs_nonneg α,
-- (real.rpow_nonneg_of_nonneg (abs_nonneg α) p), hp_nonneg_norm v,
-- (λ _, (real.rpow_nonneg_of_nonneg (hp_nonneg_norm _) _))],
-- end
section obsolete
-- move this
lemma real.add_rpow_le {x y r : ℝ}
(hx : 0 ≤ x) (hy : 0 ≤ y) (h0r : 0 ≤ r) (hr1 : r ≤ 1) :
(x + y)^r ≤ x^r + y^r :=
begin
by_cases hr : 0 = r,
{ subst r, simp only [zero_le_one, real.rpow_zero, le_add_iff_nonneg_left], },
let x' : ℝ≥0 := ⟨x, hx⟩,
let y' : ℝ≥0 := ⟨y, hy⟩,
exact_mod_cast ennreal.rpow_add_le_add_rpow x' y' (lt_of_le_of_ne h0r hr) hr1,
end
set_option extends_priority 920
-- Here, we set a rather high priority for the instance `[normed_space α β] : module α β`
-- to take precedence over `semiring.to_module` as this leads to instance paths with better
-- unification properties.
/-- A normed space over a normed field is a vector space endowed with a norm which satisfies the
equality `∥c • x∥ = ∥c∥ ∥x∥`. We require only `∥c • x∥ ≤ ∥c∥ ∥x∥` in the definition, then prove
`∥c • x∥ = ∥c∥ ∥x∥` in `norm_smul`. -/
class normed_space' (𝕜 : Type*) (p : out_param ℝ) (V : Type*)
[normed_field 𝕜] [normed_add_comm_group V] [module 𝕜 V] :=
(norm_smul : ∀ (c:𝕜) (v:V), ∥c • v∥ = ∥c∥^p * ∥v∥)
@[priority 100]
instance normed_space.normed_space'
(𝕜 : Type*) (V : Type*) [normed_field 𝕜] [normed_add_comm_group V] [normed_space 𝕜 V] :
normed_space' 𝕜 1 V :=
{ norm_smul := λ c k, by simp only [real.rpow_one, norm_smul] }
/-- A type alias: `as_normed_space' p' V` is a `p'`-normed space over `𝕜`,
when `V` is a `p`-normed space over `𝕜` and `0 < p' ≤ p`. -/
@[nolint unused_arguments]
def as_normed_space' (p' : ℝ) (V : Type*) := V
namespace as_normed_space'
instance (p' : ℝ) (V : Type*) [i : inhabited V] : inhabited (as_normed_space' p' V) := i
/-- The identity map `V → as_normed_space' p' V`. -/
def up (p' : ℝ) {V : Type*} (v : V) : as_normed_space' p' V := v
/-- The identity map `as_normed_space' p' V → V`. -/
def down {p' : ℝ} {V : Type*} (v : as_normed_space' p' V) : V := v
instance (p' : ℝ) (V : Type*) [i : add_comm_group V] : add_comm_group (as_normed_space' p' V) := i
instance (p' : ℝ) (𝕜 V : Type*) [ring 𝕜] [add_comm_group V] [i : module 𝕜 V] :
module 𝕜 (as_normed_space' p' V) := i
@[simp] lemma down_add {p' : ℝ} {V : Type*} [add_comm_group V] (v w : as_normed_space' p' V) :
(v+w).down = v.down + w.down := rfl
@[simp] lemma down_neg {p' : ℝ} {V : Type*} [add_comm_group V] (v : as_normed_space' p' V) :
(-v).down = - v.down := rfl
@[simp] lemma down_smul {p' : ℝ} {𝕜 V : Type*} [ring 𝕜] [add_comm_group V] [module 𝕜 V]
(c : 𝕜) (v : as_normed_space' p' V) :
(c • v).down = c • v.down := rfl
/-- The natural `p'`-norm on `as_normed_space' p' V` induced by a `p`-norm on `V`. -/
protected def has_norm (p' p : ℝ) (V : Type*) [has_norm V] :
has_norm (as_normed_space' p' V) :=
⟨λ v, ∥v.down∥^(p'/p)⟩
lemma norm_def {V : Type*} [has_norm V] (p' p : ℝ) (v : as_normed_space' p' V) :
@has_norm.norm _ (as_normed_space'.has_norm p' p V) v = ∥v.down∥^(p'/p) := rfl
/-- The natural `p'`-normed group structure on `as_normed_space' p' V`
induced by a `p`-normed group structure on `V` -/
protected def normed_add_comm_group (V : Type*) [normed_add_comm_group V] (p' p : ℝ) [fact (0 < p')] [fact (p' ≤ p)] :
normed_add_comm_group (as_normed_space' p' V) :=
@normed_add_comm_group.of_core _ _ (as_normed_space'.has_norm p' p V) $
have hp' : 0 < p' := fact.out _,
have hp : 0 < p := lt_of_lt_of_le hp' (fact.out _),
have H : 0 < p'/p := div_pos hp' hp,
{ norm_eq_zero_iff := λ v, show ∥v.down∥^(p'/p) = 0 ↔ v = 0,
by simpa only [real.rpow_eq_zero_iff_of_nonneg (norm_nonneg v.down), norm_eq_zero,
H.ne', and_true, ne.def, not_false_iff],
triangle := λ v w, show ∥(v+w).down∥^(p'/p) ≤ ∥v.down∥^(p'/p) + ∥w.down∥^(p'/p),
begin
rw [down_add],
calc ∥v.down + w.down∥ ^ (p' / p)
≤ (∥v.down∥ + ∥w.down∥) ^ (p' / p) : real.rpow_le_rpow (norm_nonneg _) (norm_add_le _ _) H.le
... ≤ ∥v.down∥ ^ (p' / p) + ∥w.down∥ ^ (p' / p) :
real.add_rpow_le (norm_nonneg _) (norm_nonneg _) H.le _,
rw [div_le_iff hp, one_mul],
exact fact.out _
end,
norm_neg := λ v, show ∥(-v).down∥^(p'/p) = ∥v.down∥^(p'/p), by rw [down_neg, norm_neg] }
local attribute [instance] as_normed_space'.normed_add_comm_group
instance (𝕜 : Type*) (V : Type*) [normed_field 𝕜] [normed_add_comm_group V] [module 𝕜 V]
(p' p : ℝ) [fact (0 < p')] [fact (p' ≤ p)] [normed_space' 𝕜 p V] :
normed_space' 𝕜 p' (as_normed_space' p' V) :=
{ norm_smul := λ c v,
begin
have hp' : 0 < p' := fact.out _,
have hp : 0 < p := lt_of_lt_of_le hp' (fact.out _),
rw [norm_def, norm_def, down_smul, normed_space'.norm_smul, real.mul_rpow, ← real.rpow_mul,
mul_div_cancel' _ hp.ne'],
{ exact norm_nonneg _ },
{ exact real.rpow_nonneg_of_nonneg (norm_nonneg _) _ },
{ exact norm_nonneg _ },
end }
end as_normed_space'
end obsolete