Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import analysis.normed_space.banach | |
import analysis.mean_inequalities_pow | |
import normed_group.normed_with_aut | |
/-! | |
# p-Banach spaces | |
A `p`-Banach space is just like an ordinary Banach space, | |
except that the axiom `∥c • v∥ = ∥c∥ * ∥v∥` is replaced by `∥c • v∥ = ∥c∥^p * ∥v∥`. | |
In other words, a `p`-Banach space is a complete topological vector space | |
whose topology is induced by a `p`-norm. | |
In this file, we define `p`-normed spaces, called `normed_space'`, | |
and we prove that every `p`-normed space is also `p'`-normed, for `0 < p' ≤ p`. | |
-/ | |
noncomputable theory | |
open_locale nnreal | |
section | |
structure has_p_norm (V : Type*) (p : ℝ) | |
[add_comm_group V] [module ℝ V] [uniform_space V] extends has_norm V := | |
(norm_smul : ∀ (α : ℝ) (v : V), ∥α • v∥ = |α|^p • ∥v∥) | |
(triangle : ∀ (v w : V), ∥v+w∥ ≤ ∥v∥ + ∥w∥) | |
(uniformity : uniformity V = ⨅ (ε : ℝ) (H : ε > 0), | |
filter.principal {p : V × V | ∥p.fst - p.snd∥ < ε}) | |
variables (V : Type*) (p : ℝ) [add_comm_group V] [module ℝ V] [uniform_space V] | |
def has_p_norm.seminormed_add_comm_group [fact (0 < p)] (h : has_p_norm V p) : seminormed_add_comm_group V := | |
{ to_uniform_space := by apply_instance, | |
uniformity_dist := h.uniformity, | |
to_add_comm_group := by apply_instance, | |
.. @seminormed_add_comm_group.of_core V _ h.to_has_norm $ | |
have hp0 : p ≠ 0 := (fact.out _ : 0 < p).ne', | |
{ norm_zero := by simpa only [zero_smul, abs_zero, real.zero_rpow hp0] using h.norm_smul 0 0, | |
triangle := h.triangle, | |
norm_neg := λ v, by simpa only [neg_smul, one_smul, abs_neg, abs_one, real.one_rpow] | |
using h.norm_smul (-1) v } } | |
structure p_banach : Prop := | |
(exists_p_norm : nonempty (has_p_norm V p)) | |
[topological_add_group : topological_add_group V] | |
[continuous_smul : has_continuous_smul ℝ V] | |
[complete : complete_space V] | |
[separated : separated_space V] | |
end | |
structure pBanach (p : ℝ) := | |
(V : Type*) | |
[add_comm_group' : add_comm_group V] | |
[module' : module ℝ V] | |
[uniform_space' : uniform_space V] | |
(p_banach' : p_banach V p) | |
namespace pBanach | |
variables (p : ℝ) (V : pBanach p) | |
instance : has_coe_to_sort (pBanach p) (Type*) := ⟨λ X, X.V⟩ | |
instance : _root_.add_comm_group V := V.add_comm_group' | |
instance : _root_.module ℝ V := V.module' | |
instance : _root_.uniform_space V := V.uniform_space' | |
instance : _root_.topological_add_group V := V.p_banach'.topological_add_group | |
instance : _root_.has_continuous_smul ℝ V := V.p_banach'.continuous_smul | |
instance : _root_.complete_space V := V.p_banach'.complete | |
instance : _root_.separated_space V := V.p_banach'.separated | |
variables {p} | |
/-- Highly non-canonical! -/ | |
def choose_seminormed_add_comm_group [fact (0 < p)] : seminormed_add_comm_group V := | |
(classical.choice V.p_banach'.exists_p_norm).seminormed_add_comm_group V p | |
@[simps] def smul_normed_hom [fact (0 < p)] (x : ℝ) : | |
@normed_add_group_hom V V V.choose_seminormed_add_comm_group V.choose_seminormed_add_comm_group := | |
{ to_fun := λ v, x • v, | |
map_add' := λ v₁ v₂, smul_add _ _ _, | |
bound' := ⟨|x|^p, λ v, by rw [has_p_norm.norm_smul, smul_eq_mul]⟩ } | |
/-- Highly non-canonical! -/ | |
def choose_normed_with_aut [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] : | |
normed_with_aut (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ := | |
{ T := | |
{ hom := smul_normed_hom V x, | |
inv := smul_normed_hom V (x⁻¹), | |
hom_inv_id' := by { ext v, dsimp, rw [← mul_smul, inv_mul_cancel, one_smul], | |
exact_mod_cast (fact.out _ : 0 < x).ne' }, | |
inv_hom_id' := by { ext v, dsimp, rw [← mul_smul, mul_inv_cancel, one_smul], | |
exact_mod_cast (fact.out _ : 0 < x).ne' } } , | |
norm_T := λ v, by { dsimp, rw [has_p_norm.norm_smul, smul_eq_mul], congr' 2, | |
rw abs_eq_self, exact x.coe_nonneg } } | |
@[simp] | |
lemma choose_normed_with_aut_T_hom [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] (v : V) : | |
(@normed_with_aut.T (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ (V.choose_normed_with_aut x)).hom v = | |
x • v := rfl | |
@[simp] | |
lemma choose_normed_with_aut_T_inv [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] (v : V) : | |
(@normed_with_aut.T (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ (V.choose_normed_with_aut x)).inv v = | |
x⁻¹ • v := rfl | |
end pBanach | |
-- noncomputable | |
-- def pBanach'_is_qBanach' (V: Type*) (p : ℝ) [fact (0 < p)] [fact (p ≤ 1)] (q : ℝ) [fact (0 < q)] | |
-- [fact (q ≤ 1)] [add_comm_group V] [module ℝ V] [uniform_space V] [has_continuous_smul ℝ V] | |
-- [topological_add_group V] [complete_space V] (hp : pBanach' V p) : pBanach' V q := | |
-- begin | |
-- cases hp, | |
-- let Hp_norm := hp.some, | |
-- let ψ := Hp_norm.norm, | |
-- use λ v : V, (ψ v)^(q/p),--[FAE] Why λ v, ((h_p_norm.norm) v)^(q/p) does not work? | |
-- intros α v, | |
-- dsimp only [ψ], | |
-- admit, | |
-- admit, | |
-- rw [Hp_norm.p_norm α v, smul_eq_mul, real.mul_rpow, ← real.rpow_mul, mul_div_cancel'], | |
-- exacts [refl _, ne_of_gt (fact.out _), abs_nonneg α, | |
-- (real.rpow_nonneg_of_nonneg (abs_nonneg α) p), hp_nonneg_norm v, | |
-- (λ _, (real.rpow_nonneg_of_nonneg (hp_nonneg_norm _) _))], | |
-- end | |
section obsolete | |
-- move this | |
lemma real.add_rpow_le {x y r : ℝ} | |
(hx : 0 ≤ x) (hy : 0 ≤ y) (h0r : 0 ≤ r) (hr1 : r ≤ 1) : | |
(x + y)^r ≤ x^r + y^r := | |
begin | |
by_cases hr : 0 = r, | |
{ subst r, simp only [zero_le_one, real.rpow_zero, le_add_iff_nonneg_left], }, | |
let x' : ℝ≥0 := ⟨x, hx⟩, | |
let y' : ℝ≥0 := ⟨y, hy⟩, | |
exact_mod_cast ennreal.rpow_add_le_add_rpow x' y' (lt_of_le_of_ne h0r hr) hr1, | |
end | |
set_option extends_priority 920 | |
-- Here, we set a rather high priority for the instance `[normed_space α β] : module α β` | |
-- to take precedence over `semiring.to_module` as this leads to instance paths with better | |
-- unification properties. | |
/-- A normed space over a normed field is a vector space endowed with a norm which satisfies the | |
equality `∥c • x∥ = ∥c∥ ∥x∥`. We require only `∥c • x∥ ≤ ∥c∥ ∥x∥` in the definition, then prove | |
`∥c • x∥ = ∥c∥ ∥x∥` in `norm_smul`. -/ | |
class normed_space' (𝕜 : Type*) (p : out_param ℝ) (V : Type*) | |
[normed_field 𝕜] [normed_add_comm_group V] [module 𝕜 V] := | |
(norm_smul : ∀ (c:𝕜) (v:V), ∥c • v∥ = ∥c∥^p * ∥v∥) | |
@[priority 100] | |
instance normed_space.normed_space' | |
(𝕜 : Type*) (V : Type*) [normed_field 𝕜] [normed_add_comm_group V] [normed_space 𝕜 V] : | |
normed_space' 𝕜 1 V := | |
{ norm_smul := λ c k, by simp only [real.rpow_one, norm_smul] } | |
/-- A type alias: `as_normed_space' p' V` is a `p'`-normed space over `𝕜`, | |
when `V` is a `p`-normed space over `𝕜` and `0 < p' ≤ p`. -/ | |
@[nolint unused_arguments] | |
def as_normed_space' (p' : ℝ) (V : Type*) := V | |
namespace as_normed_space' | |
instance (p' : ℝ) (V : Type*) [i : inhabited V] : inhabited (as_normed_space' p' V) := i | |
/-- The identity map `V → as_normed_space' p' V`. -/ | |
def up (p' : ℝ) {V : Type*} (v : V) : as_normed_space' p' V := v | |
/-- The identity map `as_normed_space' p' V → V`. -/ | |
def down {p' : ℝ} {V : Type*} (v : as_normed_space' p' V) : V := v | |
instance (p' : ℝ) (V : Type*) [i : add_comm_group V] : add_comm_group (as_normed_space' p' V) := i | |
instance (p' : ℝ) (𝕜 V : Type*) [ring 𝕜] [add_comm_group V] [i : module 𝕜 V] : | |
module 𝕜 (as_normed_space' p' V) := i | |
@[simp] lemma down_add {p' : ℝ} {V : Type*} [add_comm_group V] (v w : as_normed_space' p' V) : | |
(v+w).down = v.down + w.down := rfl | |
@[simp] lemma down_neg {p' : ℝ} {V : Type*} [add_comm_group V] (v : as_normed_space' p' V) : | |
(-v).down = - v.down := rfl | |
@[simp] lemma down_smul {p' : ℝ} {𝕜 V : Type*} [ring 𝕜] [add_comm_group V] [module 𝕜 V] | |
(c : 𝕜) (v : as_normed_space' p' V) : | |
(c • v).down = c • v.down := rfl | |
/-- The natural `p'`-norm on `as_normed_space' p' V` induced by a `p`-norm on `V`. -/ | |
protected def has_norm (p' p : ℝ) (V : Type*) [has_norm V] : | |
has_norm (as_normed_space' p' V) := | |
⟨λ v, ∥v.down∥^(p'/p)⟩ | |
lemma norm_def {V : Type*} [has_norm V] (p' p : ℝ) (v : as_normed_space' p' V) : | |
@has_norm.norm _ (as_normed_space'.has_norm p' p V) v = ∥v.down∥^(p'/p) := rfl | |
/-- The natural `p'`-normed group structure on `as_normed_space' p' V` | |
induced by a `p`-normed group structure on `V` -/ | |
protected def normed_add_comm_group (V : Type*) [normed_add_comm_group V] (p' p : ℝ) [fact (0 < p')] [fact (p' ≤ p)] : | |
normed_add_comm_group (as_normed_space' p' V) := | |
@normed_add_comm_group.of_core _ _ (as_normed_space'.has_norm p' p V) $ | |
have hp' : 0 < p' := fact.out _, | |
have hp : 0 < p := lt_of_lt_of_le hp' (fact.out _), | |
have H : 0 < p'/p := div_pos hp' hp, | |
{ norm_eq_zero_iff := λ v, show ∥v.down∥^(p'/p) = 0 ↔ v = 0, | |
by simpa only [real.rpow_eq_zero_iff_of_nonneg (norm_nonneg v.down), norm_eq_zero, | |
H.ne', and_true, ne.def, not_false_iff], | |
triangle := λ v w, show ∥(v+w).down∥^(p'/p) ≤ ∥v.down∥^(p'/p) + ∥w.down∥^(p'/p), | |
begin | |
rw [down_add], | |
calc ∥v.down + w.down∥ ^ (p' / p) | |
≤ (∥v.down∥ + ∥w.down∥) ^ (p' / p) : real.rpow_le_rpow (norm_nonneg _) (norm_add_le _ _) H.le | |
... ≤ ∥v.down∥ ^ (p' / p) + ∥w.down∥ ^ (p' / p) : | |
real.add_rpow_le (norm_nonneg _) (norm_nonneg _) H.le _, | |
rw [div_le_iff hp, one_mul], | |
exact fact.out _ | |
end, | |
norm_neg := λ v, show ∥(-v).down∥^(p'/p) = ∥v.down∥^(p'/p), by rw [down_neg, norm_neg] } | |
local attribute [instance] as_normed_space'.normed_add_comm_group | |
instance (𝕜 : Type*) (V : Type*) [normed_field 𝕜] [normed_add_comm_group V] [module 𝕜 V] | |
(p' p : ℝ) [fact (0 < p')] [fact (p' ≤ p)] [normed_space' 𝕜 p V] : | |
normed_space' 𝕜 p' (as_normed_space' p' V) := | |
{ norm_smul := λ c v, | |
begin | |
have hp' : 0 < p' := fact.out _, | |
have hp : 0 < p := lt_of_lt_of_le hp' (fact.out _), | |
rw [norm_def, norm_def, down_smul, normed_space'.norm_smul, real.mul_rpow, ← real.rpow_mul, | |
mul_div_cancel' _ hp.ne'], | |
{ exact norm_nonneg _ }, | |
{ exact real.rpow_nonneg_of_nonneg (norm_nonneg _) _ }, | |
{ exact norm_nonneg _ }, | |
end } | |
end as_normed_space' | |
end obsolete | |