Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import challenge_notations | |
import challenge_prerequisites | |
/-! | |
# Liquid Tensor Experiment | |
## The main challenge | |
The main challenge of the liquid tensor experiment is | |
a formalisation of the first theorem in Peter Scholze's blogpost | |
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/ | |
Theorem 1.1 (Clausen--Scholze) | |
Let `0 < p' < p ≤ 1` be real numbers, let `S` be a profinite set, and let `V` be a `p`-Banach space. | |
Let `ℳ p' S` be the space of `p'`-measures on `S`. Then | |
$$ Ext^i (ℳ p' S, V) = 0 $$ | |
for `i ≥ 1`. | |
-/ | |
noncomputable theory | |
open_locale liquid_tensor_experiment nnreal zero_object | |
open liquid_tensor_experiment category_theory category_theory.limits | |
variables (p' p : ℝ≥0) [fact (0 < p')] [fact (p' < p)] [fact (p ≤ 1)] | |
theorem liquid_tensor_experiment (S : Profinite.{0}) (V : pBanach.{0} p) : | |
∀ i > 0, Ext i (ℳ_{p'} S) V ≅ 0 := | |
begin | |
intros i hi, | |
apply is_zero.iso_zero, | |
revert i, | |
haveI : fact (0 < (p:ℝ)) := ⟨lt_trans (fact.out _ : 0 < p') (fact.out _)⟩, | |
haveI : fact (p' < 1) := ⟨lt_of_lt_of_le (fact.out _ : p' < p) (fact.out _)⟩, | |
erw is_zero_iff_epi_and_is_iso _ _ (V : Condensed.{0 1 2} Ab) (laurent_measures.short_exact p' S), | |
let := pBanach.choose_seminormed_add_comm_group V, | |
let := pBanach.choose_normed_with_aut V 2⁻¹, | |
haveI : fact (0 < (2⁻¹ : ℝ≥0) ^ (p : ℝ)) := r_pos', | |
convert laurent_measures.epi_and_is_iso p' p S ⟨V⟩ _ using 1, | |
intro v, | |
rw [pBanach.choose_normed_with_aut_T_inv, inv_inv, two_smul, two_nsmul], | |
end | |