Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /liquid /challenge.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.54 kB
import challenge_notations
import challenge_prerequisites
/-!
# Liquid Tensor Experiment
## The main challenge
The main challenge of the liquid tensor experiment is
a formalisation of the first theorem in Peter Scholze's blogpost
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
Theorem 1.1 (Clausen--Scholze)
Let `0 < p' < p ≤ 1` be real numbers, let `S` be a profinite set, and let `V` be a `p`-Banach space.
Let `ℳ p' S` be the space of `p'`-measures on `S`. Then
$$ Ext^i (ℳ p' S, V) = 0 $$
for `i ≥ 1`.
-/
noncomputable theory
open_locale liquid_tensor_experiment nnreal zero_object
open liquid_tensor_experiment category_theory category_theory.limits
variables (p' p : ℝ≥0) [fact (0 < p')] [fact (p' < p)] [fact (p ≤ 1)]
theorem liquid_tensor_experiment (S : Profinite.{0}) (V : pBanach.{0} p) :
∀ i > 0, Ext i (ℳ_{p'} S) V ≅ 0 :=
begin
intros i hi,
apply is_zero.iso_zero,
revert i,
haveI : fact (0 < (p:ℝ)) := ⟨lt_trans (fact.out _ : 0 < p') (fact.out _)⟩,
haveI : fact (p' < 1) := ⟨lt_of_lt_of_le (fact.out _ : p' < p) (fact.out _)⟩,
erw is_zero_iff_epi_and_is_iso _ _ (V : Condensed.{0 1 2} Ab) (laurent_measures.short_exact p' S),
let := pBanach.choose_seminormed_add_comm_group V,
let := pBanach.choose_normed_with_aut V 2⁻¹,
haveI : fact (0 < (2⁻¹ : ℝ≥0) ^ (p : ℝ)) := r_pos',
convert laurent_measures.epi_and_is_iso p' p S ⟨V⟩ _ using 1,
intro v,
rw [pBanach.choose_normed_with_aut_T_inv, inv_inv, two_smul, two_nsmul],
end