Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import category_theory.preadditive.additive_functor | |
import category_theory.limits.preserves.shapes.biproducts | |
import for_mathlib.derived.les2 | |
import for_mathlib.derived.les_facts | |
import for_mathlib.derived.Ext_lemmas | |
import for_mathlib.is_quasi_iso | |
import for_mathlib.short_exact | |
import for_mathlib.homology | |
import for_mathlib.exact_lift_desc | |
import for_mathlib.additive_functor | |
import for_mathlib.homotopy_category_lemmas | |
import for_mathlib.homology_lift_desc | |
. | |
noncomputable theory | |
open category_theory category_theory.limits opposite | |
open homotopy_category (hiding single) | |
open bounded_homotopy_category | |
universes v v' u u' | |
-- main proof in this file is inspired by https://math.stackexchange.com/a/2118042 | |
section | |
variables {𝓐 : Type*} [category 𝓐] [abelian 𝓐] {ι : Type*} {c : complex_shape ι} | |
def delta_to_kernel (C : homological_complex 𝓐 c) (i j k : ι) : | |
C.X i ⟶ kernel (C.d j k) := | |
factor_thru_image _ ≫ image_to_kernel' (C.d i j) _ (C.d_comp_d _ _ _) | |
def delta_to_kernel_ι (C : homological_complex 𝓐 c) (i j k : ι) : | |
delta_to_kernel C i j k ≫ kernel.ι (C.d j k) = C.d i j := | |
begin | |
delta delta_to_kernel image_to_kernel', | |
rw [category.assoc, kernel.lift_ι, image.fac], | |
end | |
def d_delta_to_kernel (C : homological_complex 𝓐 c) (h i j k : ι) : | |
C.d h i ≫ delta_to_kernel C i j k = 0 := | |
begin | |
rw [← cancel_mono (kernel.ι (C.d j k)), category.assoc, delta_to_kernel_ι, C.d_comp_d, zero_comp], | |
end | |
-- move me | |
lemma short_exact_comp_iso {A B C D : 𝓐} (f : A ⟶ B) (g : B ⟶ C) (h : C ⟶ D) (hh : is_iso h) : | |
short_exact f (g ≫ h) ↔ short_exact f g := | |
begin | |
split; intro H, | |
{ haveI : mono f := H.mono, | |
haveI : epi g, | |
{ haveI := H.epi, have := epi_comp (g ≫ h) (inv h), simpa only [category.assoc, is_iso.hom_inv_id, category.comp_id] }, | |
refine ⟨_⟩, have := H.exact, rwa exact_comp_iso at this, }, | |
{ haveI : mono f := H.mono, | |
haveI : epi g := H.epi, | |
haveI : epi (g ≫ h) := epi_comp g h, | |
refine ⟨_⟩, have := H.exact, rwa exact_comp_iso } | |
end | |
lemma is_acyclic_def | |
(C : homotopy_category 𝓐 c) : | |
is_acyclic C ↔ (∀ i, is_zero (C.as.homology i)) := | |
begin | |
split, | |
{ apply is_acyclic.cond }, | |
{ apply is_acyclic.mk } | |
end | |
lemma is_acyclic_iff_short_exact_to_cycles | |
(C : homotopy_category 𝓐 (complex_shape.up ℤ)) : | |
is_acyclic C ↔ | |
(∀ i, short_exact (kernel.ι (C.as.d i (i+1))) (delta_to_kernel C.as i (i+1) (i+1+1))) := | |
begin | |
rw is_acyclic_def, | |
symmetry, | |
apply (equiv.add_right (1 : ℤ)).forall_congr, | |
intro i, | |
let e := (homology_iso C.as i (i+1) (i+1+1) rfl rfl), | |
dsimp [delta_to_kernel] at e ⊢, | |
rw [e.is_zero_iff, homology_is_zero_iff_image_to_kernel'_is_iso], | |
split, | |
{ apply iso_of_short_exact_comp_right _ _ _, apply short_exact_kernel_factor_thru_image }, | |
{ intro h, rw short_exact_comp_iso _ _ _ h, apply short_exact_kernel_factor_thru_image } | |
end | |
lemma is_acyclic_iff_short_exact_to_cycles' | |
(C : homological_complex 𝓐 (complex_shape.down ℤ)) : | |
(∀ i, is_zero (C.homology i)) ↔ | |
(∀ i, short_exact (kernel.ι (C.d (i+1+1) (i+1))) (delta_to_kernel C (i+1+1) (i+1) i)) := | |
begin | |
symmetry, | |
apply (equiv.add_right (1 : ℤ)).forall_congr, | |
intro i, | |
let e := (homology_iso C (i+1+1) (i+1) i rfl rfl), | |
dsimp [delta_to_kernel] at e ⊢, | |
rw [e.is_zero_iff, homology_is_zero_iff_image_to_kernel'_is_iso], | |
split, | |
{ apply iso_of_short_exact_comp_right _ _ _, apply short_exact_kernel_factor_thru_image }, | |
{ intro h, rw short_exact_comp_iso _ _ _ h, apply short_exact_kernel_factor_thru_image } | |
end | |
end | |
variables {𝓐 𝓑 : Type*} [category 𝓐] [abelian 𝓐] [enough_projectives 𝓐] | |
variables [category 𝓑] [abelian 𝓑] [enough_projectives 𝓑] | |
variables (C : cochain_complex 𝓐 ℤ) | |
[homotopy_category.is_bounded_above ((homotopy_category.quotient _ _).obj C)] | |
def category_theory.functor.single (F : bounded_homotopy_category 𝓐 ⥤ 𝓑) (i : ℤ) : 𝓐 ⥤ 𝓑 := | |
bounded_homotopy_category.single _ i ⋙ F | |
-- move me | |
lemma category_theory.limits.is_zero.biprod {𝓐 : Type*} [category 𝓐] [abelian 𝓐] | |
{X Y : 𝓐} (hX : is_zero X) (hY : is_zero Y) : | |
is_zero (X ⊞ Y) := | |
begin | |
rw is_zero_iff_id_eq_zero at hX hY ⊢, | |
ext; simp [hX, hY], | |
end | |
instance category_theory.limits.preserves_binary_biproduct_of_additive | |
{𝓐 𝓑 : Type*} [category.{v} 𝓐] [category.{v} 𝓑] [abelian 𝓐] [abelian 𝓑] | |
(F : 𝓐 ⥤ 𝓑) [functor.additive F] (X Y : 𝓐) : | |
preserves_binary_biproduct X Y F := | |
preserves_binary_biproduct_of_preserves_biproduct _ _ _ | |
lemma acyclic_left_of_short_exact (B : 𝓐) {X Y Z : 𝓐} (f : X ⟶ Y) (g : Y ⟶ Z) (hfg : short_exact f g) | |
(hY : ∀ i > 0, is_zero (((Ext' i).obj (op $ Y)).obj B)) | |
(hZ : ∀ i > 0, is_zero (((Ext' i).obj (op $ Z)).obj B)) : | |
∀ i > 0, is_zero (((Ext' i).obj (op $ X)).obj B) := | |
begin | |
intros i hi, | |
have := hfg.Ext'_five_term_exact_seq B i, | |
refine (this.drop 1).pair.is_zero_of_is_zero_is_zero (hY _ hi) (hZ _ _), | |
transitivity i, { exact lt_add_one i }, { exact hi } | |
end | |
. | |
lemma map_is_acyclic_of_acyclic_aux | |
{A B C D X Y Z W : 𝓐} (f : A ⟶ B) (g : C ⟶ D) (π : B ⟶ kernel g) | |
{α : X ⟶ B} {β : B ⟶ Y} {γ : Y ⟶ C} {δ : C ⟶ Z} {ε : Z ⟶ D} {ζ : D ⟶ W} | |
(hαβ : short_exact α β) (hγδ : short_exact γ δ) (hεζ : short_exact ε ζ) | |
(hf : mono f) (hfπ : exact f π) | |
(hαπ : α ≫ π = 0) (hγg : γ ≫ g = 0) (hδε : δ ≫ ε = g) | |
(hπι : π ≫ kernel.ι g = β ≫ γ) : | |
short_exact f π := | |
begin | |
suffices : epi π, { resetI, exact ⟨hfπ⟩ }, | |
have hβ : epi β := hαβ.epi, | |
have hγ : mono γ := hγδ.mono, | |
have hε : mono ε := hεζ.mono, | |
resetI, | |
have hιδ : kernel.ι g ≫ δ = 0, | |
{ rw [← cancel_mono ε, category.assoc, hδε, kernel.condition, zero_comp], }, | |
let e1 : Y ⟶ kernel g := hαβ.exact.epi_desc π hαπ, | |
let e2 : Y ⟶ kernel g := kernel.lift g γ hγg, | |
let e3 : kernel g ⟶ Y := hγδ.exact.mono_lift (kernel.ι g) hιδ, | |
have he12 : e1 = e2, | |
{ rw [← cancel_epi β, ← cancel_mono (kernel.ι g)], | |
simp only [hπι, category.assoc, kernel.lift_ι, exact.comp_epi_desc_assoc], }, | |
have he13 : e1 ≫ e3 = 𝟙 _, | |
{ rw [he12, ← cancel_mono γ, category.assoc, exact.mono_lift_comp, kernel.lift_ι, category.id_comp], }, | |
have he31 : e3 ≫ e1 = 𝟙 _, | |
{ rw [he12, ← cancel_mono (kernel.ι g), category.assoc, kernel.lift_ι, exact.mono_lift_comp, category.id_comp], }, | |
let e : Y ≅ kernel g := ⟨e1, e3, he13, he31⟩, | |
have hπ : β ≫ e.hom = π := exact.comp_epi_desc _ _ _, | |
rw ← hπ, exact epi_comp _ _, | |
end | |
lemma short_exact_Ext_of_short_exact_of_acyclic {A B C : 𝓐} (Z : 𝓐) {f : A ⟶ B} {g : B ⟶ C} | |
(hfg : short_exact f g) (hC : ∀ i > 0, is_zero (((Ext' i).obj (op $ C)).obj Z)) : | |
short_exact (((Ext' 0).flip.obj Z).map g.op) (((Ext' 0).flip.obj Z).map f.op) := | |
begin | |
have H0 := hfg.Ext'_five_term_exact_seq Z 0, | |
apply_with short_exact.mk {instances:=ff}, | |
{ have H := ((hfg.Ext'_five_term_exact_seq Z (-1)).drop 2).pair, | |
apply H.mono_of_is_zero, | |
apply Ext'_is_zero_of_neg, dec_trivial }, | |
{ apply (H0.drop 1).pair.epi_of_is_zero, | |
apply hC, dec_trivial }, | |
{ exact H0.pair } | |
end | |
lemma map_is_acyclic_of_acyclic'' | |
[is_acyclic ((homotopy_category.quotient _ _).obj C)] | |
(B : 𝓐) | |
(hC : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C.X k)).obj B)) : | |
∀ i, is_zero (((((Ext' 0).flip.obj B).map_homological_complex _).obj C.op).homology i) := | |
begin | |
rw is_acyclic_iff_short_exact_to_cycles', | |
obtain ⟨a, ha⟩ := is_bounded_above.cond ((quotient 𝓐 (complex_shape.up ℤ)).obj C), | |
have aux : ((quotient 𝓐 (complex_shape.up ℤ)).obj C).is_acyclic := ‹_›, | |
rw is_acyclic_iff_short_exact_to_cycles at aux, | |
intro i, | |
let K := λ j, kernel (C.d j (j+1)), | |
suffices hK : ∀ j, ∀ i > 0, is_zero (((Ext' i).obj (op $ K j)).obj B), | |
{ have SES1 := short_exact_Ext_of_short_exact_of_acyclic B (aux (i+1+1)) (hK _), | |
have SES2 := short_exact_Ext_of_short_exact_of_acyclic B (aux (i+1)) (hK _), | |
have SES3 := short_exact_Ext_of_short_exact_of_acyclic B (aux i) (hK _), | |
apply map_is_acyclic_of_acyclic_aux _ _ _ SES1 SES2 SES3 infer_instance; | |
clear SES1 SES2 SES3 aux, | |
{ delta delta_to_kernel image_to_kernel', | |
apply exact_comp_mono, rw exact_factor_thru_image_iff, exact exact_kernel_ι }, | |
{ rw [← cancel_mono (kernel.ι _), zero_comp, category.assoc, delta_to_kernel_ι], | |
swap, apply_instance, | |
erw [functor.map_homological_complex_obj_d, ← functor.map_comp], | |
dsimp only [homological_complex.op_d, quotient_obj_as], | |
rw [← op_comp, d_delta_to_kernel, op_zero, functor.map_zero], }, | |
{ erw [functor.map_homological_complex_obj_d, ← functor.map_comp], | |
dsimp only [homological_complex.op_d, quotient_obj_as], | |
rw [← op_comp, d_delta_to_kernel, op_zero, functor.map_zero], }, | |
{ rw [← functor.map_comp, ← op_comp, delta_to_kernel_ι], refl, }, | |
{ rw [delta_to_kernel_ι, ← functor.map_comp, ← op_comp, delta_to_kernel_ι], refl, }, | |
{ apply_instance } }, | |
clear i, intro j, | |
have : ∀ j ≥ a, ∀ i > 0, is_zero (((Ext' i).obj (op $ K j)).obj B), | |
{ intros j hj i hi, | |
apply bounded_derived_category.Ext'_zero_left_is_zero, | |
apply is_zero.op, | |
refine is_zero.of_mono (kernel.ι _) _, | |
exact ha j hj }, | |
apply int.induction_on' j a, | |
{ exact this _ le_rfl, }, | |
{ intros j hj aux, apply this, exact int.le_add_one hj, }, | |
{ intros j hj IH, | |
obtain ⟨j, rfl⟩ : ∃ i, i + 1 = j := ⟨j - 1, sub_add_cancel _ _⟩, | |
rw add_sub_cancel, | |
apply acyclic_left_of_short_exact B (kernel.ι _) (delta_to_kernel _ _ _ _) _ (hC _) IH, | |
exact aux j, } | |
end | |
lemma map_is_acyclic_of_acyclic' | |
[is_acyclic ((homotopy_category.quotient _ _).obj C)] | |
(B : 𝓐) | |
(hC : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C.X k)).obj B)) : | |
is_acyclic ((((Ext' 0).flip.obj B).right_op.map_homotopy_category _).obj ((homotopy_category.quotient _ _).obj C)) := | |
begin | |
rw is_acyclic_def, | |
intro i, | |
have h1 : (complex_shape.up ℤ).rel (i - 1) i, { dsimp, apply sub_add_cancel }, | |
refine is_zero.of_iso _ (homology_iso' _ (i-1) i (i+1) h1 rfl), | |
dsimp only [functor.map_homotopy_category_obj, quotient_obj_as, | |
functor.right_op_map, functor.map_homological_complex_obj_d], | |
apply exact.homology_is_zero, | |
apply exact.op, | |
refine exact_of_homology_is_zero _, | |
{ rw [← category_theory.functor.map_comp, ← op_comp, homological_complex.d_comp_d, op_zero, functor.map_zero], }, | |
have := map_is_acyclic_of_acyclic'' C B hC i, | |
apply this.of_iso _, clear this, | |
let C' := (((Ext' 0).flip.obj B).map_homological_complex (complex_shape.up ℤ).symm).obj (homological_complex.op C), | |
have h1 : (complex_shape.down ℤ).rel i (i - 1), { dsimp, apply sub_add_cancel }, | |
exact (homology_iso' C' (i+1) i (i-1) rfl h1).symm, | |
end | |
lemma map_is_acyclic_of_acyclic | |
[is_acyclic ((homotopy_category.quotient _ _).obj C)] | |
(B : 𝓐) | |
(hC : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C.X k)).obj B)) : | |
is_acyclic (((preadditive_yoneda.obj B).right_op.map_homotopy_category _).obj ((homotopy_category.quotient _ _).obj C)) := | |
begin | |
have := map_is_acyclic_of_acyclic' C B hC, | |
rw is_acyclic_def at this ⊢, | |
intro i, specialize this i, | |
apply this.of_iso _, clear this, | |
have h1 : (complex_shape.up ℤ).rel (i - 1) i, { dsimp, apply sub_add_cancel }, | |
refine (homology_iso' _ (i-1) i (i+1) h1 rfl) ≪≫ _ ≪≫ (homology_iso' _ (i-1) i (i+1) h1 rfl).symm, | |
dsimp only [functor.map_homotopy_category_obj, quotient_obj_as, | |
functor.right_op_map, functor.map_homological_complex_obj_d], | |
let e := λ i, ((bounded_derived_category.Ext'_zero_flip_iso _ B).app (op $ C.X i)).op, | |
refine homology.map_iso _ _ (arrow.iso_mk (e _) (e _) _) (arrow.iso_mk (e _) (e _) _) rfl, | |
{ simp only [iso.op_hom, iso.app_hom, arrow.mk_hom, functor.flip_obj_map, ← op_comp, ← nat_trans.naturality], }, | |
{ simp only [iso.op_hom, iso.app_hom, arrow.mk_hom, functor.flip_obj_map, ← op_comp, ← nat_trans.naturality], }, | |
end | |
lemma acyclic_of_projective (P B : 𝓐) [projective P] (i : ℤ) (hi : 0 < i) : | |
is_zero (((Ext' i).obj (op P)).obj B) := | |
begin | |
rw (Ext'_iso (op P) B i _ (𝟙 _) _).is_zero_iff, | |
{ rcases i with ((_|i)|i), | |
{ exfalso, revert hi, dec_trivial }, | |
swap, { exfalso, revert hi, dec_trivial }, | |
refine is_zero.homology_is_zero _ _ _ _, | |
apply AddCommGroup.is_zero_of_eq, | |
intros, | |
apply is_zero.eq_of_src, | |
apply is_zero_zero, }, | |
{ refine ⟨_, _, _⟩, | |
{ rintro (_|n), { assumption }, { dsimp, apply_instance } }, | |
{ exact exact_zero_mono (𝟙 P) }, | |
{ rintro (_|n); exact exact_of_zero 0 0 } } | |
end | |
def Ext_compute_with_acyclic_aux₁ | |
(B : 𝓐) | |
(i : ℤ) : | |
((Ext i).obj (op $ of' C)).obj ((single _ 0).obj B) ≅ | |
(preadditive_yoneda.obj ((single 𝓐 (-i)).obj B)).obj (op (of' C).replace) := | |
(preadditive_yoneda.map_iso $ (shift_single_iso 0 i).app B ≪≫ eq_to_iso (by rw zero_sub)).app _ | |
abbreviation of'_hom {C₁ C₂ : cochain_complex 𝓐 ℤ} | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₁).is_bounded_above] | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₂).is_bounded_above] | |
(f : C₁ ⟶ C₂) : | |
of' C₁ ⟶ of' C₂ := | |
(homotopy_category.quotient _ _).map f | |
lemma Ext_compute_with_acyclic_aux₁_naturality | |
(C₁ C₂ : cochain_complex 𝓐 ℤ) | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₁).is_bounded_above] | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₂).is_bounded_above] | |
(B : 𝓐) | |
(f : C₁ ⟶ C₂) | |
(i : ℤ) : | |
((Ext i).map $ quiver.hom.op $ of'_hom f).app _ ≫ | |
(Ext_compute_with_acyclic_aux₁ C₁ B i).hom = | |
(Ext_compute_with_acyclic_aux₁ C₂ B i).hom ≫ | |
(preadditive_yoneda.obj _).map (quiver.hom.op $ | |
bounded_homotopy_category.lift ((of' C₁).π ≫ of'_hom f) (of' C₂).π) := | |
begin | |
ext F, | |
dsimp [Ext, Ext_compute_with_acyclic_aux₁], | |
simp only [comp_apply], | |
dsimp, simp, | |
end | |
def Ext_compute_with_acyclic_aux₂ | |
(B : 𝓐) | |
(i : ℤ) : | |
(preadditive_yoneda.obj ((single 𝓐 (-i)).obj B)).obj (op (of' C).replace) ≅ | |
(((preadditive_yoneda.obj B).map_homological_complex (complex_shape.up ℤ).symm).obj | |
((of' C).replace).val.as.op).homology (-i) := | |
hom_single_iso _ _ _ | |
-- TODO: We should prove naturality of `hom_single_iso` independently! | |
lemma Ext_compute_with_acyclic_aux₂_naturality | |
(C₁ C₂ : cochain_complex 𝓐 ℤ) | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₁).is_bounded_above] | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₂).is_bounded_above] | |
(B : 𝓐) | |
(f : C₁ ⟶ C₂) | |
(i : ℤ) : | |
(preadditive_yoneda.obj _).map (quiver.hom.op $ | |
bounded_homotopy_category.lift ((of' C₁).π ≫ of'_hom f) (of' C₂).π) ≫ | |
(Ext_compute_with_acyclic_aux₂ C₁ B i).hom = | |
(Ext_compute_with_acyclic_aux₂ C₂ B i).hom ≫ | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex _ ⋙ | |
homological_complex.unop_functor.right_op ⋙ | |
(_root_.homology_functor _ _ (-i)).op).map | |
(bounded_homotopy_category.lift ((of' C₁).π ≫ of'_hom f) (of' C₂).π).out).unop := | |
hom_single_iso_naturality _ _ _ _ _ | |
def Ext_compute_with_acyclic_HomB | |
(B : 𝓐) := (preadditive_yoneda.obj B).right_op.map_homological_complex (complex_shape.up ℤ) ⋙ | |
homological_complex.unop_functor.right_op | |
lemma Ext_compute_with_acyclic_is_quasi_iso_aux | |
(B : 𝓐) | |
(hC : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C.X k)).obj B)) | |
(i : ℤ) : | |
is_quasi_iso ((homotopy_category.quotient _ _).map | |
((Ext_compute_with_acyclic_HomB B).map (of' C).π.out).unop) := | |
begin | |
let P := (of' C).replace, | |
let π : P ⟶ of' C := (of' C).π, | |
let HomB := (preadditive_yoneda.obj B).right_op.map_homological_complex (complex_shape.up ℤ) ⋙ | |
homological_complex.unop_functor.right_op, | |
let fq := (homotopy_category.quotient _ _).map (HomB.map π.out).unop, | |
apply is_quasi_iso_of_op, | |
let f := homological_complex.op_functor.map (HomB.map (quot.out π)), | |
have := cone_triangleₕ_mem_distinguished_triangles _ _ f, | |
replace := is_quasi_iso_iff_is_acyclic _ this, | |
dsimp [homological_complex.cone.triangleₕ] at this, | |
erw this, clear this i, | |
constructor, | |
intro i, obtain ⟨i, rfl⟩ : ∃ j, j + 1 = i := ⟨i - 1, sub_add_cancel _ _⟩, | |
refine is_zero.of_iso _ (homology_iso _ i (i+1) (i+1+1) _ _), | |
rotate, { dsimp, refl }, { dsimp, refl }, | |
apply exact.homology_is_zero _, | |
dsimp only [homotopy_category.quotient, quotient.functor_obj_as, homological_complex.cone_d], | |
have hπ : is_quasi_iso π, { dsimp [π], apply_instance }, | |
have := cone_triangleₕ_mem_distinguished_triangles _ _ π.out, | |
replace := is_quasi_iso_iff_is_acyclic _ this, | |
dsimp [homological_complex.cone.triangleₕ] at this, | |
simp only [quotient_map_out] at this, | |
replace := this.mp _, | |
swap, { convert hπ using 1, generalize : P.val = X, cases X, refl, }, | |
haveI preaux : ((quotient 𝓐 (complex_shape.up ℤ)).obj (homological_complex.cone (quot.out π))).is_bounded_above, | |
{ constructor, | |
obtain ⟨a, ha⟩ := is_bounded_above.cond ((quotient 𝓐 (complex_shape.up ℤ)).obj C), | |
obtain ⟨b, hb⟩ := is_bounded_above.cond P.val, | |
refine ⟨max a b, _⟩, | |
intros k hk, | |
refine category_theory.limits.is_zero.biprod _ _, | |
{ apply hb, refine (le_max_right _ _).trans (hk.trans (lt_add_one _).le) }, | |
{ apply ha, exact (le_max_left _ _).trans hk, } }, | |
have aux := @map_is_acyclic_of_acyclic _ _ _ _ _ _ this B _, | |
{ replace := (@is_acyclic.cond _ _ _ _ _ _ aux (i+1)).of_iso (homology_iso _ i (i+1) (i+1+1) _ _).symm, | |
rotate, { dsimp, refl }, { dsimp, refl }, | |
dsimp only [homotopy_category.quotient, quotient.functor_obj_as, homological_complex.cone_d, | |
functor.map_homotopy_category_obj, functor.map_homological_complex_obj_d] at this, | |
replace := exact_of_homology_is_zero this, | |
let e := functor.map_biprod (preadditive_yoneda.obj B).right_op, | |
refine preadditive.exact_of_iso_of_exact' _ _ _ _ (e _ _) (e _ _) (e _ _) _ _ this; | |
dsimp only [e, functor.map_biprod_hom], | |
all_goals | |
{ ext, | |
{ simp only [category.assoc, functor.right_op_map, homological_complex.cone.d, biprod.lift_fst, | |
eq_self_iff_true, functor.map_homological_complex_obj_d, functor.right_op_map, | |
homological_complex.X_eq_to_iso_refl, category.comp_id, dite_eq_ite, if_true, | |
biprod.lift_fst, biprod.lift_desc, preadditive.comp_neg, comp_zero, add_zero], | |
simp only [functor.map_homological_complex_obj_d, functor.right_op_map, functor.comp_map, | |
biprod.lift_desc, preadditive.comp_neg, comp_zero, add_zero, | |
← op_comp, ← category_theory.functor.map_comp, biprod.lift_fst], | |
simp only [biprod.desc_eq, comp_zero, add_zero, preadditive.comp_neg, | |
category_theory.op_neg, functor.map_neg, op_comp, category_theory.functor.map_comp], | |
refl }, | |
{ simp only [category.assoc, functor.right_op_map, homological_complex.cone.d, biprod.lift_snd, | |
eq_self_iff_true, functor.map_homological_complex_obj_d, functor.right_op_map, | |
functor.map_homological_complex_map_f, homological_complex.X_eq_to_iso_refl, | |
category.comp_id, dite_eq_ite, if_true, biprod.lift_snd, biprod.lift_desc], | |
simp only [functor.map_homological_complex_obj_d, functor.right_op_map, functor.comp_map, | |
biprod.lift_desc, preadditive.comp_neg, comp_zero, add_zero, | |
← op_comp, ← category_theory.functor.map_comp, biprod.lift_snd], | |
simp only [biprod.desc_eq, op_add, functor.map_neg, functor.map_add, op_comp, | |
category_theory.functor.map_comp], | |
refl } } }, | |
{ clear i, intros k i hi, | |
let e := functor.map_biprod ((Ext' i).flip.obj B).right_op | |
(P.val.as.X (k + 1)) ((of' C).val.as.X k), | |
refine is_zero.of_iso (is_zero.unop _) e.symm.unop, | |
refine category_theory.limits.is_zero.biprod _ _, | |
{ simp only [functor.right_op_obj, functor.flip_obj_obj, is_zero_op], | |
exact acyclic_of_projective (P.val.as.X (k + 1)) B i hi, }, | |
{ exact (hC k _ hi).op, }, }, | |
end | |
def Ext_compute_with_acyclic_aux₃ | |
(B : 𝓐) | |
(i : ℤ) : | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex _).obj C).unop.homology (-i) ⟶ | |
(((preadditive_yoneda.obj B).map_homological_complex (complex_shape.up ℤ).symm).obj | |
((of' C).replace).val.as.op).homology (-i) := | |
by apply (homotopy_category.homology_functor Ab _ (-i)).map | |
(((homotopy_category.quotient _ _).map | |
((Ext_compute_with_acyclic_HomB B).map (of' C).π.out).unop)) | |
-- Are these two lemmas useful? Do we have them? | |
lemma functor.map_unop {𝓐 : Type*} [category 𝓐] {𝓑 : Type*} | |
[category 𝓑] (F : 𝓐 ⥤ 𝓑) {a₁ a₂ : 𝓐ᵒᵖ} | |
(f : a₁ ⟶ a₂) : F.map f.unop = (F.op.map f).unop := | |
rfl | |
lemma functor.map_map' {𝓐 : Type*} [category 𝓐] {𝓑 : Type*} | |
[category 𝓑] {𝓒 : Type*} [category 𝓒] (F : 𝓐 ⥤ 𝓑) (G : 𝓑 ⥤ 𝓒) {a₁ a₂ : 𝓐} | |
(φ : a₁ ⟶ a₂) : G.map (F.map φ) = (F ⋙ G).map φ := | |
rfl | |
namespace Ext_compute_with_acyclic_aux₃_naturality_helpers | |
variables (C₁ C₂ : cochain_complex 𝓐 ℤ) | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₁).is_bounded_above] | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₂).is_bounded_above] | |
(B : 𝓐) | |
(f : C₁ ⟶ C₂) | |
(i : ℤ) | |
lemma helper₁ (h1 h2) : | |
homology.lift ((unop | |
(homological_complex.unop_functor.right_op.obj | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex | |
(complex_shape.up ℤ)).obj C₁))).d_to (-i)) | |
((unop (homological_complex.unop_functor.right_op.obj | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex | |
(complex_shape.up ℤ)).obj C₁))).d_from (-i)) h1 | |
(kernel.ι ((unop (homological_complex.unop_functor.right_op.obj | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex | |
(complex_shape.up ℤ)).obj C₂))).d_from (-i)) ≫ | |
(homological_complex.unop_functor.right_op.map | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex | |
(complex_shape.up ℤ)).map f)).unop.f (-i) ≫ cokernel.π | |
((unop (homological_complex.unop_functor.right_op.obj | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex | |
(complex_shape.up ℤ)).obj C₁))).d_to (-i))) h2 = | |
kernel.lift _ (kernel.ι _ ≫ (preadditive_yoneda.obj B).map (f.f (-i)).op) begin | |
rw category.assoc, | |
have aux := ((((preadditive_yoneda.obj B).right_op.map_homological_complex _ ⋙ | |
homological_complex.unop_functor.right_op).map f)).unop.comm_from (-i), | |
dsimp at aux, | |
erw [aux, kernel.condition_assoc, zero_comp], | |
end ≫ | |
homology.π' _ _ _ := | |
begin | |
apply homology.hom_to_ext, | |
rw [category.assoc, homology.π'_ι, kernel.lift_ι_assoc, | |
homology.lift_ι], | |
refl, | |
end | |
lemma helper₂ (h1 h2) : | |
homology.lift ((unop ((Ext_compute_with_acyclic_HomB B).obj (of' C₂).replace.val.as)).d_to (-i)) | |
((unop ((Ext_compute_with_acyclic_HomB B).obj (of' C₂).replace.val.as)).d_from (-i)) | |
h1 | |
(kernel.ι ((unop ((Ext_compute_with_acyclic_HomB B).obj (of' C₂).val.as)).d_from (-i)) ≫ | |
((Ext_compute_with_acyclic_HomB B).map (quot.out (of' C₂).π)).unop.f (-i) ≫ | |
cokernel.π ((unop ((Ext_compute_with_acyclic_HomB B).obj (of' C₂).replace.val.as)).d_to (-i))) | |
h2 = | |
kernel.lift _ (kernel.ι _ ≫ begin | |
apply homological_complex.hom.f, | |
exact (((preadditive_yoneda.obj B).right_op.map_homological_complex _ ⋙ | |
homological_complex.unop_functor.right_op).map (of' C₂).π.out).unop, | |
end) begin | |
rw category.assoc, | |
have := (((preadditive_yoneda.obj B).right_op.map_homological_complex _ ⋙ | |
homological_complex.unop_functor.right_op).map (of' C₂).π.out).unop.comm_from (-i), | |
erw [this, kernel.condition_assoc, zero_comp], | |
end ≫ homology.π' _ _ _ := | |
begin | |
apply homology.hom_to_ext, | |
simp only [homology.lift_ι, category.assoc, homology.π'_ι, kernel.lift_ι_assoc], | |
refl, | |
end | |
end Ext_compute_with_acyclic_aux₃_naturality_helpers | |
lemma Ext_compute_with_acyclic_aux₃_naturality | |
(C₁ C₂ : cochain_complex 𝓐 ℤ) | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₁).is_bounded_above] | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₂).is_bounded_above] | |
(B : 𝓐) | |
(f : C₁ ⟶ C₂) | |
(i : ℤ) : | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex _ ⋙ | |
homological_complex.unop_functor.right_op ⋙ (_root_.homology_functor _ _ (-i)).op).map f).unop | |
≫ Ext_compute_with_acyclic_aux₃ C₁ B i = | |
Ext_compute_with_acyclic_aux₃ C₂ B i ≫ | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex _ ⋙ | |
homological_complex.unop_functor.right_op ⋙ | |
(_root_.homology_functor _ _ (-i)).op).map | |
(bounded_homotopy_category.lift ((of' C₁).π ≫ of'_hom f) (of' C₂).π).out).unop := | |
begin | |
dsimp only [Ext_compute_with_acyclic_aux₃, functor.comp_map, | |
_root_.homology_functor, functor.op, homological_complex.hom.sq_from, | |
homological_complex.hom.sq_to, homotopy_category.quotient, | |
homotopy_category.homology_functor, quotient.functor, | |
category_theory.quotient.lift, quot.lift_on, quiver.hom.unop_op], | |
simp_rw homology.map_eq_desc'_lift_left, | |
apply homology.hom_from_ext, | |
simp only [category.assoc, homology.π'_desc'_assoc], | |
slice_rhs 1 2 | |
{ erw homology.π'_desc' }, | |
dsimp only [arrow.hom_mk_left], | |
rw Ext_compute_with_acyclic_aux₃_naturality_helpers.helper₁, | |
conv_rhs { rw Ext_compute_with_acyclic_aux₃_naturality_helpers.helper₂ }, | |
simp only [category.assoc], | |
slice_lhs 2 3 | |
{ erw homology.π'_desc' }, | |
slice_rhs 2 3 | |
{ erw homology.π'_desc' }, | |
apply homology.hom_to_ext, | |
slice_lhs 2 3 | |
{ erw homology.lift_ι }, | |
slice_rhs 2 3 | |
{ erw homology.lift_ι }, | |
slice_lhs 1 2 | |
{ erw kernel.lift_ι }, | |
slice_rhs 1 2 | |
{ erw kernel.lift_ι }, | |
simp only [category.assoc], | |
dsimp only [Ext_compute_with_acyclic_HomB, functor.comp_map], | |
change _ ≫ (((preadditive_yoneda.obj B).right_op.map_homological_complex _ ⋙ | |
homological_complex.unop_functor.right_op).map f).unop.f _ ≫ _ = _, | |
slice_lhs 2 3 | |
{ simp only [← homological_complex.comp_f, ← unop_comp], | |
simp only [functor.comp_map, ← functor.map_comp] }, | |
slice_rhs 2 3 | |
{ simp only [← homological_complex.comp_f, ← unop_comp, ← functor.map_comp] }, | |
apply homotopy.kernel_ι_comp_comp_cokernel_π_of_homotopy, | |
apply homotopy.homotopy_unop_functor_right_op_map_unop_of_homotopy, | |
apply functor.map_homotopy, | |
suffices : (lift ((of' C₁).π ≫ of'_hom f) (of' C₂).π) ≫ (of' C₂).π = | |
(of' C₁).π ≫ of'_hom f, | |
{ apply homotopy_category.homotopy_of_eq, | |
convert this.symm, | |
{ simpa only [functor.map_comp, quotient_map_out], }, | |
{ simpa only [functor.map_comp, quotient_map_out], } }, | |
simp, | |
end | |
lemma Ext_compute_with_acyclic_aux₃_is_iso | |
(B : 𝓐) | |
(hC : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C.X k)).obj B)) | |
(i : ℤ) : is_iso (Ext_compute_with_acyclic_aux₃ C B i) := | |
begin | |
haveI := Ext_compute_with_acyclic_is_quasi_iso_aux C B hC i, | |
apply is_quasi_iso.cond, | |
end | |
def Ext_compute_with_acyclic | |
(B : 𝓐) | |
(hC : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C.X k)).obj B)) | |
(i : ℤ) : | |
((Ext i).obj (op $ of' C)).obj ((single _ 0).obj B) ≅ | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex _).obj C).unop.homology (-i) := | |
Ext_compute_with_acyclic_aux₁ C B i ≪≫ | |
Ext_compute_with_acyclic_aux₂ _ _ _ ≪≫ | |
begin | |
haveI := Ext_compute_with_acyclic_aux₃_is_iso C B hC i, | |
exact (as_iso (Ext_compute_with_acyclic_aux₃ C B i)).symm, | |
end | |
/- | |
def homological_complex.single_iso (B : 𝓐) {i j : ℤ} (h : j = i) : | |
((homological_complex.single _ (complex_shape.up ℤ) i).obj B).X j ≅ B := | |
eq_to_iso (if_pos h) | |
/-- The morphism in `Ab` which eats a morphism of complexes `C ⟶ B[-i]` | |
and returns an element of Extⁱ(C,B[0]). -/ | |
def Ext_compute_with_acyclic_inv_eq_aux (B) (i) : | |
AddCommGroup.of (C ⟶ (homological_complex.single _ _ (-i)).obj B) ⟶ | |
((Ext i).obj (op (of' C))).obj ((single 𝓐 0).obj B) := | |
{ to_fun := λ f, (of' C).π ≫ begin | |
refine (homotopy_category.quotient _ _).map _, | |
refine _ ≫ (homological_complex.single_shift _ _).inv.app _, | |
refine (f : C ⟶ (homological_complex.single 𝓐 (complex_shape.up ℤ) (-i)).obj B) ≫ _, | |
refine eq_to_hom _, | |
simp, | |
end, | |
map_zero' := begin | |
simp only [zero_comp, functor.map_zero, comp_zero], | |
end, | |
map_add' := begin | |
intros, | |
simp only [preadditive.add_comp, functor.map_add, preadditive.comp_add], | |
end } | |
lemma iso_equiv_inv_apply_eq_zero_cancel | |
{A B C : AddCommGroup} {a : A} {f : A ⟶ B} {e : C ≅ B} | |
(h : (f ≫ e.inv) a = 0) : f a = 0 := | |
begin | |
rw comp_apply at h, | |
apply_fun e.hom at h, | |
simpa using h, | |
end | |
-- Note: in the application of the below, j = -i | |
/-- The construction which given something in the kernel of `(Cⱼ ⟶ B) ⟶ (Cⱼ-₁ ⟶ B)` | |
constructs a morphism of complexes from C to the "skyscraper complex" B[j]. -/ | |
def kernel_yoneda_complex_to_morphism_to_single (B : 𝓐) (j : ℤ) : | |
-- we're going from the kernel of `(C.X j ⟶ B) ⟶ (C.X_prev j ⟶ B)` (it's actually `C.symm.X_next`) | |
kernel ((((preadditive_yoneda.obj B).map_homological_complex _).obj | |
(homological_complex.op C)).d_from j) | |
-- to the additive group of homs | |
⟶ AddCommGroup.of ( | |
-- from C to B j | |
C ⟶ (homological_complex.single 𝓐 (complex_shape.up ℤ) j).obj B) := | |
{ to_fun := λ f, { f := λ k, | |
if hk : k = j then | |
(eq_to_hom (by rw hk) : C.X k ⟶ C.X j) ≫ | |
(kernel.ι ((((preadditive_yoneda.obj B).map_homological_complex _).obj | |
(homological_complex.op C)).d_from j) f : C.X j ⟶ B) ≫ | |
(homological_complex.single_obj_X_self 𝓐 (complex_shape.up ℤ) j B).inv ≫ | |
eq_to_hom (by rw hk) | |
else 0, | |
comm' := λ i k, begin | |
split_ifs with hij hkj hkj, | |
{ subst hij, subst hkj, simp {contextual := tt}, }, | |
{ simp only [homological_complex.single_obj_d, comp_zero, eq_self_iff_true, | |
implies_true_iff] }, | |
{ subst hkj, | |
set g := ((kernel.ι ((((preadditive_yoneda.obj B).map_homological_complex | |
(complex_shape.up ℤ).symm).obj | |
(homological_complex.op C)).d_from k)) f) with hg, | |
simp only [complex_shape.up_rel, zero_comp, eq_to_hom_refl, | |
homological_complex.single_obj_X_self_inv, category.comp_id, category.id_comp], | |
rintro hik, clear hij, | |
have := kernel.condition ((((preadditive_yoneda.obj B).map_homological_complex _).obj | |
(homological_complex.op C)).d_from k), | |
replace this := congr_hom this f, | |
rw [comp_apply, ← hg, AddCommGroup.zero_apply] at this, | |
rw ← category.assoc, | |
symmetry, | |
convert zero_comp, | |
have foo : (complex_shape.up ℤ).symm.rel k i := hik, | |
rw homological_complex.d_from_eq _ foo at this, | |
exact iso_equiv_inv_apply_eq_zero_cancel this, }, | |
{ simp only [zero_comp, comp_zero, eq_self_iff_true, implies_true_iff]}, | |
end }, | |
map_zero' := by {simp only [map_zero, homological_complex.single_obj_X_self_inv, | |
eq_to_hom_trans, zero_comp, comp_zero, dite_eq_ite, if_t_t], refl }, | |
map_add' := by { intros, ext, simp only [map_add, homological_complex.single_obj_X_self_inv, | |
eq_to_hom_trans, preadditive.add_comp, preadditive.comp_add, homological_complex.add_f_apply], | |
split_ifs, | |
{ refl }, | |
{ refl }, | |
{ exact (add_zero _).symm, } } } | |
lemma Ext_compute_with_acylic_inv_eq (B : 𝓐) | |
(hC : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C.X k)).obj B)) | |
(i : ℤ) : | |
(Ext_compute_with_acyclic _ B hC i).inv = | |
homology.desc' _ _ _ | |
( kernel_yoneda_complex_to_morphism_to_single C B (-i) ≫ | |
Ext_compute_with_acyclic_inv_eq_aux C B i) | |
admit := admit | |
-- Replacing some `End` with `cend` fixes my bracket pair colorizer! | |
-- notation `cend` := category_theory.End | |
-/ | |
lemma Ext_compute_with_acyclic_naturality (C₁ C₂ : cochain_complex 𝓐 ℤ) | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₁).is_bounded_above] | |
[((quotient 𝓐 (complex_shape.up ℤ)).obj C₂).is_bounded_above] | |
(B : 𝓐) | |
(hC₁ : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C₁.X k)).obj B)) | |
(hC₂ : ∀ k, ∀ i > 0, is_zero (((Ext' i).obj (op $ C₂.X k)).obj B)) | |
(f : C₁ ⟶ C₂) | |
(i : ℤ) : | |
((Ext i).flip.obj ((single _ 0).obj B)).map (quiver.hom.op $ of'_hom f) ≫ | |
(Ext_compute_with_acyclic C₁ B hC₁ i).hom = | |
(Ext_compute_with_acyclic C₂ B hC₂ i).hom ≫ | |
(((preadditive_yoneda.obj B).right_op.map_homological_complex _ ⋙ | |
homological_complex.unop_functor.right_op ⋙ | |
(_root_.homology_functor _ _ (-i)).op).map f).unop := | |
begin | |
dsimp only [Ext_compute_with_acyclic, iso.trans_hom], | |
slice_lhs 1 2 | |
{ erw Ext_compute_with_acyclic_aux₁_naturality }, | |
slice_lhs 2 3 | |
{ rw Ext_compute_with_acyclic_aux₂_naturality }, | |
simp only [category.assoc], | |
congr' 2, | |
dsimp only [iso.symm_hom, as_iso_inv], | |
rw [is_iso.eq_inv_comp, ← category.assoc, is_iso.comp_inv_eq], | |
symmetry, | |
apply Ext_compute_with_acyclic_aux₃_naturality, | |
end | |