Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import locally_constant.SemiNormedGroup | |
import normed_group.normed_with_aut | |
import analysis.normed.group.SemiNormedGroup.completion | |
/-! | |
# Completions of normed groups | |
This file contains an API for completions for seminormed groups equipped with | |
an automorphism which scales norms by a constant factor `r`. | |
## Main definitions | |
- `normed_with_aut_Completion` : if `V` is equipped with an automorphism changing norms | |
by a factor `r` then the completion also has such an automorphism. | |
- `LCC : SemiNormedGroup ⥤ Profiniteᵒᵖ ⥤ SemiNormedGroup` : | |
`LCC V S` is the seminormed group completion of the locally constant functions from `S` to `V`. | |
## TODO | |
Pull off the stuff about completions and put it into `normed_add_comm_group/SemiNormedGroup`? | |
Then `system_of_complexes.basic` would not have to import this file. | |
-/ | |
noncomputable theory | |
open_locale nnreal | |
universe u | |
namespace SemiNormedGroup | |
open uniform_space _root_.opposite _root_.category_theory Completion | |
instance normed_with_aut_Completion (V : SemiNormedGroup.{u}) (r : ℝ≥0) [normed_with_aut r V] : | |
normed_with_aut r (Completion.obj V) := | |
{ T := Completion.map_iso normed_with_aut.T, | |
norm_T := | |
begin | |
rw ← function.funext_iff, | |
refine abstract_completion.funext completion.cpkg _ _ _, | |
{ apply continuous_norm.comp _, exact completion.continuous_map }, | |
{ exact (continuous_const.mul continuous_norm : _) }, | |
intro v, | |
calc _ = _ : congr_arg norm (completion.map_coe _ _) | |
... = _ : _, | |
{ exact normed_add_group_hom.uniform_continuous _ }, | |
{ erw [completion.norm_coe, normed_with_aut.norm_T, completion.norm_coe] } | |
end } | |
@[simp] lemma Completion_T_inv_eq (V : SemiNormedGroup.{u}) (r : ℝ≥0) [normed_with_aut r V] : | |
(normed_with_aut.T.hom : Completion.obj V ⟶ _) = Completion.map normed_with_aut.T.hom := rfl | |
lemma T_hom_incl {V : SemiNormedGroup} {r : ℝ≥0} [normed_with_aut r V] : | |
(incl : V ⟶ _) ≫ normed_with_aut.T.hom = normed_with_aut.T.hom ≫ incl := | |
begin | |
ext x, | |
simp only [incl_apply, category_theory.comp_apply, Completion_T_inv_eq], | |
change completion.map normed_with_aut.T.hom _ = _, | |
rw completion.map_coe, | |
exact normed_add_group_hom.uniform_continuous _, | |
end | |
lemma T_hom_eq {V : SemiNormedGroup} {r : ℝ≥0} [normed_with_aut r V] : | |
normed_with_aut.T.hom = Completion.lift ((normed_with_aut.T.hom : V ⟶ V) ≫ incl) := | |
lift_unique _ _ T_hom_incl | |
/-- `LCC` (Locally Constant Completion) is the bifunctor | |
that sends a seminormed group `V` and a profinite space `S` to `V-hat(S)`. | |
Here `V-hat(S)` is the completion (for the sup norm) of the locally constant functions `S → V`. -/ | |
def LCC : SemiNormedGroup ⥤ Profiniteᵒᵖ ⥤ SemiNormedGroup := | |
curry.obj ((uncurry.obj LocallyConstant) ⋙ Completion) | |
lemma LCC_obj_map' (V : SemiNormedGroup) {X Y : Profiniteᵒᵖ} (f : Y ⟶ X) : | |
(LCC.obj V).map f = Completion.map ((LocallyConstant.obj V).map f) := | |
begin | |
delta LCC, | |
simp only [curry.obj_obj_map, LocallyConstant_obj_map, functor.comp_map, uncurry.obj_map, | |
nat_trans.id_app, functor.map_comp, functor.map_id, category_theory.functor.map_id], | |
erw [← functor.map_comp, category.id_comp] | |
end | |
lemma LCC_obj_map (V : SemiNormedGroup) {X Y : Profiniteᵒᵖ} (f : Y ⟶ X) (v : (LCC.obj V).obj Y) : | |
(LCC.obj V).map f v = completion.map (locally_constant.comap f.unop) v := | |
by { rw LCC_obj_map', refl } | |
lemma LCC_obj_map_norm_noninc (V : SemiNormedGroup) {X Y : Profiniteᵒᵖ} (f : Y ⟶ X) : | |
((LCC.obj V).map f).norm_noninc := | |
begin | |
rw LCC_obj_map', | |
exact (Completion.map_norm_noninc $ LocallyConstant_obj_map_norm_noninc _ _ _ _) | |
end | |
variables (S : Type*) [topological_space S] [compact_space S] | |
@[simps] | |
instance normed_with_aut_LocallyConstant (V : SemiNormedGroup) (S : Profiniteᵒᵖ) (r : ℝ≥0) | |
[normed_with_aut r V] [hr : fact (0 < r)] : | |
normed_with_aut r ((LocallyConstant.obj V).obj S) := | |
{ T := (LocallyConstant.map_iso normed_with_aut.T).app S, | |
norm_T := | |
begin | |
rw ← op_unop S, | |
rintro (f : locally_constant (unop S : Profinite) V), | |
show Sup _ = ↑r * Sup _, | |
dsimp, | |
simp only [normed_with_aut.norm_T], | |
convert real.Sup_mul r _ hr.out, | |
ext, | |
simp only [exists_prop, set.mem_range, exists_exists_eq_and, set.mem_set_of_eq] | |
end } | |
instance normed_with_aut_LCC (V : SemiNormedGroup) (S : Profiniteᵒᵖ) (r : ℝ≥0) | |
[normed_with_aut r V] [hr : fact (0 < r)] : | |
normed_with_aut r ((LCC.obj V).obj S) := | |
show normed_with_aut r (Completion.obj $ (LocallyConstant.obj V).obj S), by apply_instance | |
end SemiNormedGroup | |
#lint- only unused_arguments def_lemma doc_blame | |