Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.62 kB
import locally_constant.SemiNormedGroup
import normed_group.normed_with_aut
import analysis.normed.group.SemiNormedGroup.completion
/-!
# Completions of normed groups
This file contains an API for completions for seminormed groups equipped with
an automorphism which scales norms by a constant factor `r`.
## Main definitions
- `normed_with_aut_Completion` : if `V` is equipped with an automorphism changing norms
by a factor `r` then the completion also has such an automorphism.
- `LCC : SemiNormedGroup ⥤ Profiniteᵒᵖ ⥤ SemiNormedGroup` :
`LCC V S` is the seminormed group completion of the locally constant functions from `S` to `V`.
## TODO
Pull off the stuff about completions and put it into `normed_add_comm_group/SemiNormedGroup`?
Then `system_of_complexes.basic` would not have to import this file.
-/
noncomputable theory
open_locale nnreal
universe u
namespace SemiNormedGroup
open uniform_space _root_.opposite _root_.category_theory Completion
instance normed_with_aut_Completion (V : SemiNormedGroup.{u}) (r : ℝ≥0) [normed_with_aut r V] :
normed_with_aut r (Completion.obj V) :=
{ T := Completion.map_iso normed_with_aut.T,
norm_T :=
begin
rw ← function.funext_iff,
refine abstract_completion.funext completion.cpkg _ _ _,
{ apply continuous_norm.comp _, exact completion.continuous_map },
{ exact (continuous_const.mul continuous_norm : _) },
intro v,
calc _ = _ : congr_arg norm (completion.map_coe _ _)
... = _ : _,
{ exact normed_add_group_hom.uniform_continuous _ },
{ erw [completion.norm_coe, normed_with_aut.norm_T, completion.norm_coe] }
end }
@[simp] lemma Completion_T_inv_eq (V : SemiNormedGroup.{u}) (r : ℝ≥0) [normed_with_aut r V] :
(normed_with_aut.T.hom : Completion.obj V ⟶ _) = Completion.map normed_with_aut.T.hom := rfl
lemma T_hom_incl {V : SemiNormedGroup} {r : ℝ≥0} [normed_with_aut r V] :
(incl : V ⟶ _) ≫ normed_with_aut.T.hom = normed_with_aut.T.hom ≫ incl :=
begin
ext x,
simp only [incl_apply, category_theory.comp_apply, Completion_T_inv_eq],
change completion.map normed_with_aut.T.hom _ = _,
rw completion.map_coe,
exact normed_add_group_hom.uniform_continuous _,
end
lemma T_hom_eq {V : SemiNormedGroup} {r : ℝ≥0} [normed_with_aut r V] :
normed_with_aut.T.hom = Completion.lift ((normed_with_aut.T.hom : V ⟶ V) ≫ incl) :=
lift_unique _ _ T_hom_incl
/-- `LCC` (Locally Constant Completion) is the bifunctor
that sends a seminormed group `V` and a profinite space `S` to `V-hat(S)`.
Here `V-hat(S)` is the completion (for the sup norm) of the locally constant functions `S → V`. -/
def LCC : SemiNormedGroup ⥤ Profiniteᵒᵖ ⥤ SemiNormedGroup :=
curry.obj ((uncurry.obj LocallyConstant) ⋙ Completion)
lemma LCC_obj_map' (V : SemiNormedGroup) {X Y : Profiniteᵒᵖ} (f : Y ⟶ X) :
(LCC.obj V).map f = Completion.map ((LocallyConstant.obj V).map f) :=
begin
delta LCC,
simp only [curry.obj_obj_map, LocallyConstant_obj_map, functor.comp_map, uncurry.obj_map,
nat_trans.id_app, functor.map_comp, functor.map_id, category_theory.functor.map_id],
erw [← functor.map_comp, category.id_comp]
end
lemma LCC_obj_map (V : SemiNormedGroup) {X Y : Profiniteᵒᵖ} (f : Y ⟶ X) (v : (LCC.obj V).obj Y) :
(LCC.obj V).map f v = completion.map (locally_constant.comap f.unop) v :=
by { rw LCC_obj_map', refl }
lemma LCC_obj_map_norm_noninc (V : SemiNormedGroup) {X Y : Profiniteᵒᵖ} (f : Y ⟶ X) :
((LCC.obj V).map f).norm_noninc :=
begin
rw LCC_obj_map',
exact (Completion.map_norm_noninc $ LocallyConstant_obj_map_norm_noninc _ _ _ _)
end
variables (S : Type*) [topological_space S] [compact_space S]
@[simps]
instance normed_with_aut_LocallyConstant (V : SemiNormedGroup) (S : Profiniteᵒᵖ) (r : ℝ≥0)
[normed_with_aut r V] [hr : fact (0 < r)] :
normed_with_aut r ((LocallyConstant.obj V).obj S) :=
{ T := (LocallyConstant.map_iso normed_with_aut.T).app S,
norm_T :=
begin
rw ← op_unop S,
rintro (f : locally_constant (unop S : Profinite) V),
show Sup _ = ↑r * Sup _,
dsimp,
simp only [normed_with_aut.norm_T],
convert real.Sup_mul r _ hr.out,
ext,
simp only [exists_prop, set.mem_range, exists_exists_eq_and, set.mem_set_of_eq]
end }
instance normed_with_aut_LCC (V : SemiNormedGroup) (S : Profiniteᵒᵖ) (r : ℝ≥0)
[normed_with_aut r V] [hr : fact (0 < r)] :
normed_with_aut r ((LCC.obj V).obj S) :=
show normed_with_aut r (Completion.obj $ (LocallyConstant.obj V).obj S), by apply_instance
end SemiNormedGroup
#lint- only unused_arguments def_lemma doc_blame