Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Jens Wagemaker | |
-/ | |
import algebra.divisibility | |
import algebra.group_power.lemmas | |
import algebra.invertible | |
import order.atoms | |
/-! | |
# Associated, prime, and irreducible elements. | |
-/ | |
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} | |
section prime | |
variables [comm_monoid_with_zero α] | |
/-- prime element of a `comm_monoid_with_zero` -/ | |
def prime (p : α) : Prop := | |
p ≠ 0 ∧ ¬ is_unit p ∧ (∀a b, p ∣ a * b → p ∣ a ∨ p ∣ b) | |
namespace prime | |
variables {p : α} (hp : prime p) | |
include hp | |
lemma ne_zero : p ≠ 0 := | |
hp.1 | |
lemma not_unit : ¬ is_unit p := | |
hp.2.1 | |
lemma not_dvd_one : ¬ p ∣ 1 := | |
mt (is_unit_of_dvd_one _) hp.not_unit | |
lemma ne_one : p ≠ 1 := | |
λ h, hp.2.1 (h.symm ▸ is_unit_one) | |
lemma dvd_or_dvd (hp : prime p) {a b : α} (h : p ∣ a * b) : | |
p ∣ a ∨ p ∣ b := | |
hp.2.2 a b h | |
lemma dvd_of_dvd_pow (hp : prime p) {a : α} {n : ℕ} (h : p ∣ a^n) : | |
p ∣ a := | |
begin | |
induction n with n ih, | |
{ rw pow_zero at h, | |
have := is_unit_of_dvd_one _ h, | |
have := not_unit hp, | |
contradiction }, | |
rw pow_succ at h, | |
cases dvd_or_dvd hp h with dvd_a dvd_pow, | |
{ assumption }, | |
exact ih dvd_pow | |
end | |
end prime | |
@[simp] lemma not_prime_zero : ¬ prime (0 : α) := | |
λ h, h.ne_zero rfl | |
@[simp] lemma not_prime_one : ¬ prime (1 : α) := | |
λ h, h.not_unit is_unit_one | |
section map | |
variables [comm_monoid_with_zero β] {F : Type*} {G : Type*} | |
[monoid_with_zero_hom_class F α β] [mul_hom_class G β α] (f : F) (g : G) {p : α} | |
lemma comap_prime (hinv : ∀ a, g (f a : β) = a) (hp : prime (f p)) : prime p := | |
⟨ λ h, hp.1 $ by simp [h], λ h, hp.2.1 $ h.map f, λ a b h, by | |
{ refine (hp.2.2 (f a) (f b) $ by { convert map_dvd f h, simp }).imp _ _; | |
{ intro h, convert ← map_dvd g h; apply hinv } } ⟩ | |
lemma mul_equiv.prime_iff (e : α ≃* β) : prime p ↔ prime (e p) := | |
⟨ λ h, comap_prime e.symm e (λ a, by simp) $ (e.symm_apply_apply p).substr h, | |
comap_prime e e.symm (λ a, by simp) ⟩ | |
end map | |
end prime | |
lemma prime.left_dvd_or_dvd_right_of_dvd_mul [cancel_comm_monoid_with_zero α] {p : α} | |
(hp : prime p) {a b : α} : a ∣ p * b → p ∣ a ∨ a ∣ b := | |
begin | |
rintro ⟨c, hc⟩, | |
rcases hp.2.2 a c (hc ▸ dvd_mul_right _ _) with h | ⟨x, rfl⟩, | |
{ exact or.inl h }, | |
{ rw [mul_left_comm, mul_right_inj' hp.ne_zero] at hc, | |
exact or.inr (hc.symm ▸ dvd_mul_right _ _) } | |
end | |
lemma prime.pow_dvd_of_dvd_mul_left | |
[cancel_comm_monoid_with_zero α] | |
{p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ a) (h' : p ^ n ∣ a * b) : p ^ n ∣ b := | |
begin | |
induction n with n ih, | |
{ rw pow_zero, exact one_dvd b }, | |
{ obtain ⟨c, rfl⟩ := ih (dvd_trans (pow_dvd_pow p n.le_succ) h'), | |
rw pow_succ', | |
apply mul_dvd_mul_left _ ((hp.dvd_or_dvd _).resolve_left h), | |
rwa [←mul_dvd_mul_iff_left (pow_ne_zero n hp.ne_zero), ←pow_succ', mul_left_comm] } | |
end | |
lemma prime.pow_dvd_of_dvd_mul_right | |
[cancel_comm_monoid_with_zero α] | |
{p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ b) (h' : p ^ n ∣ a * b) : p ^ n ∣ a := | |
by { rw [mul_comm] at h', exact hp.pow_dvd_of_dvd_mul_left n h h' } | |
lemma prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd [cancel_comm_monoid_with_zero α] | |
{p a b : α} {n : ℕ} (hp : prime p) (hpow : p ^ n.succ ∣ a ^ n.succ * b ^ n) | |
(hb : ¬ p ^ 2 ∣ b) : p ∣ a := | |
begin | |
-- Suppose `p ∣ b`, write `b = p * x` and `hy : a ^ n.succ * b ^ n = p ^ n.succ * y`. | |
cases (hp.dvd_or_dvd ((dvd_pow_self p (nat.succ_ne_zero n)).trans hpow)) with H hbdiv, | |
{ exact hp.dvd_of_dvd_pow H }, | |
obtain ⟨x, rfl⟩ := hp.dvd_of_dvd_pow hbdiv, | |
obtain ⟨y, hy⟩ := hpow, | |
-- Then we can divide out a common factor of `p ^ n` from the equation `hy`. | |
have : a ^ n.succ * x ^ n = p * y, | |
{ refine mul_left_cancel₀ (pow_ne_zero n hp.ne_zero) _, | |
rw [← mul_assoc _ p, ← pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ), | |
mul_comm _ (p ^ n), mul_assoc] }, | |
-- So `p ∣ a` (and we're done) or `p ∣ x`, which can't be the case since it implies `p^2 ∣ b`. | |
refine hp.dvd_of_dvd_pow ((hp.dvd_or_dvd ⟨_, this⟩).resolve_right (λ hdvdx, hb _)), | |
obtain ⟨z, rfl⟩ := hp.dvd_of_dvd_pow hdvdx, | |
rw [pow_two, ← mul_assoc], | |
exact dvd_mul_right _ _, | |
end | |
/-- `irreducible p` states that `p` is non-unit and only factors into units. | |
We explicitly avoid stating that `p` is non-zero, this would require a semiring. Assuming only a | |
monoid allows us to reuse irreducible for associated elements. | |
-/ | |
structure irreducible [monoid α] (p : α) : Prop := | |
(not_unit : ¬ is_unit p) | |
(is_unit_or_is_unit' : ∀a b, p = a * b → is_unit a ∨ is_unit b) | |
namespace irreducible | |
lemma not_dvd_one [comm_monoid α] {p : α} (hp : irreducible p) : ¬ p ∣ 1 := | |
mt (is_unit_of_dvd_one _) hp.not_unit | |
lemma is_unit_or_is_unit [monoid α] {p : α} (hp : irreducible p) {a b : α} (h : p = a * b) : | |
is_unit a ∨ is_unit b := | |
hp.is_unit_or_is_unit' a b h | |
end irreducible | |
lemma irreducible_iff [monoid α] {p : α} : | |
irreducible p ↔ ¬ is_unit p ∧ ∀a b, p = a * b → is_unit a ∨ is_unit b := | |
⟨λ h, ⟨h.1, h.2⟩, λ h, ⟨h.1, h.2⟩⟩ | |
@[simp] theorem not_irreducible_one [monoid α] : ¬ irreducible (1 : α) := | |
by simp [irreducible_iff] | |
theorem irreducible.ne_one [monoid α] : ∀ {p:α}, irreducible p → p ≠ 1 | |
| _ hp rfl := not_irreducible_one hp | |
@[simp] theorem not_irreducible_zero [monoid_with_zero α] : ¬ irreducible (0 : α) | |
| ⟨hn0, h⟩ := have is_unit (0:α) ∨ is_unit (0:α), from h 0 0 ((mul_zero 0).symm), | |
this.elim hn0 hn0 | |
theorem irreducible.ne_zero [monoid_with_zero α] : ∀ {p:α}, irreducible p → p ≠ 0 | |
| _ hp rfl := not_irreducible_zero hp | |
theorem of_irreducible_mul {α} [monoid α] {x y : α} : | |
irreducible (x * y) → is_unit x ∨ is_unit y | |
| ⟨_, h⟩ := h _ _ rfl | |
theorem of_irreducible_pow {α} [monoid α] {x : α} {n : ℕ} (hn : n ≠ 1) : | |
irreducible (x ^ n) → is_unit x := | |
begin | |
obtain hn|hn := hn.lt_or_lt, | |
{ simp only [nat.lt_one_iff.mp hn, is_empty.forall_iff, not_irreducible_one, pow_zero] }, | |
intro h, | |
obtain ⟨k, rfl⟩ := nat.exists_eq_add_of_lt hn, | |
rw [pow_succ, add_comm] at h, | |
exact (or_iff_left_of_imp ((is_unit_pos_pow_iff (nat.succ_pos _)).mp)).mp (of_irreducible_mul h) | |
end | |
theorem irreducible_or_factor {α} [monoid α] (x : α) (h : ¬ is_unit x) : | |
irreducible x ∨ ∃ a b, ¬ is_unit a ∧ ¬ is_unit b ∧ a * b = x := | |
begin | |
haveI := classical.dec, | |
refine or_iff_not_imp_right.2 (λ H, _), | |
simp [h, irreducible_iff] at H ⊢, | |
refine λ a b h, classical.by_contradiction $ λ o, _, | |
simp [not_or_distrib] at o, | |
exact H _ o.1 _ o.2 h.symm | |
end | |
protected lemma prime.irreducible [cancel_comm_monoid_with_zero α] {p : α} (hp : prime p) : | |
irreducible p := | |
⟨hp.not_unit, λ a b hab, | |
(show a * b ∣ a ∨ a * b ∣ b, from hab ▸ hp.dvd_or_dvd (hab ▸ dvd_rfl)).elim | |
(λ ⟨x, hx⟩, or.inr (is_unit_iff_dvd_one.2 | |
⟨x, mul_right_cancel₀ (show a ≠ 0, from λ h, by simp [*, prime] at *) | |
$ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩)) | |
(λ ⟨x, hx⟩, or.inl (is_unit_iff_dvd_one.2 | |
⟨x, mul_right_cancel₀ (show b ≠ 0, from λ h, by simp [*, prime] at *) | |
$ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩))⟩ | |
lemma succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul [cancel_comm_monoid_with_zero α] | |
{p : α} (hp : prime p) {a b : α} {k l : ℕ} : | |
p ^ k ∣ a → p ^ l ∣ b → p ^ ((k + l) + 1) ∣ a * b → p ^ (k + 1) ∣ a ∨ p ^ (l + 1) ∣ b := | |
λ ⟨x, hx⟩ ⟨y, hy⟩ ⟨z, hz⟩, | |
have h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z), | |
by simpa [mul_comm, pow_add, hx, hy, mul_assoc, mul_left_comm] using hz, | |
have hp0: p ^ (k + l) ≠ 0, from pow_ne_zero _ hp.ne_zero, | |
have hpd : p ∣ x * y, from ⟨z, by rwa [mul_right_inj' hp0] at h⟩, | |
(hp.dvd_or_dvd hpd).elim | |
(λ ⟨d, hd⟩, or.inl ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc]⟩) | |
(λ ⟨d, hd⟩, or.inr ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc]⟩) | |
/-- If `p` and `q` are irreducible, then `p ∣ q` implies `q ∣ p`. -/ | |
lemma irreducible.dvd_symm [monoid α] {p q : α} | |
(hp : irreducible p) (hq : irreducible q) : p ∣ q → q ∣ p := | |
begin | |
unfreezingI { rintros ⟨q', rfl⟩ }, | |
rw is_unit.mul_right_dvd (or.resolve_left (of_irreducible_mul hq) hp.not_unit), | |
end | |
lemma irreducible.dvd_comm [monoid α] {p q : α} | |
(hp : irreducible p) (hq : irreducible q) : p ∣ q ↔ q ∣ p := | |
⟨hp.dvd_symm hq, hq.dvd_symm hp⟩ | |
section | |
variables [monoid α] | |
lemma irreducible_units_mul (a : αˣ) (b : α) : irreducible (↑a * b) ↔ irreducible b := | |
begin | |
simp only [irreducible_iff, units.is_unit_units_mul, and.congr_right_iff], | |
refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩, | |
{ rw [←a.is_unit_units_mul], | |
apply h, | |
rw [mul_assoc, ←HAB] }, | |
{ rw [←(a⁻¹).is_unit_units_mul], | |
apply h, | |
rw [mul_assoc, ←HAB, units.inv_mul_cancel_left] }, | |
end | |
lemma irreducible_is_unit_mul {a b : α} (h : is_unit a) : irreducible (a * b) ↔ irreducible b := | |
let ⟨a, ha⟩ := h in ha ▸ irreducible_units_mul a b | |
lemma irreducible_mul_units (a : αˣ) (b : α) : irreducible (b * ↑a) ↔ irreducible b := | |
begin | |
simp only [irreducible_iff, units.is_unit_mul_units, and.congr_right_iff], | |
refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩, | |
{ rw [←units.is_unit_mul_units B a], | |
apply h, | |
rw [←mul_assoc, ←HAB] }, | |
{ rw [←units.is_unit_mul_units B a⁻¹], | |
apply h, | |
rw [←mul_assoc, ←HAB, units.mul_inv_cancel_right] }, | |
end | |
lemma irreducible_mul_is_unit {a b : α} (h : is_unit a) : irreducible (b * a) ↔ irreducible b := | |
let ⟨a, ha⟩ := h in ha ▸ irreducible_mul_units a b | |
lemma irreducible_mul_iff {a b : α} : | |
irreducible (a * b) ↔ (irreducible a ∧ is_unit b) ∨ (irreducible b ∧ is_unit a) := | |
begin | |
split, | |
{ refine λ h, or.imp (λ h', ⟨_, h'⟩) (λ h', ⟨_, h'⟩) (h.is_unit_or_is_unit rfl).symm, | |
{ rwa [irreducible_mul_is_unit h'] at h }, | |
{ rwa [irreducible_is_unit_mul h'] at h } }, | |
{ rintros (⟨ha, hb⟩|⟨hb, ha⟩), | |
{ rwa [irreducible_mul_is_unit hb] }, | |
{ rwa [irreducible_is_unit_mul ha] } }, | |
end | |
end | |
lemma pow_not_prime [cancel_comm_monoid_with_zero α] {x : α} {n : ℕ} (hn : n ≠ 1) : | |
¬ prime (x ^ n) := | |
λ hp, hp.not_unit $ is_unit.pow _ $ of_irreducible_pow hn $ hp.irreducible | |
/-- Two elements of a `monoid` are `associated` if one of them is another one | |
multiplied by a unit on the right. -/ | |
def associated [monoid α] (x y : α) : Prop := ∃u:αˣ, x * u = y | |
local infix ` ~ᵤ ` : 50 := associated | |
namespace associated | |
@[refl] protected theorem refl [monoid α] (x : α) : x ~ᵤ x := ⟨1, by simp⟩ | |
instance [monoid α] : is_refl α associated := ⟨associated.refl⟩ | |
@[symm] protected theorem symm [monoid α] : ∀{x y : α}, x ~ᵤ y → y ~ᵤ x | |
| x _ ⟨u, rfl⟩ := ⟨u⁻¹, by rw [mul_assoc, units.mul_inv, mul_one]⟩ | |
instance [monoid α] : is_symm α associated := ⟨λ a b, associated.symm⟩ | |
@[trans] protected theorem trans [monoid α] : ∀{x y z : α}, x ~ᵤ y → y ~ᵤ z → x ~ᵤ z | |
| x _ _ ⟨u, rfl⟩ ⟨v, rfl⟩ := ⟨u * v, by rw [units.coe_mul, mul_assoc]⟩ | |
instance [monoid α] : is_trans α associated := ⟨λ a b c, associated.trans⟩ | |
/-- The setoid of the relation `x ~ᵤ y` iff there is a unit `u` such that `x * u = y` -/ | |
protected def setoid (α : Type*) [monoid α] : setoid α := | |
{ r := associated, iseqv := ⟨associated.refl, λa b, associated.symm, λa b c, associated.trans⟩ } | |
end associated | |
local attribute [instance] associated.setoid | |
theorem unit_associated_one [monoid α] {u : αˣ} : (u : α) ~ᵤ 1 := ⟨u⁻¹, units.mul_inv u⟩ | |
theorem associated_one_iff_is_unit [monoid α] {a : α} : (a : α) ~ᵤ 1 ↔ is_unit a := | |
iff.intro | |
(assume h, let ⟨c, h⟩ := h.symm in h ▸ ⟨c, (one_mul _).symm⟩) | |
(assume ⟨c, h⟩, associated.symm ⟨c, by simp [h]⟩) | |
theorem associated_zero_iff_eq_zero [monoid_with_zero α] (a : α) : a ~ᵤ 0 ↔ a = 0 := | |
iff.intro | |
(assume h, let ⟨u, h⟩ := h.symm in by simpa using h.symm) | |
(assume h, h ▸ associated.refl a) | |
theorem associated_one_of_mul_eq_one [comm_monoid α] {a : α} (b : α) (hab : a * b = 1) : a ~ᵤ 1 := | |
show (units.mk_of_mul_eq_one a b hab : α) ~ᵤ 1, from unit_associated_one | |
theorem associated_one_of_associated_mul_one [comm_monoid α] {a b : α} : | |
a * b ~ᵤ 1 → a ~ᵤ 1 | |
| ⟨u, h⟩ := associated_one_of_mul_eq_one (b * u) $ by simpa [mul_assoc] using h | |
lemma associated_mul_unit_left {β : Type*} [monoid β] (a u : β) (hu : is_unit u) : | |
associated (a * u) a := | |
let ⟨u', hu⟩ := hu in ⟨u'⁻¹, hu ▸ units.mul_inv_cancel_right _ _⟩ | |
lemma associated_unit_mul_left {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) : | |
associated (u * a) a := | |
begin | |
rw mul_comm, | |
exact associated_mul_unit_left _ _ hu | |
end | |
lemma associated_mul_unit_right {β : Type*} [monoid β] (a u : β) (hu : is_unit u) : | |
associated a (a * u) := | |
(associated_mul_unit_left a u hu).symm | |
lemma associated_unit_mul_right {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) : | |
associated a (u * a) := | |
(associated_unit_mul_left a u hu).symm | |
lemma associated.mul_mul [comm_monoid α] {a₁ a₂ b₁ b₂ : α} : | |
a₁ ~ᵤ b₁ → a₂ ~ᵤ b₂ → (a₁ * a₂) ~ᵤ (b₁ * b₂) | |
| ⟨c₁, h₁⟩ ⟨c₂, h₂⟩ := ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩ | |
lemma associated.mul_left [comm_monoid α] (a : α) {b c : α} (h : b ~ᵤ c) : | |
(a * b) ~ᵤ (a * c) := | |
(associated.refl a).mul_mul h | |
lemma associated.mul_right [comm_monoid α] {a b : α} (h : a ~ᵤ b) (c : α) : | |
(a * c) ~ᵤ (b * c) := | |
h.mul_mul (associated.refl c) | |
lemma associated.pow_pow [comm_monoid α] {a b : α} {n : ℕ} (h : a ~ᵤ b) : | |
a ^ n ~ᵤ b ^ n := | |
begin | |
induction n with n ih, { simp [h] }, | |
convert h.mul_mul ih; | |
rw pow_succ | |
end | |
protected lemma associated.dvd [monoid α] {a b : α} : a ~ᵤ b → a ∣ b := λ ⟨u, hu⟩, ⟨u, hu.symm⟩ | |
protected lemma associated.dvd_dvd [monoid α] {a b : α} (h : a ~ᵤ b) : a ∣ b ∧ b ∣ a := | |
⟨h.dvd, h.symm.dvd⟩ | |
theorem associated_of_dvd_dvd [cancel_monoid_with_zero α] | |
{a b : α} (hab : a ∣ b) (hba : b ∣ a) : a ~ᵤ b := | |
begin | |
rcases hab with ⟨c, rfl⟩, | |
rcases hba with ⟨d, a_eq⟩, | |
by_cases ha0 : a = 0, | |
{ simp [*] at * }, | |
have hac0 : a * c ≠ 0, | |
{ intro con, rw [con, zero_mul] at a_eq, apply ha0 a_eq, }, | |
have : a * (c * d) = a * 1 := by rw [← mul_assoc, ← a_eq, mul_one], | |
have hcd : (c * d) = 1, from mul_left_cancel₀ ha0 this, | |
have : a * c * (d * c) = a * c * 1 := by rw [← mul_assoc, ← a_eq, mul_one], | |
have hdc : d * c = 1, from mul_left_cancel₀ hac0 this, | |
exact ⟨⟨c, d, hcd, hdc⟩, rfl⟩ | |
end | |
theorem dvd_dvd_iff_associated [cancel_monoid_with_zero α] {a b : α} : a ∣ b ∧ b ∣ a ↔ a ~ᵤ b := | |
⟨λ ⟨h1, h2⟩, associated_of_dvd_dvd h1 h2, associated.dvd_dvd⟩ | |
instance [cancel_monoid_with_zero α] [decidable_rel ((∣) : α → α → Prop)] : | |
decidable_rel ((~ᵤ) : α → α → Prop) := | |
λ a b, decidable_of_iff _ dvd_dvd_iff_associated | |
lemma associated.dvd_iff_dvd_left [monoid α] {a b c : α} (h : a ~ᵤ b) : a ∣ c ↔ b ∣ c := | |
let ⟨u, hu⟩ := h in hu ▸ units.mul_right_dvd.symm | |
lemma associated.dvd_iff_dvd_right [monoid α] {a b c : α} (h : b ~ᵤ c) : a ∣ b ↔ a ∣ c := | |
let ⟨u, hu⟩ := h in hu ▸ units.dvd_mul_right.symm | |
lemma associated.eq_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a = 0 ↔ b = 0 := | |
⟨λ ha, let ⟨u, hu⟩ := h in by simp [hu.symm, ha], | |
λ hb, let ⟨u, hu⟩ := h.symm in by simp [hu.symm, hb]⟩ | |
lemma associated.ne_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a ≠ 0 ↔ b ≠ 0 := | |
not_congr h.eq_zero_iff | |
protected lemma associated.prime [comm_monoid_with_zero α] {p q : α} (h : p ~ᵤ q) (hp : prime p) : | |
prime q := | |
⟨h.ne_zero_iff.1 hp.ne_zero, | |
let ⟨u, hu⟩ := h in | |
⟨λ ⟨v, hv⟩, hp.not_unit ⟨v * u⁻¹, by simp [hv, hu.symm]⟩, | |
hu ▸ by { simp [units.mul_right_dvd], intros a b, exact hp.dvd_or_dvd }⟩⟩ | |
lemma irreducible.associated_of_dvd [cancel_monoid_with_zero α] {p q : α} | |
(p_irr : irreducible p) (q_irr : irreducible q) (dvd : p ∣ q) : associated p q := | |
associated_of_dvd_dvd dvd (p_irr.dvd_symm q_irr dvd) | |
lemma irreducible.dvd_irreducible_iff_associated [cancel_monoid_with_zero α] | |
{p q : α} (pp : irreducible p) (qp : irreducible q) : | |
p ∣ q ↔ associated p q := | |
⟨irreducible.associated_of_dvd pp qp, associated.dvd⟩ | |
lemma prime.associated_of_dvd [cancel_comm_monoid_with_zero α] {p q : α} | |
(p_prime : prime p) (q_prime : prime q) (dvd : p ∣ q) : associated p q := | |
p_prime.irreducible.associated_of_dvd q_prime.irreducible dvd | |
theorem prime.dvd_prime_iff_associated [cancel_comm_monoid_with_zero α] | |
{p q : α} (pp : prime p) (qp : prime q) : | |
p ∣ q ↔ associated p q := | |
pp.irreducible.dvd_irreducible_iff_associated qp.irreducible | |
lemma associated.prime_iff [comm_monoid_with_zero α] {p q : α} | |
(h : p ~ᵤ q) : prime p ↔ prime q := | |
⟨h.prime, h.symm.prime⟩ | |
protected lemma associated.is_unit [monoid α] {a b : α} (h : a ~ᵤ b) : is_unit a → is_unit b := | |
let ⟨u, hu⟩ := h in λ ⟨v, hv⟩, ⟨v * u, by simp [hv, hu.symm]⟩ | |
lemma associated.is_unit_iff [monoid α] {a b : α} (h : a ~ᵤ b) : is_unit a ↔ is_unit b := | |
⟨h.is_unit, h.symm.is_unit⟩ | |
protected lemma associated.irreducible [monoid α] {p q : α} (h : p ~ᵤ q) | |
(hp : irreducible p) : irreducible q := | |
⟨mt h.symm.is_unit hp.1, | |
let ⟨u, hu⟩ := h in λ a b hab, | |
have hpab : p = a * (b * (u⁻¹ : αˣ)), | |
from calc p = (p * u) * (u ⁻¹ : αˣ) : by simp | |
... = _ : by rw hu; simp [hab, mul_assoc], | |
(hp.is_unit_or_is_unit hpab).elim or.inl (λ ⟨v, hv⟩, or.inr ⟨v * u, by simp [hv]⟩)⟩ | |
protected lemma associated.irreducible_iff [monoid α] {p q : α} (h : p ~ᵤ q) : | |
irreducible p ↔ irreducible q := | |
⟨h.irreducible, h.symm.irreducible⟩ | |
lemma associated.of_mul_left [cancel_comm_monoid_with_zero α] {a b c d : α} | |
(h : a * b ~ᵤ c * d) (h₁ : a ~ᵤ c) (ha : a ≠ 0) : b ~ᵤ d := | |
let ⟨u, hu⟩ := h in let ⟨v, hv⟩ := associated.symm h₁ in | |
⟨u * (v : αˣ), mul_left_cancel₀ ha | |
begin | |
rw [← hv, mul_assoc c (v : α) d, mul_left_comm c, ← hu], | |
simp [hv.symm, mul_assoc, mul_comm, mul_left_comm] | |
end⟩ | |
lemma associated.of_mul_right [cancel_comm_monoid_with_zero α] {a b c d : α} : | |
a * b ~ᵤ c * d → b ~ᵤ d → b ≠ 0 → a ~ᵤ c := | |
by rw [mul_comm a, mul_comm c]; exact associated.of_mul_left | |
lemma associated.of_pow_associated_of_prime [cancel_comm_monoid_with_zero α] {p₁ p₂ : α} | |
{k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₁ : 0 < k₁) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) : | |
p₁ ~ᵤ p₂ := | |
begin | |
have : p₁ ∣ p₂ ^ k₂, | |
{ rw ←h.dvd_iff_dvd_right, | |
apply dvd_pow_self _ hk₁.ne' }, | |
rw ←hp₁.dvd_prime_iff_associated hp₂, | |
exact hp₁.dvd_of_dvd_pow this, | |
end | |
lemma associated.of_pow_associated_of_prime' [cancel_comm_monoid_with_zero α] {p₁ p₂ : α} | |
{k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₂ : 0 < k₂) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) : | |
p₁ ~ᵤ p₂ := | |
(h.symm.of_pow_associated_of_prime hp₂ hp₁ hk₂).symm | |
section unique_units | |
variables [monoid α] [unique αˣ] | |
lemma units_eq_one (u : αˣ) : u = 1 := subsingleton.elim u 1 | |
theorem associated_iff_eq {x y : α} : x ~ᵤ y ↔ x = y := | |
begin | |
split, | |
{ rintro ⟨c, rfl⟩, rw [units_eq_one c, units.coe_one, mul_one] }, | |
{ rintro rfl, refl }, | |
end | |
theorem associated_eq_eq : (associated : α → α → Prop) = eq := | |
by { ext, rw associated_iff_eq } | |
lemma prime_dvd_prime_iff_eq | |
{M : Type*} [cancel_comm_monoid_with_zero M] [unique Mˣ] {p q : M} (pp : prime p) (qp : prime q) : | |
p ∣ q ↔ p = q := | |
by rw [pp.dvd_prime_iff_associated qp, ←associated_eq_eq] | |
end unique_units | |
/-- The quotient of a monoid by the `associated` relation. Two elements `x` and `y` | |
are associated iff there is a unit `u` such that `x * u = y`. There is a natural | |
monoid structure on `associates α`. -/ | |
def associates (α : Type*) [monoid α] : Type* := | |
quotient (associated.setoid α) | |
namespace associates | |
open associated | |
/-- The canonical quotient map from a monoid `α` into the `associates` of `α` -/ | |
protected def mk {α : Type*} [monoid α] (a : α) : associates α := | |
⟦ a ⟧ | |
instance [monoid α] : inhabited (associates α) := ⟨⟦1⟧⟩ | |
theorem mk_eq_mk_iff_associated [monoid α] {a b : α} : | |
associates.mk a = associates.mk b ↔ a ~ᵤ b := | |
iff.intro quotient.exact quot.sound | |
theorem quotient_mk_eq_mk [monoid α] (a : α) : ⟦ a ⟧ = associates.mk a := rfl | |
theorem quot_mk_eq_mk [monoid α] (a : α) : quot.mk setoid.r a = associates.mk a := rfl | |
theorem forall_associated [monoid α] {p : associates α → Prop} : | |
(∀a, p a) ↔ (∀a, p (associates.mk a)) := | |
iff.intro | |
(assume h a, h _) | |
(assume h a, quotient.induction_on a h) | |
theorem mk_surjective [monoid α] : function.surjective (@associates.mk α _) := | |
forall_associated.2 (λ a, ⟨a, rfl⟩) | |
instance [monoid α] : has_one (associates α) := ⟨⟦ 1 ⟧⟩ | |
@[simp] lemma mk_one [monoid α] : associates.mk (1 : α) = 1 := rfl | |
theorem one_eq_mk_one [monoid α] : (1 : associates α) = associates.mk 1 := rfl | |
instance [monoid α] : has_bot (associates α) := ⟨1⟩ | |
lemma bot_eq_one [monoid α] : (⊥ : associates α) = 1 := rfl | |
lemma exists_rep [monoid α] (a : associates α) : ∃ a0 : α, associates.mk a0 = a := | |
quot.exists_rep a | |
instance [monoid α] [subsingleton α] : unique (associates α) := | |
{ default := 1, | |
uniq := λ a, by { apply quotient.rec_on_subsingleton₂, intros a b, congr } } | |
lemma mk_injective [monoid α] [unique (units α)] : function.injective (@associates.mk α _) := | |
λ a b h, associated_iff_eq.mp (associates.mk_eq_mk_iff_associated.mp h) | |
section comm_monoid | |
variable [comm_monoid α] | |
instance : has_mul (associates α) := | |
⟨λa' b', quotient.lift_on₂ a' b' (λa b, ⟦ a * b ⟧) $ | |
assume a₁ a₂ b₁ b₂ ⟨c₁, h₁⟩ ⟨c₂, h₂⟩, | |
quotient.sound $ ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩⟩ | |
theorem mk_mul_mk {x y : α} : associates.mk x * associates.mk y = associates.mk (x * y) := | |
rfl | |
instance : comm_monoid (associates α) := | |
{ one := 1, | |
mul := (*), | |
mul_one := assume a', quotient.induction_on a' $ | |
assume a, show ⟦a * 1⟧ = ⟦ a ⟧, by simp, | |
one_mul := assume a', quotient.induction_on a' $ | |
assume a, show ⟦1 * a⟧ = ⟦ a ⟧, by simp, | |
mul_assoc := assume a' b' c', quotient.induction_on₃ a' b' c' $ | |
assume a b c, show ⟦a * b * c⟧ = ⟦a * (b * c)⟧, by rw [mul_assoc], | |
mul_comm := assume a' b', quotient.induction_on₂ a' b' $ | |
assume a b, show ⟦a * b⟧ = ⟦b * a⟧, by rw [mul_comm] } | |
instance : preorder (associates α) := | |
{ le := has_dvd.dvd, | |
le_refl := dvd_refl, | |
le_trans := λ a b c, dvd_trans} | |
/-- `associates.mk` as a `monoid_hom`. -/ | |
protected def mk_monoid_hom : α →* (associates α) := ⟨associates.mk, mk_one, λ x y, mk_mul_mk⟩ | |
@[simp] lemma mk_monoid_hom_apply (a : α) : associates.mk_monoid_hom a = associates.mk a := rfl | |
lemma associated_map_mk {f : associates α →* α} | |
(hinv : function.right_inverse f associates.mk) (a : α) : | |
a ~ᵤ f (associates.mk a) := | |
associates.mk_eq_mk_iff_associated.1 (hinv (associates.mk a)).symm | |
lemma mk_pow (a : α) (n : ℕ) : associates.mk (a ^ n) = (associates.mk a) ^ n := | |
by induction n; simp [*, pow_succ, associates.mk_mul_mk.symm] | |
lemma dvd_eq_le : ((∣) : associates α → associates α → Prop) = (≤) := rfl | |
theorem mul_eq_one_iff {x y : associates α} : x * y = 1 ↔ (x = 1 ∧ y = 1) := | |
iff.intro | |
(quotient.induction_on₂ x y $ assume a b h, | |
have a * b ~ᵤ 1, from quotient.exact h, | |
⟨quotient.sound $ associated_one_of_associated_mul_one this, | |
quotient.sound $ associated_one_of_associated_mul_one $ by rwa [mul_comm] at this⟩) | |
(by simp {contextual := tt}) | |
theorem units_eq_one (u : (associates α)ˣ) : u = 1 := | |
units.ext (mul_eq_one_iff.1 u.val_inv).1 | |
instance unique_units : unique ((associates α)ˣ) := | |
{ default := 1, uniq := associates.units_eq_one } | |
theorem coe_unit_eq_one (u : (associates α)ˣ): (u : associates α) = 1 := | |
by simp | |
theorem is_unit_iff_eq_one (a : associates α) : is_unit a ↔ a = 1 := | |
iff.intro | |
(assume ⟨u, h⟩, h ▸ coe_unit_eq_one _) | |
(assume h, h.symm ▸ is_unit_one) | |
lemma is_unit_iff_eq_bot {a : associates α} : is_unit a ↔ a = ⊥ := | |
by rw [associates.is_unit_iff_eq_one, bot_eq_one] | |
theorem is_unit_mk {a : α} : is_unit (associates.mk a) ↔ is_unit a := | |
calc is_unit (associates.mk a) ↔ a ~ᵤ 1 : | |
by rw [is_unit_iff_eq_one, one_eq_mk_one, mk_eq_mk_iff_associated] | |
... ↔ is_unit a : associated_one_iff_is_unit | |
section order | |
theorem mul_mono {a b c d : associates α} (h₁ : a ≤ b) (h₂ : c ≤ d) : | |
a * c ≤ b * d := | |
let ⟨x, hx⟩ := h₁, ⟨y, hy⟩ := h₂ in | |
⟨x * y, by simp [hx, hy, mul_comm, mul_assoc, mul_left_comm]⟩ | |
theorem one_le {a : associates α} : 1 ≤ a := | |
dvd.intro _ (one_mul a) | |
theorem le_mul_right {a b : associates α} : a ≤ a * b := ⟨b, rfl⟩ | |
theorem le_mul_left {a b : associates α} : a ≤ b * a := | |
by rw [mul_comm]; exact le_mul_right | |
instance : order_bot (associates α) := | |
{ bot := 1, | |
bot_le := assume a, one_le } | |
end order | |
theorem dvd_of_mk_le_mk {a b : α} : associates.mk a ≤ associates.mk b → a ∣ b | |
| ⟨c', hc'⟩ := (quotient.induction_on c' $ assume c hc, | |
let ⟨d, hd⟩ := (quotient.exact hc).symm in | |
⟨(↑d) * c, | |
calc b = (a * c) * ↑d : hd.symm | |
... = a * (↑d * c) : by ac_refl⟩) hc' | |
theorem mk_le_mk_of_dvd {a b : α} : a ∣ b → associates.mk a ≤ associates.mk b := | |
assume ⟨c, hc⟩, ⟨associates.mk c, by simp [hc]; refl⟩ | |
theorem mk_le_mk_iff_dvd_iff {a b : α} : associates.mk a ≤ associates.mk b ↔ a ∣ b := | |
iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd | |
theorem mk_dvd_mk {a b : α} : associates.mk a ∣ associates.mk b ↔ a ∣ b := | |
iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd | |
end comm_monoid | |
instance [has_zero α] [monoid α] : has_zero (associates α) := ⟨⟦ 0 ⟧⟩ | |
instance [has_zero α] [monoid α] : has_top (associates α) := ⟨0⟩ | |
section monoid_with_zero | |
variables [monoid_with_zero α] | |
@[simp] theorem mk_eq_zero {a : α} : associates.mk a = 0 ↔ a = 0 := | |
⟨assume h, (associated_zero_iff_eq_zero a).1 $ quotient.exact h, assume h, h.symm ▸ rfl⟩ | |
theorem mk_ne_zero {a : α} : associates.mk a ≠ 0 ↔ a ≠ 0 := | |
not_congr mk_eq_zero | |
instance [nontrivial α] : nontrivial (associates α) := | |
⟨⟨0, 1, | |
assume h, | |
have (0 : α) ~ᵤ 1, from quotient.exact h, | |
have (0 : α) = 1, from ((associated_zero_iff_eq_zero 1).1 this.symm).symm, | |
zero_ne_one this⟩⟩ | |
lemma exists_non_zero_rep {a : associates α} : a ≠ 0 → ∃ a0 : α, a0 ≠ 0 ∧ associates.mk a0 = a := | |
quotient.induction_on a (λ b nz, ⟨b, mt (congr_arg quotient.mk) nz, rfl⟩) | |
end monoid_with_zero | |
section comm_monoid_with_zero | |
variables [comm_monoid_with_zero α] | |
instance : comm_monoid_with_zero (associates α) := | |
{ zero_mul := by { rintro ⟨a⟩, show associates.mk (0 * a) = associates.mk 0, rw [zero_mul] }, | |
mul_zero := by { rintro ⟨a⟩, show associates.mk (a * 0) = associates.mk 0, rw [mul_zero] }, | |
.. associates.comm_monoid, .. associates.has_zero } | |
instance : order_top (associates α) := | |
{ top := 0, | |
le_top := assume a, ⟨0, (mul_zero a).symm⟩ } | |
instance : bounded_order (associates α) := | |
{ .. associates.order_top, | |
.. associates.order_bot } | |
instance [decidable_rel ((∣) : α → α → Prop)] : | |
decidable_rel ((∣) : associates α → associates α → Prop) := | |
λ a b, quotient.rec_on_subsingleton₂ a b (λ a b, decidable_of_iff' _ mk_dvd_mk) | |
lemma prime.le_or_le {p : associates α} (hp : prime p) {a b : associates α} (h : p ≤ a * b) : | |
p ≤ a ∨ p ≤ b := | |
hp.2.2 a b h | |
lemma prime_mk (p : α) : prime (associates.mk p) ↔ _root_.prime p := | |
begin | |
rw [prime, _root_.prime, forall_associated], | |
transitivity, | |
{ apply and_congr, refl, | |
apply and_congr, refl, | |
apply forall_congr, assume a, | |
exact forall_associated }, | |
apply and_congr mk_ne_zero, | |
apply and_congr, | |
{ rw [is_unit_mk], }, | |
refine forall₂_congr (λ a b, _), | |
rw [mk_mul_mk, mk_dvd_mk, mk_dvd_mk, mk_dvd_mk], | |
end | |
theorem irreducible_mk (a : α) : irreducible (associates.mk a) ↔ irreducible a := | |
begin | |
simp only [irreducible_iff, is_unit_mk], | |
apply and_congr iff.rfl, | |
split, | |
{ rintro h x y rfl, | |
simpa [is_unit_mk] using h (associates.mk x) (associates.mk y) rfl }, | |
{ intros h x y, | |
refine quotient.induction_on₂ x y (assume x y a_eq, _), | |
rcases quotient.exact a_eq.symm with ⟨u, a_eq⟩, | |
rw mul_assoc at a_eq, | |
show is_unit (associates.mk x) ∨ is_unit (associates.mk y), | |
simpa [is_unit_mk] using h _ _ a_eq.symm } | |
end | |
theorem mk_dvd_not_unit_mk_iff {a b : α} : | |
dvd_not_unit (associates.mk a) (associates.mk b) ↔ | |
dvd_not_unit a b := | |
begin | |
rw [dvd_not_unit, dvd_not_unit, mk_ne_zero], | |
apply and_congr_right, intro ane0, | |
split, | |
{ contrapose!, rw forall_associated, | |
intros h x hx hbax, | |
rw [mk_mul_mk, mk_eq_mk_iff_associated] at hbax, | |
cases hbax with u hu, | |
apply h (x * ↑u⁻¹), | |
{ rw is_unit_mk at hx, | |
rw associated.is_unit_iff, | |
apply hx, | |
use u, | |
simp, }, | |
simp [← mul_assoc, ← hu] }, | |
{ rintro ⟨x, ⟨hx, rfl⟩⟩, | |
use associates.mk x, | |
simp [is_unit_mk, mk_mul_mk, hx], } | |
end | |
theorem dvd_not_unit_of_lt {a b : associates α} (hlt : a < b) : | |
dvd_not_unit a b := | |
begin | |
split, { rintro rfl, apply not_lt_of_le _ hlt, apply dvd_zero }, | |
rcases hlt with ⟨⟨x, rfl⟩, ndvd⟩, | |
refine ⟨x, _, rfl⟩, | |
contrapose! ndvd, | |
rcases ndvd with ⟨u, rfl⟩, | |
simp, | |
end | |
theorem irreducible_iff_prime_iff : | |
(∀ a : α, irreducible a ↔ prime a) ↔ (∀ a : (associates α), irreducible a ↔ prime a) := | |
by simp_rw [forall_associated, irreducible_mk, prime_mk] | |
end comm_monoid_with_zero | |
section cancel_comm_monoid_with_zero | |
variable [cancel_comm_monoid_with_zero α] | |
instance : partial_order (associates α) := | |
{ le_antisymm := λ a' b', quotient.induction_on₂ a' b' (λ a b hab hba, | |
quot.sound $ associated_of_dvd_dvd (dvd_of_mk_le_mk hab) (dvd_of_mk_le_mk hba)) | |
.. associates.preorder } | |
instance : ordered_comm_monoid (associates α) := | |
{ mul_le_mul_left := λ a b ⟨d, hd⟩ c, hd.symm ▸ mul_assoc c a d ▸ le_mul_right, | |
..associates.comm_monoid, | |
..associates.partial_order} | |
instance : no_zero_divisors (associates α) := | |
⟨λ x y, | |
(quotient.induction_on₂ x y $ assume a b h, | |
have a * b = 0, from (associated_zero_iff_eq_zero _).1 (quotient.exact h), | |
have a = 0 ∨ b = 0, from mul_eq_zero.1 this, | |
this.imp (assume h, h.symm ▸ rfl) (assume h, h.symm ▸ rfl))⟩ | |
lemma eq_of_mul_eq_mul_left : | |
∀(a b c : associates α), a ≠ 0 → a * b = a * c → b = c := | |
begin | |
rintros ⟨a⟩ ⟨b⟩ ⟨c⟩ ha h, | |
rcases quotient.exact' h with ⟨u, hu⟩, | |
have hu : a * (b * ↑u) = a * c, { rwa [← mul_assoc] }, | |
exact quotient.sound' ⟨u, mul_left_cancel₀ (mk_ne_zero.1 ha) hu⟩ | |
end | |
lemma eq_of_mul_eq_mul_right : | |
∀(a b c : associates α), b ≠ 0 → a * b = c * b → a = c := | |
λ a b c bne0, (mul_comm b a) ▸ (mul_comm b c) ▸ (eq_of_mul_eq_mul_left b a c bne0) | |
lemma le_of_mul_le_mul_left (a b c : associates α) (ha : a ≠ 0) : | |
a * b ≤ a * c → b ≤ c | |
| ⟨d, hd⟩ := ⟨d, eq_of_mul_eq_mul_left a _ _ ha $ by rwa ← mul_assoc⟩ | |
lemma one_or_eq_of_le_of_prime : | |
∀(p m : associates α), prime p → m ≤ p → (m = 1 ∨ m = p) | |
| _ m ⟨hp0, hp1, h⟩ ⟨d, rfl⟩ := | |
match h m d dvd_rfl with | |
| or.inl h := classical.by_cases (assume : m = 0, by simp [this]) $ | |
assume : m ≠ 0, | |
have m * d ≤ m * 1, by simpa using h, | |
have d ≤ 1, from associates.le_of_mul_le_mul_left m d 1 ‹m ≠ 0› this, | |
have d = 1, from bot_unique this, | |
by simp [this] | |
| or.inr h := classical.by_cases (assume : d = 0, by simp [this] at hp0; contradiction) $ | |
assume : d ≠ 0, | |
have d * m ≤ d * 1, by simpa [mul_comm] using h, | |
or.inl $ bot_unique $ associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this | |
end | |
instance : cancel_comm_monoid_with_zero (associates α) := | |
{ mul_left_cancel_of_ne_zero := eq_of_mul_eq_mul_left, | |
mul_right_cancel_of_ne_zero := eq_of_mul_eq_mul_right, | |
.. (infer_instance : comm_monoid_with_zero (associates α)) } | |
instance : canonically_ordered_monoid (associates α) := | |
{ exists_mul_of_le := λ a b, id, | |
le_self_mul := λ a b, ⟨b, rfl⟩, | |
..associates.cancel_comm_monoid_with_zero, | |
..associates.bounded_order, | |
..associates.ordered_comm_monoid} | |
theorem dvd_not_unit_iff_lt {a b : associates α} : | |
dvd_not_unit a b ↔ a < b := | |
dvd_and_not_dvd_iff.symm | |
lemma le_one_iff {p : associates α} : p ≤ 1 ↔ p = 1 := | |
by rw [← associates.bot_eq_one, le_bot_iff] | |
end cancel_comm_monoid_with_zero | |
end associates | |
section comm_monoid_with_zero | |
lemma dvd_not_unit.is_unit_of_irreducible_right [comm_monoid_with_zero α] {p q : α} | |
(h : dvd_not_unit p q) (hq : irreducible q) : is_unit p := | |
begin | |
obtain ⟨hp', x, hx, hx'⟩ := h, | |
exact or.resolve_right ((irreducible_iff.1 hq).right p x hx') hx | |
end | |
lemma not_irreducible_of_not_unit_dvd_not_unit [comm_monoid_with_zero α] {p q : α} | |
(hp : ¬is_unit p) (h : dvd_not_unit p q) : ¬ irreducible q := | |
mt h.is_unit_of_irreducible_right hp | |
lemma dvd_not_unit.not_unit [comm_monoid_with_zero α] {p q : α} | |
(hp : dvd_not_unit p q) : ¬ is_unit q := | |
begin | |
obtain ⟨-, x, hx, rfl⟩ := hp, | |
exact λ hc, hx (is_unit_iff_dvd_one.mpr (dvd_of_mul_left_dvd (is_unit_iff_dvd_one.mp hc))), | |
end | |
lemma dvd_not_unit_of_dvd_not_unit_associated [comm_monoid_with_zero α] | |
[nontrivial α] {p q r : α} (h : dvd_not_unit p q) (h' : associated q r) : dvd_not_unit p r := | |
begin | |
obtain ⟨u, rfl⟩ := associated.symm h', | |
obtain ⟨hp, x, hx⟩ := h, | |
refine ⟨hp, x * ↑(u⁻¹), dvd_not_unit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, _⟩, | |
rw [← mul_assoc, ← hx.right, mul_assoc, units.mul_inv, mul_one] | |
end | |
end comm_monoid_with_zero | |
section cancel_comm_monoid_with_zero | |
lemma is_unit_of_associated_mul [cancel_comm_monoid_with_zero α] | |
{p b : α} (h : associated (p * b) p) (hp : p ≠ 0) : is_unit b := | |
begin | |
cases h with a ha, | |
refine is_unit_of_mul_eq_one b a ((mul_right_inj' hp).mp _), | |
rwa [← mul_assoc, mul_one], | |
end | |
lemma associates.is_atom_iff [cancel_comm_monoid_with_zero α] {p : associates α} (h₁ : p ≠ 0) : | |
is_atom p ↔ irreducible p := | |
⟨λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one] using hp.1, | |
λ a b h, (hp.le_iff.mp ⟨_, h⟩).cases_on | |
(λ ha, or.inl (a.is_unit_iff_eq_one.mpr ha)) | |
(λ ha, or.inr (show is_unit b, by {rw ha at h, apply is_unit_of_associated_mul | |
(show associated (p * b) p, by conv_rhs {rw h}) h₁ }))⟩, | |
λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one, associates.bot_eq_one] using hp.1, | |
λ b ⟨⟨a, hab⟩, hb⟩, (hp.is_unit_or_is_unit hab).cases_on | |
(λ hb, show b = ⊥, by rwa [associates.is_unit_iff_eq_one, ← associates.bot_eq_one] at hb) | |
(λ ha, absurd (show p ∣ b, from ⟨(ha.unit⁻¹ : units _), by simp [hab]; rw mul_assoc; | |
rw is_unit.mul_coe_inv ha; rw mul_one⟩) hb)⟩⟩ | |
lemma dvd_not_unit.not_associated [cancel_comm_monoid_with_zero α] {p q : α} | |
(h : dvd_not_unit p q) : ¬ associated p q := | |
begin | |
rintro ⟨a, rfl⟩, | |
obtain ⟨hp, x, hx, hx'⟩ := h, | |
rcases (mul_right_inj' hp).mp hx' with rfl, | |
exact hx a.is_unit, | |
end | |
lemma dvd_not_unit.ne [cancel_comm_monoid_with_zero α] {p q : α} | |
(h : dvd_not_unit p q) : p ≠ q := | |
begin | |
by_contra hcontra, | |
obtain ⟨hp, x, hx', hx''⟩ := h, | |
conv_lhs at hx'' {rw [← hcontra, ← mul_one p]}, | |
rw (mul_left_cancel₀ hp hx'').symm at hx', | |
exact hx' is_unit_one, | |
end | |
lemma pow_injective_of_not_unit [cancel_comm_monoid_with_zero α] {q : α} | |
(hq : ¬ is_unit q) (hq' : q ≠ 0): function.injective (λ (n : ℕ), q^n) := | |
begin | |
refine injective_of_lt_imp_ne (λ n m h, dvd_not_unit.ne ⟨pow_ne_zero n hq', q^(m - n), _, _⟩), | |
{ exact not_is_unit_of_not_is_unit_dvd hq (dvd_pow (dvd_refl _) (nat.sub_pos_of_lt h).ne') }, | |
{ exact (pow_mul_pow_sub q h.le).symm } | |
end | |
lemma dvd_prime_pow [cancel_comm_monoid_with_zero α] {p q : α} (hp : prime p) (n : ℕ) : | |
q ∣ p^n ↔ ∃ i ≤ n, associated q (p ^ i) := | |
begin | |
induction n with n ih generalizing q, | |
{ simp [← is_unit_iff_dvd_one, associated_one_iff_is_unit] }, | |
refine ⟨λ h, _, λ ⟨i, hi, hq⟩, hq.dvd.trans (pow_dvd_pow p hi)⟩, | |
rw pow_succ at h, | |
rcases hp.left_dvd_or_dvd_right_of_dvd_mul h with (⟨q, rfl⟩ | hno), | |
{ rw [mul_dvd_mul_iff_left hp.ne_zero, ih] at h, | |
rcases h with ⟨i, hi, hq⟩, | |
refine ⟨i + 1, nat.succ_le_succ hi, (hq.mul_left p).trans _⟩, | |
rw pow_succ }, | |
{ obtain ⟨i, hi, hq⟩ := ih.mp hno, | |
exact ⟨i, hi.trans n.le_succ, hq⟩ } | |
end | |
end cancel_comm_monoid_with_zero | |