Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
37.5 kB
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Jens Wagemaker
-/
import algebra.divisibility
import algebra.group_power.lemmas
import algebra.invertible
import order.atoms
/-!
# Associated, prime, and irreducible elements.
-/
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
section prime
variables [comm_monoid_with_zero α]
/-- prime element of a `comm_monoid_with_zero` -/
def prime (p : α) : Prop :=
p ≠ 0 ∧ ¬ is_unit p(a b, pa * bpapb)
namespace prime
variables {p : α} (hp : prime p)
include hp
lemma ne_zero : p0 :=
hp.1
lemma not_unit : ¬ is_unit p :=
hp.2.1
lemma not_dvd_one : ¬ p1 :=
mt (is_unit_of_dvd_one _) hp.not_unit
lemma ne_one : p1 :=
λ h, hp.2.1 (h.symm ▸ is_unit_one)
lemma dvd_or_dvd (hp : prime p) {a b : α} (h : pa * b) :
p ∣ apb :=
hp.2.2 a b h
lemma dvd_of_dvd_pow (hp : prime p) {a : α} {n :} (h : pa^n) :
p ∣ a :=
begin
induction n with n ih,
{ rw pow_zero at h,
have := is_unit_of_dvd_one _ h,
have := not_unit hp,
contradiction },
rw pow_succ at h,
cases dvd_or_dvd hp h with dvd_a dvd_pow,
{ assumption },
exact ih dvd_pow
end
end prime
@[simp] lemma not_prime_zero : ¬ prime (0 : α) :=
λ h, h.ne_zero rfl
@[simp] lemma not_prime_one : ¬ prime (1 : α) :=
λ h, h.not_unit is_unit_one
section map
variables [comm_monoid_with_zero β] {F : Type*} {G : Type*}
[monoid_with_zero_hom_class F α β] [mul_hom_class G β α] (f : F) (g : G) {p : α}
lemma comap_prime (hinv :a, g (f a : β) = a) (hp : prime (f p)) : prime p :=
⟨ λ h, hp.1 $ by simp [h], λ h, hp.2.1 $ h.map f, λ a b h, by
{ refine (hp.2.2 (f a) (f b) $ by { convert map_dvd f h, simp }).imp _ _;
{ intro h, convert ← map_dvd g h; apply hinv } } ⟩
lemma mul_equiv.prime_iff (e : α ≃* β) : prime p ↔ prime (e p) :=
⟨ λ h, comap_prime e.symm e (λ a, by simp) $ (e.symm_apply_apply p).substr h,
comap_prime e e.symm (λ a, by simp) ⟩
end map
end prime
lemma prime.left_dvd_or_dvd_right_of_dvd_mul [cancel_comm_monoid_with_zero α] {p : α}
(hp : prime p) {a b : α} : a ∣ p * b → p ∣ a ∨ a ∣ b :=
begin
rintro ⟨c, hc⟩,
rcases hp.2.2 a c (hc ▸ dvd_mul_right _ _) with h | ⟨x, rfl⟩,
{ exact or.inl h },
{ rw [mul_left_comm, mul_right_inj' hp.ne_zero] at hc,
exact or.inr (hc.symm ▸ dvd_mul_right _ _) }
end
lemma prime.pow_dvd_of_dvd_mul_left
[cancel_comm_monoid_with_zero α]
{p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ a) (h' : p ^ n ∣ a * b) : p ^ n ∣ b :=
begin
induction n with n ih,
{ rw pow_zero, exact one_dvd b },
{ obtain ⟨c, rfl⟩ := ih (dvd_trans (pow_dvd_pow p n.le_succ) h'),
rw pow_succ',
apply mul_dvd_mul_left _ ((hp.dvd_or_dvd _).resolve_left h),
rwa [←mul_dvd_mul_iff_left (pow_ne_zero n hp.ne_zero), ←pow_succ', mul_left_comm] }
end
lemma prime.pow_dvd_of_dvd_mul_right
[cancel_comm_monoid_with_zero α]
{p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ b) (h' : p ^ n ∣ a * b) : p ^ n ∣ a :=
by { rw [mul_comm] at h', exact hp.pow_dvd_of_dvd_mul_left n h h' }
lemma prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd [cancel_comm_monoid_with_zero α]
{p a b : α} {n : ℕ} (hp : prime p) (hpow : p ^ n.succ ∣ a ^ n.succ * b ^ n)
(hb : ¬ p ^ 2 ∣ b) : p ∣ a :=
begin
-- Suppose `p ∣ b`, write `b = p * x` and `hy : a ^ n.succ * b ^ n = p ^ n.succ * y`.
cases (hp.dvd_or_dvd ((dvd_pow_self p (nat.succ_ne_zero n)).trans hpow)) with H hbdiv,
{ exact hp.dvd_of_dvd_pow H },
obtain ⟨x, rfl⟩ := hp.dvd_of_dvd_pow hbdiv,
obtain ⟨y, hy⟩ := hpow,
-- Then we can divide out a common factor of `p ^ n` from the equation `hy`.
have : a ^ n.succ * x ^ n = p * y,
{ refine mul_left_cancel(pow_ne_zero n hp.ne_zero) _,
rw [mul_assoc _ p,pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ),
mul_comm _ (p ^ n), mul_assoc] },
-- So `p ∣ a` (and we're done) or `px`, which can't be the case since it implies `p^2 ∣ b`.
refine hp.dvd_of_dvd_pow ((hp.dvd_or_dvd ⟨_, this⟩).resolve_right (λ hdvdx, hb _)),
obtain ⟨z, rfl⟩ := hp.dvd_of_dvd_pow hdvdx,
rw [pow_two, ← mul_assoc],
exact dvd_mul_right _ _,
end
/-- `irreducible p` states that `p` is non-unit and only factors into units.
We explicitly avoid stating that `p` is non-zero, this would require a semiring. Assuming only a
monoid allows us to reuse irreducible for associated elements.
-/
structure irreducible [monoid α] (p : α) : Prop :=
(not_unit : ¬ is_unit p)
(is_unit_or_is_unit' :a b, p = a * bis_unit ais_unit b)
namespace irreducible
lemma not_dvd_one [comm_monoid α] {p : α} (hp : irreducible p) : ¬ p1 :=
mt (is_unit_of_dvd_one _) hp.not_unit
lemma is_unit_or_is_unit [monoid α] {p : α} (hp : irreducible p) {a b : α} (h : p = a * b) :
is_unit ais_unit b :=
hp.is_unit_or_is_unit' a b h
end irreducible
lemma irreducible_iff [monoid α] {p : α} :
irreducible p ↔ ¬ is_unit p ∧ ∀a b, p = a * b → is_unit a ∨ is_unit b :=
⟨λ h, ⟨h.1, h.2⟩, λ h, ⟨h.1, h.2⟩⟩
@[simp] theorem not_irreducible_one [monoid α] : ¬ irreducible (1 : α) :=
by simp [irreducible_iff]
theorem irreducible.ne_one [monoid α] : ∀ {p:α}, irreducible p → p ≠ 1
| _ hp rfl := not_irreducible_one hp
@[simp] theorem not_irreducible_zero [monoid_with_zero α] : ¬ irreducible (0 : α)
| ⟨hn0, h⟩ := have is_unit (0:α) ∨ is_unit (0:α), from h 0 0 ((mul_zero 0).symm),
this.elim hn0 hn0
theorem irreducible.ne_zero [monoid_with_zero α] : ∀ {p:α}, irreducible p → p ≠ 0
| _ hp rfl := not_irreducible_zero hp
theorem of_irreducible_mul {α} [monoid α] {x y : α} :
irreducible (x * y) → is_unit x ∨ is_unit y
| ⟨_, h⟩ := h _ _ rfl
theorem of_irreducible_pow {α} [monoid α] {x : α} {n : ℕ} (hn : n ≠ 1) :
irreducible (x ^ n) → is_unit x :=
begin
obtain hn|hn := hn.lt_or_lt,
{ simp only [nat.lt_one_iff.mp hn, is_empty.forall_iff, not_irreducible_one, pow_zero] },
intro h,
obtain ⟨k, rfl⟩ := nat.exists_eq_add_of_lt hn,
rw [pow_succ, add_comm] at h,
exact (or_iff_left_of_imp ((is_unit_pos_pow_iff (nat.succ_pos _)).mp)).mp (of_irreducible_mul h)
end
theorem irreducible_or_factor {α} [monoid α] (x : α) (h : ¬ is_unit x) :
irreducible x ∨ ∃ a b, ¬ is_unit a ∧ ¬ is_unit b ∧ a * b = x :=
begin
haveI := classical.dec,
refine or_iff_not_imp_right.2 (λ H, _),
simp [h, irreducible_iff] at H ⊢,
refine λ a b h, classical.by_contradiction $ λ o, _,
simp [not_or_distrib] at o,
exact H _ o.1 _ o.2 h.symm
end
protected lemma prime.irreducible [cancel_comm_monoid_with_zero α] {p : α} (hp : prime p) :
irreducible p :=
⟨hp.not_unit, λ a b hab,
(show a * b ∣ a ∨ a * b ∣ b, from hab ▸ hp.dvd_or_dvd (hab ▸ dvd_rfl)).elim
(λ ⟨x, hx⟩, or.inr (is_unit_iff_dvd_one.2
⟨x, mul_right_cancel₀ (show a ≠ 0, from λ h, by simp [*, prime] at *)
$ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩))
(λ ⟨x, hx⟩, or.inl (is_unit_iff_dvd_one.2
⟨x, mul_right_cancel₀ (show b ≠ 0, from λ h, by simp [*, prime] at *)
$ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩))⟩
lemma succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul [cancel_comm_monoid_with_zero α]
{p : α} (hp : prime p) {a b : α} {k l : ℕ} :
p ^ k ∣ a → p ^ l ∣ b → p ^ ((k + l) + 1) ∣ a * b → p ^ (k + 1) ∣ a ∨ p ^ (l + 1) ∣ b :=
λ ⟨x, hx⟩ ⟨y, hy⟩ ⟨z, hz⟩,
have h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z),
by simpa [mul_comm, pow_add, hx, hy, mul_assoc, mul_left_comm] using hz,
have hp0: p ^ (k + l) ≠ 0, from pow_ne_zero _ hp.ne_zero,
have hpd : p ∣ x * y, from ⟨z, by rwa [mul_right_inj' hp0] at h,
(hp.dvd_or_dvd hpd).elim
(λ ⟨d, hd⟩, or.inl ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc])
(λ ⟨d, hd⟩, or.inr ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc])
/-- If `p` and `q` are irreducible, then `p ∣ q` implies `q ∣ p`. -/
lemma irreducible.dvd_symm [monoid α] {p q : α}
(hp : irreducible p) (hq : irreducible q) : pqqp :=
begin
unfreezingI { rintrosq', rfl⟩ },
rw is_unit.mul_right_dvd (or.resolve_left (of_irreducible_mul hq) hp.not_unit),
end
lemma irreducible.dvd_comm [monoid α] {p q : α}
(hp : irreducible p) (hq : irreducible q) : p ∣ q ↔ q ∣ p :=
⟨hp.dvd_symm hq, hq.dvd_symm hp⟩
section
variables [monoid α]
lemma irreducible_units_mul (a : αˣ) (b : α) : irreducible (↑a * b) ↔ irreducible b :=
begin
simp only [irreducible_iff, units.is_unit_units_mul, and.congr_right_iff],
refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩,
{ rw [←a.is_unit_units_mul],
apply h,
rw [mul_assoc, ←HAB] },
{ rw [←(a⁻¹).is_unit_units_mul],
apply h,
rw [mul_assoc, ←HAB, units.inv_mul_cancel_left] },
end
lemma irreducible_is_unit_mul {a b : α} (h : is_unit a) : irreducible (a * b) ↔ irreducible b :=
let ⟨a, ha⟩ := h in ha ▸ irreducible_units_mul a b
lemma irreducible_mul_units (a : αˣ) (b : α) : irreducible (b * ↑a) ↔ irreducible b :=
begin
simp only [irreducible_iff, units.is_unit_mul_units, and.congr_right_iff],
refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩,
{ rw [←units.is_unit_mul_units B a],
apply h,
rw [←mul_assoc, ←HAB] },
{ rw [←units.is_unit_mul_units B a⁻¹],
apply h,
rw [←mul_assoc, ←HAB, units.mul_inv_cancel_right] },
end
lemma irreducible_mul_is_unit {a b : α} (h : is_unit a) : irreducible (b * a) ↔ irreducible b :=
let ⟨a, ha⟩ := h in ha ▸ irreducible_mul_units a b
lemma irreducible_mul_iff {a b : α} :
irreducible (a * b) ↔ (irreducible a ∧ is_unit b) ∨ (irreducible b ∧ is_unit a) :=
begin
split,
{ refine λ h, or.imp (λ h',_, h'⟩) (λ h',_, h'⟩) (h.is_unit_or_is_unit rfl).symm,
{ rwa [irreducible_mul_is_unit h'] at h },
{ rwa [irreducible_is_unit_mul h'] at h } },
{ rintros (⟨ha, hb⟩|⟨hb, ha⟩),
{ rwa [irreducible_mul_is_unit hb] },
{ rwa [irreducible_is_unit_mul ha] } },
end
end
lemma pow_not_prime [cancel_comm_monoid_with_zero α] {x : α} {n : ℕ} (hn : n ≠ 1) :
¬ prime (x ^ n) :=
λ hp, hp.not_unit $ is_unit.pow _ $ of_irreducible_pow hn $ hp.irreducible
/-- Two elements of a `monoid` are `associated` if one of them is another one
multiplied by a unit on the right. -/
def associated [monoid α] (x y : α) : Prop := ∃u:αˣ, x * u = y
local infix ` ~ᵤ ` : 50 := associated
namespace associated
@[refl] protected theorem refl [monoid α] (x : α) : x ~ᵤ x := ⟨1, by simp⟩
instance [monoid α] : is_refl α associated := ⟨associated.refl⟩
@[symm] protected theorem symm [monoid α] : ∀{x y : α}, x ~ᵤ y → y ~ᵤ x
| x _ ⟨u, rfl⟩ := ⟨u⁻¹, by rw [mul_assoc, units.mul_inv, mul_one]⟩
instance [monoid α] : is_symm α associated := ⟨λ a b, associated.symm⟩
@[trans] protected theorem trans [monoid α] : ∀{x y z : α}, x ~ᵤ y → y ~ᵤ z → x ~ᵤ z
| x _ _ ⟨u, rfl⟩ ⟨v, rfl⟩ := ⟨u * v, by rw [units.coe_mul, mul_assoc]⟩
instance [monoid α] : is_trans α associated := ⟨λ a b c, associated.trans⟩
/-- The setoid of the relation `x ~ᵤ y` iff there is a unit `u` such that `x * u = y` -/
protected def setoid (α : Type*) [monoid α] : setoid α :=
{ r := associated, iseqv := ⟨associated.refl, λa b, associated.symm, λa b c, associated.trans⟩ }
end associated
local attribute [instance] associated.setoid
theorem unit_associated_one [monoid α] {u : αˣ} : (u : α) ~ᵤ 1 := ⟨u⁻¹, units.mul_inv u⟩
theorem associated_one_iff_is_unit [monoid α] {a : α} : (a : α) ~ᵤ 1 ↔ is_unit a :=
iff.intro
(assume h, let ⟨c, h⟩ := h.symm in h ▸ ⟨c, (one_mul _).symm⟩)
(assume ⟨c, h⟩, associated.symm ⟨c, by simp [h]⟩)
theorem associated_zero_iff_eq_zero [monoid_with_zero α] (a : α) : a ~ᵤ 0 ↔ a = 0 :=
iff.intro
(assume h, let ⟨u, h⟩ := h.symm in by simpa using h.symm)
(assume h, h ▸ associated.refl a)
theorem associated_one_of_mul_eq_one [comm_monoid α] {a : α} (b : α) (hab : a * b = 1) : a ~ᵤ 1 :=
show (units.mk_of_mul_eq_one a b hab : α) ~ᵤ 1, from unit_associated_one
theorem associated_one_of_associated_mul_one [comm_monoid α] {a b : α} :
a * b ~ᵤ 1 → a ~ᵤ 1
| ⟨u, h⟩ := associated_one_of_mul_eq_one (b * u) $ by simpa [mul_assoc] using h
lemma associated_mul_unit_left {β : Type*} [monoid β] (a u : β) (hu : is_unit u) :
associated (a * u) a :=
let ⟨u', hu:= hu inu'⁻¹, hu ▸ units.mul_inv_cancel_right _ _⟩
lemma associated_unit_mul_left {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) :
associated (u * a) a :=
begin
rw mul_comm,
exact associated_mul_unit_left _ _ hu
end
lemma associated_mul_unit_right {β : Type*} [monoid β] (a u : β) (hu : is_unit u) :
associated a (a * u) :=
(associated_mul_unit_left a u hu).symm
lemma associated_unit_mul_right {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) :
associated a (u * a) :=
(associated_unit_mul_left a u hu).symm
lemma associated.mul_mul [comm_monoid α] {a₁ a₂ b₁ b₂ : α} :
a₁ ~ᵤ b₁ → a₂ ~ᵤ b₂ → (a₁ * a₂) ~ᵤ (b₁ * b₂)
| ⟨c₁, h₁⟩ ⟨c₂, h₂⟩ := ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩
lemma associated.mul_left [comm_monoid α] (a : α) {b c : α} (h : b ~ᵤ c) :
(a * b) ~ᵤ (a * c) :=
(associated.refl a).mul_mul h
lemma associated.mul_right [comm_monoid α] {a b : α} (h : a ~ᵤ b) (c : α) :
(a * c) ~ᵤ (b * c) :=
h.mul_mul (associated.refl c)
lemma associated.pow_pow [comm_monoid α] {a b : α} {n : ℕ} (h : a ~ᵤ b) :
a ^ n ~ᵤ b ^ n :=
begin
induction n with n ih, { simp [h] },
convert h.mul_mul ih;
rw pow_succ
end
protected lemma associated.dvd [monoid α] {a b : α} : a ~ᵤ b → a ∣ b := λ ⟨u, hu⟩, ⟨u, hu.symm⟩
protected lemma associated.dvd_dvd [monoid α] {a b : α} (h : a ~ᵤ b) : a ∣ b ∧ b ∣ a :=
⟨h.dvd, h.symm.dvd⟩
theorem associated_of_dvd_dvd [cancel_monoid_with_zero α]
{a b : α} (hab : a ∣ b) (hba : b ∣ a) : a ~ᵤ b :=
begin
rcases hab with ⟨c, rfl⟩,
rcases hba with ⟨d, a_eq⟩,
by_cases ha0 : a = 0,
{ simp [*] at * },
have hac0 : a * c ≠ 0,
{ intro con, rw [con, zero_mul] at a_eq, apply ha0 a_eq, },
have : a * (c * d) = a * 1 := by rw [← mul_assoc, ← a_eq, mul_one],
have hcd : (c * d) = 1, from mul_left_cancel₀ ha0 this,
have : a * c * (d * c) = a * c * 1 := by rw [← mul_assoc, ← a_eq, mul_one],
have hdc : d * c = 1, from mul_left_cancel₀ hac0 this,
exact ⟨⟨c, d, hcd, hdc⟩, rfl⟩
end
theorem dvd_dvd_iff_associated [cancel_monoid_with_zero α] {a b : α} : a ∣ b ∧ b ∣ a ↔ a ~ᵤ b :=
⟨λ ⟨h1, h2⟩, associated_of_dvd_dvd h1 h2, associated.dvd_dvd⟩
instance [cancel_monoid_with_zero α] [decidable_rel ((∣) : α → α → Prop)] :
decidable_rel ((~ᵤ) : α → α → Prop) :=
λ a b, decidable_of_iff _ dvd_dvd_iff_associated
lemma associated.dvd_iff_dvd_left [monoid α] {a b c : α} (h : a ~ᵤ b) : a ∣ c ↔ b ∣ c :=
let ⟨u, hu⟩ := h in hu ▸ units.mul_right_dvd.symm
lemma associated.dvd_iff_dvd_right [monoid α] {a b c : α} (h : b ~ᵤ c) : a ∣ b ↔ a ∣ c :=
let ⟨u, hu⟩ := h in hu ▸ units.dvd_mul_right.symm
lemma associated.eq_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a = 0 ↔ b = 0 :=
⟨λ ha, let ⟨u, hu⟩ := h in by simp [hu.symm, ha],
λ hb, let ⟨u, hu⟩ := h.symm in by simp [hu.symm, hb]⟩
lemma associated.ne_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a ≠ 0 ↔ b ≠ 0 :=
not_congr h.eq_zero_iff
protected lemma associated.prime [comm_monoid_with_zero α] {p q : α} (h : p ~ᵤ q) (hp : prime p) :
prime q :=
⟨h.ne_zero_iff.1 hp.ne_zero,
let ⟨u, hu⟩ := h in
⟨λ ⟨v, hv⟩, hp.not_unit ⟨v * u⁻¹, by simp [hv, hu.symm]⟩,
hu ▸ by { simp [units.mul_right_dvd], intros a b, exact hp.dvd_or_dvd }⟩⟩
lemma irreducible.associated_of_dvd [cancel_monoid_with_zero α] {p q : α}
(p_irr : irreducible p) (q_irr : irreducible q) (dvd : p ∣ q) : associated p q :=
associated_of_dvd_dvd dvd (p_irr.dvd_symm q_irr dvd)
lemma irreducible.dvd_irreducible_iff_associated [cancel_monoid_with_zero α]
{p q : α} (pp : irreducible p) (qp : irreducible q) :
p ∣ q ↔ associated p q :=
⟨irreducible.associated_of_dvd pp qp, associated.dvd⟩
lemma prime.associated_of_dvd [cancel_comm_monoid_with_zero α] {p q : α}
(p_prime : prime p) (q_prime : prime q) (dvd : p ∣ q) : associated p q :=
p_prime.irreducible.associated_of_dvd q_prime.irreducible dvd
theorem prime.dvd_prime_iff_associated [cancel_comm_monoid_with_zero α]
{p q : α} (pp : prime p) (qp : prime q) :
p ∣ q ↔ associated p q :=
pp.irreducible.dvd_irreducible_iff_associated qp.irreducible
lemma associated.prime_iff [comm_monoid_with_zero α] {p q : α}
(h : p ~ᵤ q) : prime p ↔ prime q :=
⟨h.prime, h.symm.prime⟩
protected lemma associated.is_unit [monoid α] {a b : α} (h : a ~ᵤ b) : is_unit a → is_unit b :=
let ⟨u, hu⟩ := h in λ ⟨v, hv⟩, ⟨v * u, by simp [hv, hu.symm]⟩
lemma associated.is_unit_iff [monoid α] {a b : α} (h : a ~ᵤ b) : is_unit a ↔ is_unit b :=
⟨h.is_unit, h.symm.is_unit⟩
protected lemma associated.irreducible [monoid α] {p q : α} (h : p ~ᵤ q)
(hp : irreducible p) : irreducible q :=
⟨mt h.symm.is_unit hp.1,
let ⟨u, hu⟩ := h in λ a b hab,
have hpab : p = a * (b * (u⁻¹ : αˣ)),
from calc p = (p * u) * (u ⁻¹ : αˣ) : by simp
... = _ : by rw hu; simp [hab, mul_assoc],
(hp.is_unit_or_is_unit hpab).elim or.inl (λ ⟨v, hv⟩, or.inr ⟨v * u, by simp [hv]⟩)⟩
protected lemma associated.irreducible_iff [monoid α] {p q : α} (h : p ~ᵤ q) :
irreducible p ↔ irreducible q :=
⟨h.irreducible, h.symm.irreducible⟩
lemma associated.of_mul_left [cancel_comm_monoid_with_zero α] {a b c d : α}
(h : a * b ~ᵤ c * d) (h₁ : a ~ᵤ c) (ha : a ≠ 0) : b ~ᵤ d :=
let ⟨u, hu⟩ := h in let ⟨v, hv⟩ := associated.symm h₁ in
⟨u * (v : αˣ), mul_left_cancel₀ ha
begin
rw [← hv, mul_assoc c (v : α) d, mul_left_comm c, ← hu],
simp [hv.symm, mul_assoc, mul_comm, mul_left_comm]
end⟩
lemma associated.of_mul_right [cancel_comm_monoid_with_zero α] {a b c d : α} :
a * b ~ᵤ c * d → b ~ᵤ d → b ≠ 0 → a ~ᵤ c :=
by rw [mul_comm a, mul_comm c]; exact associated.of_mul_left
lemma associated.of_pow_associated_of_prime [cancel_comm_monoid_with_zero α] {p₁ p₂ : α}
{k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₁ : 0 < k₁) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) :
p₁ ~ᵤ p₂ :=
begin
have : p₁ ∣ p₂ ^ k₂,
{ rw ←h.dvd_iff_dvd_right,
apply dvd_pow_self _ hk₁.ne' },
rw ←hp.dvd_prime_iff_associated hp,
exact hp.dvd_of_dvd_pow this,
end
lemma associated.of_pow_associated_of_prime' [cancel_comm_monoid_with_zero α] {p₁ p₂ : α}
{k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₂ : 0 < k₂) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) :
p₁ ~ᵤ p₂ :=
(h.symm.of_pow_associated_of_prime hp₂ hp₁ hk₂).symm
section unique_units
variables [monoid α] [unique αˣ]
lemma units_eq_one (u : αˣ) : u = 1 := subsingleton.elim u 1
theorem associated_iff_eq {x y : α} : x ~ᵤ y ↔ x = y :=
begin
split,
{ rintro ⟨c, rfl⟩, rw [units_eq_one c, units.coe_one, mul_one] },
{ rintro rfl, refl },
end
theorem associated_eq_eq : (associated : α → α → Prop) = eq :=
by { ext, rw associated_iff_eq }
lemma prime_dvd_prime_iff_eq
{M : Type*} [cancel_comm_monoid_with_zero M] [unique Mˣ] {p q : M} (pp : prime p) (qp : prime q) :
p ∣ q ↔ p = q :=
by rw [pp.dvd_prime_iff_associated qp, ←associated_eq_eq]
end unique_units
/-- The quotient of a monoid by the `associated` relation. Two elements `x` and `y`
are associated iff there is a unit `u` such that `x * u = y`. There is a natural
monoid structure on `associates α`. -/
def associates (α : Type*) [monoid α] : Type* :=
quotient (associated.setoid α)
namespace associates
open associated
/-- The canonical quotient map from a monoid `α` into the `associates` of `α` -/
protected def mk {α : Type*} [monoid α] (a : α) : associates α :=
⟦ a ⟧
instance [monoid α] : inhabited (associates α) := ⟨⟦1⟧⟩
theorem mk_eq_mk_iff_associated [monoid α] {a b : α} :
associates.mk a = associates.mk b ↔ a ~ᵤ b :=
iff.intro quotient.exact quot.sound
theorem quotient_mk_eq_mk [monoid α] (a : α) : ⟦ a ⟧ = associates.mk a := rfl
theorem quot_mk_eq_mk [monoid α] (a : α) : quot.mk setoid.r a = associates.mk a := rfl
theorem forall_associated [monoid α] {p : associates α → Prop} :
(∀a, p a) ↔ (∀a, p (associates.mk a)) :=
iff.intro
(assume h a, h _)
(assume h a, quotient.induction_on a h)
theorem mk_surjective [monoid α] : function.surjective (@associates.mk α _) :=
forall_associated.2 (λ a, ⟨a, rfl⟩)
instance [monoid α] : has_one (associates α) := ⟨⟦ 1 ⟧⟩
@[simp] lemma mk_one [monoid α] : associates.mk (1 : α) = 1 := rfl
theorem one_eq_mk_one [monoid α] : (1 : associates α) = associates.mk 1 := rfl
instance [monoid α] : has_bot (associates α) := ⟨1⟩
lemma bot_eq_one [monoid α] : (⊥ : associates α) = 1 := rfl
lemma exists_rep [monoid α] (a : associates α) : ∃ a0 : α, associates.mk a0 = a :=
quot.exists_rep a
instance [monoid α] [subsingleton α] : unique (associates α) :=
{ default := 1,
uniq := λ a, by { apply quotient.rec_on_subsingleton₂, intros a b, congr } }
lemma mk_injective [monoid α] [unique (units α)] : function.injective (@associates.mk α _) :=
λ a b h, associated_iff_eq.mp (associates.mk_eq_mk_iff_associated.mp h)
section comm_monoid
variable [comm_monoid α]
instance : has_mul (associates α) :=
⟨λa' b', quotient.lift_on₂ a' b' (λa b, ⟦ a * b ⟧) $
assume a₁ a₂ b₁ b₂ ⟨c₁, h₁⟩ ⟨c₂, h₂⟩,
quotient.sound $ ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩⟩
theorem mk_mul_mk {x y : α} : associates.mk x * associates.mk y = associates.mk (x * y) :=
rfl
instance : comm_monoid (associates α) :=
{ one := 1,
mul := (*),
mul_one := assume a', quotient.induction_on a' $
assume a, show ⟦a * 1⟧ = ⟦ a ⟧, by simp,
one_mul := assume a', quotient.induction_on a' $
assume a, show ⟦1 * a⟧ = ⟦ a ⟧, by simp,
mul_assoc := assume a' b' c', quotient.induction_ona' b' c' $
assume a b c, show ⟦a * b * c⟧ = ⟦a * (b * c)⟧, by rw [mul_assoc],
mul_comm := assume a' b', quotient.induction_on₂ a' b' $
assume a b, show ⟦a * b⟧ = ⟦b * a⟧, by rw [mul_comm] }
instance : preorder (associates α) :=
{ le := has_dvd.dvd,
le_refl := dvd_refl,
le_trans := λ a b c, dvd_trans}
/-- `associates.mk` as a `monoid_hom`. -/
protected def mk_monoid_hom : α →* (associates α) := ⟨associates.mk, mk_one, λ x y, mk_mul_mk⟩
@[simp] lemma mk_monoid_hom_apply (a : α) : associates.mk_monoid_hom a = associates.mk a := rfl
lemma associated_map_mk {f : associates α →* α}
(hinv : function.right_inverse f associates.mk) (a : α) :
a ~ᵤ f (associates.mk a) :=
associates.mk_eq_mk_iff_associated.1 (hinv (associates.mk a)).symm
lemma mk_pow (a : α) (n : ℕ) : associates.mk (a ^ n) = (associates.mk a) ^ n :=
by induction n; simp [*, pow_succ, associates.mk_mul_mk.symm]
lemma dvd_eq_le : ((∣) : associates α → associates α → Prop) = (≤) := rfl
theorem mul_eq_one_iff {x y : associates α} : x * y = 1 ↔ (x = 1 ∧ y = 1) :=
iff.intro
(quotient.induction_on₂ x y $ assume a b h,
have a * b ~ᵤ 1, from quotient.exact h,
⟨quotient.sound $ associated_one_of_associated_mul_one this,
quotient.sound $ associated_one_of_associated_mul_one $ by rwa [mul_comm] at this⟩)
(by simp {contextual := tt})
theorem units_eq_one (u : (associates α)ˣ) : u = 1 :=
units.ext (mul_eq_one_iff.1 u.val_inv).1
instance unique_units : unique ((associates α)ˣ) :=
{ default := 1, uniq := associates.units_eq_one }
theorem coe_unit_eq_one (u : (associates α)ˣ): (u : associates α) = 1 :=
by simp
theorem is_unit_iff_eq_one (a : associates α) : is_unit a ↔ a = 1 :=
iff.intro
(assume ⟨u, h⟩, h ▸ coe_unit_eq_one _)
(assume h, h.symm ▸ is_unit_one)
lemma is_unit_iff_eq_bot {a : associates α} : is_unit a ↔ a = ⊥ :=
by rw [associates.is_unit_iff_eq_one, bot_eq_one]
theorem is_unit_mk {a : α} : is_unit (associates.mk a) ↔ is_unit a :=
calc is_unit (associates.mk a) ↔ a ~ᵤ 1 :
by rw [is_unit_iff_eq_one, one_eq_mk_one, mk_eq_mk_iff_associated]
... ↔ is_unit a : associated_one_iff_is_unit
section order
theorem mul_mono {a b c d : associates α} (h₁ : a ≤ b) (h₂ : c ≤ d) :
a * c ≤ b * d :=
let ⟨x, hx⟩ := h₁, ⟨y, hy⟩ := h₂ in
⟨x * y, by simp [hx, hy, mul_comm, mul_assoc, mul_left_comm]⟩
theorem one_le {a : associates α} : 1 ≤ a :=
dvd.intro _ (one_mul a)
theorem le_mul_right {a b : associates α} : a ≤ a * b := ⟨b, rfl⟩
theorem le_mul_left {a b : associates α} : a ≤ b * a :=
by rw [mul_comm]; exact le_mul_right
instance : order_bot (associates α) :=
{ bot := 1,
bot_le := assume a, one_le }
end order
theorem dvd_of_mk_le_mk {a b : α} : associates.mk a ≤ associates.mk b → a ∣ b
| ⟨c', hc'⟩ := (quotient.induction_on c' $ assume c hc,
let ⟨d, hd:= (quotient.exact hc).symm in
⟨(↑d) * c,
calc b = (a * c) *d : hd.symm
... = a * (d * c) : by ac_refl) hc'
theorem mk_le_mk_of_dvd {a b : α} : a ∣ b → associates.mk a ≤ associates.mk b :=
assume ⟨c, hc⟩, ⟨associates.mk c, by simp [hc]; refl⟩
theorem mk_le_mk_iff_dvd_iff {a b : α} : associates.mk a ≤ associates.mk b ↔ a ∣ b :=
iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd
theorem mk_dvd_mk {a b : α} : associates.mk a ∣ associates.mk b ↔ a ∣ b :=
iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd
end comm_monoid
instance [has_zero α] [monoid α] : has_zero (associates α) := ⟨⟦ 0 ⟧⟩
instance [has_zero α] [monoid α] : has_top (associates α) := ⟨0⟩
section monoid_with_zero
variables [monoid_with_zero α]
@[simp] theorem mk_eq_zero {a : α} : associates.mk a = 0 ↔ a = 0 :=
⟨assume h, (associated_zero_iff_eq_zero a).1 $ quotient.exact h, assume h, h.symm ▸ rfl⟩
theorem mk_ne_zero {a : α} : associates.mk a ≠ 0 ↔ a ≠ 0 :=
not_congr mk_eq_zero
instance [nontrivial α] : nontrivial (associates α) :=
⟨⟨0, 1,
assume h,
have (0 : α) ~ᵤ 1, from quotient.exact h,
have (0 : α) = 1, from ((associated_zero_iff_eq_zero 1).1 this.symm).symm,
zero_ne_one this⟩⟩
lemma exists_non_zero_rep {a : associates α} : a ≠ 0 → ∃ a0 : α, a0 ≠ 0 ∧ associates.mk a0 = a :=
quotient.induction_on a (λ b nz, ⟨b, mt (congr_arg quotient.mk) nz, rfl⟩)
end monoid_with_zero
section comm_monoid_with_zero
variables [comm_monoid_with_zero α]
instance : comm_monoid_with_zero (associates α) :=
{ zero_mul := by { rintro ⟨a⟩, show associates.mk (0 * a) = associates.mk 0, rw [zero_mul] },
mul_zero := by { rintro ⟨a⟩, show associates.mk (a * 0) = associates.mk 0, rw [mul_zero] },
.. associates.comm_monoid, .. associates.has_zero }
instance : order_top (associates α) :=
{ top := 0,
le_top := assume a, ⟨0, (mul_zero a).symm⟩ }
instance : bounded_order (associates α) :=
{ .. associates.order_top,
.. associates.order_bot }
instance [decidable_rel ((∣) : α → α → Prop)] :
decidable_rel ((∣) : associates α → associates α → Prop) :=
λ a b, quotient.rec_on_subsingleton₂ a b (λ a b, decidable_of_iff' _ mk_dvd_mk)
lemma prime.le_or_le {p : associates α} (hp : prime p) {a b : associates α} (h : pa * b) :
p ≤ apb :=
hp.2.2 a b h
lemma prime_mk (p : α) : prime (associates.mk p)_root_.prime p :=
begin
rw [prime, _root_.prime, forall_associated],
transitivity,
{ apply and_congr, refl,
apply and_congr, refl,
apply forall_congr, assume a,
exact forall_associated },
apply and_congr mk_ne_zero,
apply and_congr,
{ rw [is_unit_mk], },
refine forall_congr (λ a b, _),
rw [mk_mul_mk, mk_dvd_mk, mk_dvd_mk, mk_dvd_mk],
end
theorem irreducible_mk (a : α) : irreducible (associates.mk a)irreducible a :=
begin
simp only [irreducible_iff, is_unit_mk],
apply and_congr iff.rfl,
split,
{ rintro h x y rfl,
simpa [is_unit_mk] using h (associates.mk x) (associates.mk y) rfl },
{ intros h x y,
refine quotient.induction_onx y (assume x y a_eq, _),
rcases quotient.exact a_eq.symm withu, a_eq,
rw mul_assoc at a_eq,
show is_unit (associates.mk x)is_unit (associates.mk y),
simpa [is_unit_mk] using h _ _ a_eq.symm }
end
theorem mk_dvd_not_unit_mk_iff {a b : α} :
dvd_not_unit (associates.mk a) (associates.mk b)
dvd_not_unit a b :=
begin
rw [dvd_not_unit, dvd_not_unit, mk_ne_zero],
apply and_congr_right, intro ane0,
split,
{ contrapose!, rw forall_associated,
intros h x hx hbax,
rw [mk_mul_mk, mk_eq_mk_iff_associated] at hbax,
cases hbax with u hu,
apply h (x *u⁻¹),
{ rw is_unit_mk at hx,
rw associated.is_unit_iff,
apply hx,
use u,
simp, },
simp [mul_assoc,hu] },
{ rintro ⟨x,hx, rfl⟩⟩,
use associates.mk x,
simp [is_unit_mk, mk_mul_mk, hx], }
end
theorem dvd_not_unit_of_lt {a b : associates α} (hlt : a < b) :
dvd_not_unit a b :=
begin
split, { rintro rfl, apply not_lt_of_le _ hlt, apply dvd_zero },
rcases hlt with ⟨⟨x, rfl, ndvd,
refine ⟨x, _, rfl,
contrapose! ndvd,
rcases ndvd withu, rfl,
simp,
end
theorem irreducible_iff_prime_iff :
(∀ a : α, irreducible aprime a)(a : (associates α), irreducible aprime a) :=
by simp_rw [forall_associated, irreducible_mk, prime_mk]
end comm_monoid_with_zero
section cancel_comm_monoid_with_zero
variable [cancel_comm_monoid_with_zero α]
instance : partial_order (associates α) :=
{ le_antisymm := λ a' b', quotient.induction_ona' b' (λ a b hab hba,
quot.sound $ associated_of_dvd_dvd (dvd_of_mk_le_mk hab) (dvd_of_mk_le_mk hba))
.. associates.preorder }
instance : ordered_comm_monoid (associates α) :=
{ mul_le_mul_left := λ a bd, hdc, hd.symmmul_assoc c a dle_mul_right,
..associates.comm_monoid,
..associates.partial_order}
instance : no_zero_divisors (associates α) :=
⟨λ x y,
(quotient.induction_on₂ x y $ assume a b h,
have a * b = 0, from (associated_zero_iff_eq_zero _).1 (quotient.exact h),
have a = 0b = 0, from mul_eq_zero.1 this,
this.imp (assume h, h.symmrfl) (assume h, h.symmrfl))
lemma eq_of_mul_eq_mul_left :
∀(a b c : associates α), a0a * b = a * cb = c :=
begin
rintros ⟨a⟩ ⟨b⟩ ⟨cha h,
rcases quotient.exact' h with ⟨u, hu⟩,
have hu : a * (b * ↑u) = a * c, { rwa [← mul_assoc] },
exact quotient.sound'u, mul_left_cancel(mk_ne_zero.1 ha) hu
end
lemma eq_of_mul_eq_mul_right :
∀(a b c : associates α), b0a * b = c * ba = c :=
λ a b c bne0, (mul_comm b a)(mul_comm b c)(eq_of_mul_eq_mul_left b a c bne0)
lemma le_of_mul_le_mul_left (a b c : associates α) (ha : a0) :
a * ba * cbc
| ⟨d, hd⟩ := ⟨d, eq_of_mul_eq_mul_left a _ _ ha $ by rwamul_assoc
lemma one_or_eq_of_le_of_prime :
∀(p m : associates α), prime pmp(m = 1m = p)
| _ m ⟨hp0, hp1, h⟩ ⟨d, rfl:=
match h m d dvd_rfl with
| or.inl h := classical.by_cases (assume : m = 0, by simp [this]) $
assume : m0,
have m * dm * 1, by simpa using h,
have d1, from associates.le_of_mul_le_mul_left m d 1m0this,
have d = 1, from bot_unique this,
by simp [this]
| or.inr h := classical.by_cases (assume : d = 0, by simp [this] at hp0; contradiction) $
assume : d ≠ 0,
have d * m ≤ d * 1, by simpa [mul_comm] using h,
or.inl $ bot_unique $ associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this
end
instance : cancel_comm_monoid_with_zero (associates α) :=
{ mul_left_cancel_of_ne_zero := eq_of_mul_eq_mul_left,
mul_right_cancel_of_ne_zero := eq_of_mul_eq_mul_right,
.. (infer_instance : comm_monoid_with_zero (associates α)) }
instance : canonically_ordered_monoid (associates α) :=
{ exists_mul_of_le := λ a b, id,
le_self_mul := λ a b, ⟨b, rfl⟩,
..associates.cancel_comm_monoid_with_zero,
..associates.bounded_order,
..associates.ordered_comm_monoid}
theorem dvd_not_unit_iff_lt {a b : associates α} :
dvd_not_unit a b ↔ a < b :=
dvd_and_not_dvd_iff.symm
lemma le_one_iff {p : associates α} : p ≤ 1 ↔ p = 1 :=
by rw [← associates.bot_eq_one, le_bot_iff]
end cancel_comm_monoid_with_zero
end associates
section comm_monoid_with_zero
lemma dvd_not_unit.is_unit_of_irreducible_right [comm_monoid_with_zero α] {p q : α}
(h : dvd_not_unit p q) (hq : irreducible q) : is_unit p :=
begin
obtain ⟨hp', x, hx, hx'⟩ := h,
exact or.resolve_right ((irreducible_iff.1 hq).right p x hx') hx
end
lemma not_irreducible_of_not_unit_dvd_not_unit [comm_monoid_with_zero α] {p q : α}
(hp : ¬is_unit p) (h : dvd_not_unit p q) : ¬ irreducible q :=
mt h.is_unit_of_irreducible_right hp
lemma dvd_not_unit.not_unit [comm_monoid_with_zero α] {p q : α}
(hp : dvd_not_unit p q) : ¬ is_unit q :=
begin
obtain ⟨-, x, hx, rfl⟩ := hp,
exact λ hc, hx (is_unit_iff_dvd_one.mpr (dvd_of_mul_left_dvd (is_unit_iff_dvd_one.mp hc))),
end
lemma dvd_not_unit_of_dvd_not_unit_associated [comm_monoid_with_zero α]
[nontrivial α] {p q r : α} (h : dvd_not_unit p q) (h' : associated q r) : dvd_not_unit p r :=
begin
obtain ⟨u, rfl⟩ := associated.symm h',
obtain ⟨hp, x, hx⟩ := h,
refine ⟨hp, x * ↑(u⁻¹), dvd_not_unit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, _⟩,
rw [← mul_assoc, ← hx.right, mul_assoc, units.mul_inv, mul_one]
end
end comm_monoid_with_zero
section cancel_comm_monoid_with_zero
lemma is_unit_of_associated_mul [cancel_comm_monoid_with_zero α]
{p b : α} (h : associated (p * b) p) (hp : p ≠ 0) : is_unit b :=
begin
cases h with a ha,
refine is_unit_of_mul_eq_one b a ((mul_right_inj' hp).mp _),
rwa [← mul_assoc, mul_one],
end
lemma associates.is_atom_iff [cancel_comm_monoid_with_zero α] {p : associates α} (h₁ : p ≠ 0) :
is_atom p ↔ irreducible p :=
⟨λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one] using hp.1,
λ a b h, (hp.le_iff.mp ⟨_, h⟩).cases_on
(λ ha, or.inl (a.is_unit_iff_eq_one.mpr ha))
(λ ha, or.inr (show is_unit b, by {rw ha at h, apply is_unit_of_associated_mul
(show associated (p * b) p, by conv_rhs {rw h}) h₁ }))⟩,
λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one, associates.bot_eq_one] using hp.1,
λ b ⟨⟨a, hab⟩, hb⟩, (hp.is_unit_or_is_unit hab).cases_on
(λ hb, show b = ⊥, by rwa [associates.is_unit_iff_eq_one, ← associates.bot_eq_one] at hb)
(λ ha, absurd (show p ∣ b, from ⟨(ha.unit⁻¹ : units _), by simp [hab]; rw mul_assoc;
rw is_unit.mul_coe_inv ha; rw mul_one⟩) hb)⟩⟩
lemma dvd_not_unit.not_associated [cancel_comm_monoid_with_zero α] {p q : α}
(h : dvd_not_unit p q) : ¬ associated p q :=
begin
rintro ⟨a, rfl⟩,
obtain ⟨hp, x, hx, hx'⟩ := h,
rcases (mul_right_inj' hp).mp hx' with rfl,
exact hx a.is_unit,
end
lemma dvd_not_unit.ne [cancel_comm_monoid_with_zero α] {p q : α}
(h : dvd_not_unit p q) : p ≠ q :=
begin
by_contra hcontra,
obtain ⟨hp, x, hx', hx''⟩ := h,
conv_lhs at hx'' {rw [← hcontra, ← mul_one p]},
rw (mul_left_cancel₀ hp hx'').symm at hx',
exact hx' is_unit_one,
end
lemma pow_injective_of_not_unit [cancel_comm_monoid_with_zero α] {q : α}
(hq : ¬ is_unit q) (hq' : q ≠ 0): function.injective (λ (n : ℕ), q^n) :=
begin
refine injective_of_lt_imp_ne (λ n m h, dvd_not_unit.ne ⟨pow_ne_zero n hq', q^(m - n), _, _⟩),
{ exact not_is_unit_of_not_is_unit_dvd hq (dvd_pow (dvd_refl _) (nat.sub_pos_of_lt h).ne') },
{ exact (pow_mul_pow_sub q h.le).symm }
end
lemma dvd_prime_pow [cancel_comm_monoid_with_zero α] {p q : α} (hp : prime p) (n : ℕ) :
q ∣ p^n ↔ ∃ i ≤ n, associated q (p ^ i) :=
begin
induction n with n ih generalizing q,
{ simp [← is_unit_iff_dvd_one, associated_one_iff_is_unit] },
refine ⟨λ h, _, λ ⟨i, hi, hq⟩, hq.dvd.trans (pow_dvd_pow p hi)⟩,
rw pow_succ at h,
rcases hp.left_dvd_or_dvd_right_of_dvd_mul h with (⟨q, rfl⟩ | hno),
{ rw [mul_dvd_mul_iff_left hp.ne_zero, ih] at h,
rcases h with ⟨i, hi, hq⟩,
refine ⟨i + 1, nat.succ_le_succ hi, (hq.mul_left p).trans _⟩,
rw pow_succ },
{ obtain ⟨i, hi, hq⟩ := ih.mp hno,
exact ⟨i, hi.trans n.le_succ, hq⟩ }
end
end cancel_comm_monoid_with_zero