Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Neil Strickland. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Neil Strickland | |
-/ | |
import algebra.group_with_zero.power | |
import algebra.big_operators.order | |
import algebra.big_operators.ring | |
import algebra.big_operators.intervals | |
import tactic.abel | |
import data.nat.parity | |
/-! | |
# Partial sums of geometric series | |
This file determines the values of the geometric series $\sum_{i=0}^{n-1} x^i$ and | |
$\sum_{i=0}^{n-1} x^i y^{n-1-i}$ and variants thereof. We also provide some bounds on the | |
"geometric" sum of `a/b^i` where `a b : ℕ`. | |
## Main statements | |
* `geom_sum_Ico` proves that $\sum_{i=m}^{n-1} x^i=\frac{x^n-x^m}{x-1}$ in a division ring. | |
* `geom_sum₂_Ico` proves that $\sum_{i=m}^{n-1} x^i=\frac{x^n-y^{n-m}x^m}{x-y}$ in a field. | |
Several variants are recorded, generalising in particular to the case of a noncommutative ring in | |
which `x` and `y` commute. Even versions not using division or subtraction, valid in each semiring, | |
are recorded. | |
-/ | |
universe u | |
variable {α : Type u} | |
open finset mul_opposite | |
open_locale big_operators | |
section semiring | |
variable [semiring α] | |
lemma geom_sum_succ {x : α} {n : ℕ} : | |
∑ i in range (n + 1), x ^ i = x * ∑ i in range n, x ^ i + 1 := | |
by simp only [mul_sum, ←pow_succ, sum_range_succ', pow_zero] | |
lemma geom_sum_succ' {x : α} {n : ℕ} : | |
∑ i in range (n + 1), x ^ i = x ^ n + ∑ i in range n, x ^ i := | |
(sum_range_succ _ _).trans (add_comm _ _) | |
theorem geom_sum_zero (x : α) : | |
∑ i in range 0, x ^ i = 0 := rfl | |
theorem geom_sum_one (x : α) : | |
∑ i in range 1, x ^ i = 1 := | |
by simp [geom_sum_succ'] | |
@[simp] lemma geom_sum_two {x : α} : ∑ i in range 2, x ^ i = x + 1 := | |
by simp [geom_sum_succ'] | |
@[simp] lemma zero_geom_sum : ∀ {n}, ∑ i in range n, (0 : α) ^ i = if n = 0 then 0 else 1 | |
| 0 := by simp | |
| 1 := by simp | |
| (n+2) := by { rw geom_sum_succ', simp [zero_geom_sum] } | |
lemma one_geom_sum (n : ℕ) : ∑ i in range n, (1 : α) ^ i = n := | |
by simp | |
@[simp] lemma op_geom_sum (x : α) (n : ℕ) : | |
op (∑ i in range n, x ^ i) = ∑ i in range n, (op x) ^ i := | |
by simp | |
@[simp] lemma op_geom_sum₂ (x y : α) (n : ℕ) : | |
op (∑ i in range n, x ^ i * (y ^ (n - 1 - i))) = | |
∑ i in range n, (op y) ^ i * ((op x) ^ (n - 1 - i)) := | |
begin | |
simp only [op_sum, op_mul, op_pow], | |
rw ← sum_range_reflect, | |
refine sum_congr rfl (λ j j_in, _), | |
rw [mem_range, nat.lt_iff_add_one_le] at j_in, | |
congr, | |
apply tsub_tsub_cancel_of_le, | |
exact le_tsub_of_add_le_right j_in | |
end | |
theorem geom_sum₂_with_one (x : α) (n : ℕ) : | |
∑ i in range n, x ^ i * (1 ^ (n - 1 - i)) = ∑ i in range n, x ^ i := | |
sum_congr rfl (λ i _, by { rw [one_pow, mul_one] }) | |
/-- $x^n-y^n = (x-y) \sum x^ky^{n-1-k}$ reformulated without `-` signs. -/ | |
protected theorem commute.geom_sum₂_mul_add {x y : α} (h : commute x y) (n : ℕ) : | |
(∑ i in range n, (x + y) ^ i * (y ^ (n - 1 - i))) * x + y ^ n = (x + y) ^ n := | |
begin | |
let f := λ (m i : ℕ), (x + y) ^ i * y ^ (m - 1 - i), | |
change (∑ i in range n, (f n) i) * x + y ^ n = (x + y) ^ n, | |
induction n with n ih, | |
{ rw [range_zero, sum_empty, zero_mul, zero_add, pow_zero, pow_zero] }, | |
{ have f_last : f (n + 1) n = (x + y) ^ n := | |
by { dsimp [f], | |
rw [← tsub_add_eq_tsub_tsub, nat.add_comm, tsub_self, pow_zero, mul_one] }, | |
have f_succ : ∀ i, i ∈ range n → f (n + 1) i = y * f n i := | |
λ i hi, by | |
{ dsimp [f], | |
have : commute y ((x + y) ^ i) := | |
(h.symm.add_right (commute.refl y)).pow_right i, | |
rw [← mul_assoc, this.eq, mul_assoc, ← pow_succ y (n - 1 - i)], | |
congr' 2, | |
rw [add_tsub_cancel_right, ← tsub_add_eq_tsub_tsub, add_comm 1 i], | |
have : i + 1 + (n - (i + 1)) = n := add_tsub_cancel_of_le (mem_range.mp hi), | |
rw [add_comm (i + 1)] at this, | |
rw [← this, add_tsub_cancel_right, add_comm i 1, ← add_assoc, | |
add_tsub_cancel_right] }, | |
rw [pow_succ (x + y), add_mul, sum_range_succ_comm, add_mul, f_last, add_assoc], | |
rw (((commute.refl x).add_right h).pow_right n).eq, | |
congr' 1, | |
rw [sum_congr rfl f_succ, ← mul_sum, pow_succ y, mul_assoc, ← mul_add y, ih] } | |
end | |
end semiring | |
@[simp] lemma neg_one_geom_sum [ring α] {n : ℕ} : | |
∑ i in range n, (-1 : α) ^ i = if even n then 0 else 1 := | |
begin | |
induction n with k hk, | |
{ simp }, | |
{ simp only [geom_sum_succ', nat.even_add_one, hk], | |
split_ifs, | |
{ rw [h.neg_one_pow, add_zero] }, | |
{ rw [(nat.odd_iff_not_even.2 h).neg_one_pow, neg_add_self] } } | |
end | |
theorem geom_sum₂_self {α : Type*} [comm_ring α] (x : α) (n : ℕ) : | |
∑ i in range n, x ^ i * (x ^ (n - 1 - i)) = n * x ^ (n-1) := | |
calc ∑ i in finset.range n, x ^ i * x ^ (n - 1 - i) | |
= ∑ i in finset.range n, x ^ (i + (n - 1 - i)) : by simp_rw [← pow_add] | |
... = ∑ i in finset.range n, x ^ (n - 1) : finset.sum_congr rfl | |
(λ i hi, congr_arg _ $ add_tsub_cancel_of_le $ nat.le_pred_of_lt $ finset.mem_range.1 hi) | |
... = (finset.range n).card • (x ^ (n - 1)) : finset.sum_const _ | |
... = n * x ^ (n - 1) : by rw [finset.card_range, nsmul_eq_mul] | |
/-- $x^n-y^n = (x-y) \sum x^ky^{n-1-k}$ reformulated without `-` signs. -/ | |
theorem geom_sum₂_mul_add [comm_semiring α] (x y : α) (n : ℕ) : | |
(∑ i in range n, (x + y) ^ i * (y ^ (n - 1 - i))) * x + y ^ n = (x + y) ^ n := | |
(commute.all x y).geom_sum₂_mul_add n | |
theorem geom_sum_mul_add [semiring α] (x : α) (n : ℕ) : | |
(∑ i in range n, (x + 1) ^ i) * x + 1 = (x + 1) ^ n := | |
begin | |
have := (commute.one_right x).geom_sum₂_mul_add n, | |
rw [one_pow, geom_sum₂_with_one] at this, | |
exact this | |
end | |
protected theorem commute.geom_sum₂_mul [ring α] {x y : α} (h : commute x y) (n : ℕ) : | |
(∑ i in range n, x ^ i * (y ^ (n - 1 - i))) * (x - y) = x ^ n - y ^ n := | |
begin | |
have := (h.sub_left (commute.refl y)).geom_sum₂_mul_add n, | |
rw [sub_add_cancel] at this, | |
rw [← this, add_sub_cancel] | |
end | |
lemma commute.mul_neg_geom_sum₂ [ring α] {x y : α} (h : commute x y) (n : ℕ) : | |
(y - x) * (∑ i in range n, x ^ i * (y ^ (n - 1 - i))) = y ^ n - x ^ n := | |
begin | |
apply op_injective, | |
simp only [op_mul, op_sub, op_geom_sum₂, op_pow], | |
exact (commute.op h.symm).geom_sum₂_mul n | |
end | |
lemma commute.mul_geom_sum₂ [ring α] {x y : α} (h : commute x y) (n : ℕ) : | |
(x - y) * (∑ i in range n, x ^ i * (y ^ (n - 1 - i))) = x ^ n - y ^ n := | |
by rw [← neg_sub (y ^ n), ← h.mul_neg_geom_sum₂, ← neg_mul, neg_sub] | |
theorem geom_sum₂_mul [comm_ring α] (x y : α) (n : ℕ) : | |
(∑ i in range n, x ^ i * (y ^ (n - 1 - i))) * (x - y) = x ^ n - y ^ n := | |
(commute.all x y).geom_sum₂_mul n | |
theorem geom_sum_mul [ring α] (x : α) (n : ℕ) : | |
(∑ i in range n, x ^ i) * (x - 1) = x ^ n - 1 := | |
begin | |
have := (commute.one_right x).geom_sum₂_mul n, | |
rw [one_pow, geom_sum₂_with_one] at this, | |
exact this | |
end | |
lemma mul_geom_sum [ring α] (x : α) (n : ℕ) : | |
(x - 1) * (∑ i in range n, x ^ i) = x ^ n - 1 := | |
op_injective $ by simpa using geom_sum_mul (op x) n | |
theorem geom_sum_mul_neg [ring α] (x : α) (n : ℕ) : | |
(∑ i in range n, x ^ i) * (1 - x) = 1 - x ^ n := | |
begin | |
have := congr_arg has_neg.neg (geom_sum_mul x n), | |
rw [neg_sub, ← mul_neg, neg_sub] at this, | |
exact this | |
end | |
lemma mul_neg_geom_sum [ring α] (x : α) (n : ℕ) : | |
(1 - x) * (∑ i in range n, x ^ i) = 1 - x ^ n := | |
op_injective $ by simpa using geom_sum_mul_neg (op x) n | |
protected theorem commute.geom_sum₂ [division_ring α] {x y : α} (h' : commute x y) (h : x ≠ y) | |
(n : ℕ) : (∑ i in range n, x ^ i * (y ^ (n - 1 - i))) = (x ^ n - y ^ n) / (x - y) := | |
have x - y ≠ 0, by simp [*, -sub_eq_add_neg, sub_eq_iff_eq_add] at *, | |
by rw [← h'.geom_sum₂_mul, mul_div_cancel _ this] | |
theorem geom₂_sum [field α] {x y : α} (h : x ≠ y) (n : ℕ) : | |
(∑ i in range n, x ^ i * (y ^ (n - 1 - i))) = (x ^ n - y ^ n) / (x - y) := | |
(commute.all x y).geom_sum₂ h n | |
theorem geom_sum_eq [division_ring α] {x : α} (h : x ≠ 1) (n : ℕ) : | |
(∑ i in range n, x ^ i) = (x ^ n - 1) / (x - 1) := | |
have x - 1 ≠ 0, by simp [*, -sub_eq_add_neg, sub_eq_iff_eq_add] at *, | |
by rw [← geom_sum_mul, mul_div_cancel _ this] | |
protected theorem commute.mul_geom_sum₂_Ico [ring α] {x y : α} (h : commute x y) {m n : ℕ} | |
(hmn : m ≤ n) : | |
(x - y) * (∑ i in finset.Ico m n, x ^ i * y ^ (n - 1 - i)) = x ^ n - x ^ m * y ^ (n - m) := | |
begin | |
rw [sum_Ico_eq_sub _ hmn], | |
have : ∑ k in range m, x ^ k * y ^ (n - 1 - k) | |
= ∑ k in range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k)), | |
{ refine sum_congr rfl (λ j j_in, _), | |
rw ← pow_add, | |
congr, | |
rw [mem_range, nat.lt_iff_add_one_le, add_comm] at j_in, | |
have h' : n - m + (m - (1 + j)) = n - (1 + j) := tsub_add_tsub_cancel hmn j_in, | |
rw [← tsub_add_eq_tsub_tsub m, h', ← tsub_add_eq_tsub_tsub] }, | |
rw this, | |
simp_rw pow_mul_comm y (n-m) _, | |
simp_rw ← mul_assoc, | |
rw [← sum_mul, mul_sub, h.mul_geom_sum₂, ← mul_assoc, | |
h.mul_geom_sum₂, sub_mul, ← pow_add, add_tsub_cancel_of_le hmn, | |
sub_sub_sub_cancel_right (x ^ n) (x ^ m * y ^ (n - m)) (y ^ n)], | |
end | |
protected theorem commute.geom_sum₂_succ_eq {α : Type u} [ring α] {x y : α} | |
(h : commute x y) {n : ℕ} : | |
∑ i in range (n + 1), x ^ i * (y ^ (n - i)) = | |
x ^ n + y * (∑ i in range n, x ^ i * (y ^ (n - 1 - i))) := | |
begin | |
simp_rw [mul_sum, sum_range_succ_comm, tsub_self, pow_zero, mul_one, add_right_inj, ←mul_assoc, | |
(h.symm.pow_right _).eq, mul_assoc, ←pow_succ], | |
refine sum_congr rfl (λ i hi, _), | |
suffices : n - 1 - i + 1 = n - i, { rw this }, | |
cases n, | |
{ exact absurd (list.mem_range.mp hi) i.not_lt_zero }, | |
{ rw [tsub_add_eq_add_tsub (nat.le_pred_of_lt (list.mem_range.mp hi)), | |
tsub_add_cancel_of_le (nat.succ_le_iff.mpr n.succ_pos)] }, | |
end | |
theorem geom_sum₂_succ_eq {α : Type u} [comm_ring α] (x y : α) {n : ℕ} : | |
∑ i in range (n + 1), x ^ i * (y ^ (n - i)) = | |
x ^ n + y * (∑ i in range n, x ^ i * (y ^ (n - 1 - i))) := | |
(commute.all x y).geom_sum₂_succ_eq | |
theorem mul_geom_sum₂_Ico [comm_ring α] (x y : α) {m n : ℕ} (hmn : m ≤ n) : | |
(x - y) * (∑ i in finset.Ico m n, x ^ i * y ^ (n - 1 - i)) = x ^ n - x ^ m * y ^ (n - m) := | |
(commute.all x y).mul_geom_sum₂_Ico hmn | |
protected theorem commute.geom_sum₂_Ico_mul [ring α] {x y : α} (h : commute x y) {m n : ℕ} | |
(hmn : m ≤ n) : | |
(∑ i in finset.Ico m n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ (n - m) * x ^ m := | |
begin | |
apply op_injective, | |
simp only [op_sub, op_mul, op_pow, op_sum], | |
have : ∑ k in Ico m n, op y ^ (n - 1 - k) * op x ^ k | |
= ∑ k in Ico m n, op x ^ k * op y ^ (n - 1 - k), | |
{ refine sum_congr rfl (λ k k_in, _), | |
apply commute.pow_pow (commute.op h.symm) }, | |
rw this, | |
exact (commute.op h).mul_geom_sum₂_Ico hmn | |
end | |
theorem geom_sum_Ico_mul [ring α] (x : α) {m n : ℕ} (hmn : m ≤ n) : | |
(∑ i in finset.Ico m n, x ^ i) * (x - 1) = x^n - x^m := | |
by rw [sum_Ico_eq_sub _ hmn, sub_mul, | |
geom_sum_mul, geom_sum_mul, sub_sub_sub_cancel_right] | |
theorem geom_sum_Ico_mul_neg [ring α] (x : α) {m n : ℕ} (hmn : m ≤ n) : | |
(∑ i in finset.Ico m n, x ^ i) * (1 - x) = x^m - x^n := | |
by rw [sum_Ico_eq_sub _ hmn, sub_mul, | |
geom_sum_mul_neg, geom_sum_mul_neg, sub_sub_sub_cancel_left] | |
protected theorem commute.geom_sum₂_Ico [division_ring α] {x y : α} (h : commute x y) (hxy : x ≠ y) | |
{m n : ℕ} (hmn : m ≤ n) : | |
∑ i in finset.Ico m n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ (n - m) * x ^ m ) / (x - y) := | |
have x - y ≠ 0, by simp [*, -sub_eq_add_neg, sub_eq_iff_eq_add] at *, | |
by rw [← h.geom_sum₂_Ico_mul hmn, mul_div_cancel _ this] | |
theorem geom_sum₂_Ico [field α] {x y : α} (hxy : x ≠ y) {m n : ℕ} (hmn : m ≤ n) : | |
∑ i in finset.Ico m n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ (n - m) * x ^ m ) / (x - y) := | |
(commute.all x y).geom_sum₂_Ico hxy hmn | |
theorem geom_sum_Ico [division_ring α] {x : α} (hx : x ≠ 1) {m n : ℕ} (hmn : m ≤ n) : | |
∑ i in finset.Ico m n, x ^ i = (x ^ n - x ^ m) / (x - 1) := | |
by simp only [sum_Ico_eq_sub _ hmn, geom_sum_eq hx, div_sub_div_same, | |
sub_sub_sub_cancel_right] | |
theorem geom_sum_Ico' [division_ring α] {x : α} (hx : x ≠ 1) {m n : ℕ} (hmn : m ≤ n) : | |
∑ i in finset.Ico m n, x ^ i = (x ^ m - x ^ n) / (1 - x) := | |
by { simp only [geom_sum_Ico hx hmn], convert neg_div_neg_eq (x^m - x^n) (1-x); abel } | |
lemma geom_sum_Ico_le_of_lt_one [linear_ordered_field α] | |
{x : α} (hx : 0 ≤ x) (h'x : x < 1) {m n : ℕ} : | |
∑ i in Ico m n, x ^ i ≤ x ^ m / (1 - x) := | |
begin | |
rcases le_or_lt m n with hmn | hmn, | |
{ rw geom_sum_Ico' h'x.ne hmn, | |
apply div_le_div (pow_nonneg hx _) _ (sub_pos.2 h'x) le_rfl, | |
simpa using pow_nonneg hx _ }, | |
{ rw [Ico_eq_empty, sum_empty], | |
{ apply div_nonneg (pow_nonneg hx _), | |
simpa using h'x.le }, | |
{ simpa using hmn.le } }, | |
end | |
lemma geom_sum_inv [division_ring α] {x : α} (hx1 : x ≠ 1) (hx0 : x ≠ 0) (n : ℕ) : | |
(∑ i in range n, x⁻¹ ^ i) = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x) := | |
have h₁ : x⁻¹ ≠ 1, by rwa [inv_eq_one_div, ne.def, div_eq_iff_mul_eq hx0, one_mul], | |
have h₂ : x⁻¹ - 1 ≠ 0, from mt sub_eq_zero.1 h₁, | |
have h₃ : x - 1 ≠ 0, from mt sub_eq_zero.1 hx1, | |
have h₄ : x * (x ^ n)⁻¹ = (x ^ n)⁻¹ * x := | |
nat.rec_on n (by simp) | |
(λ n h, by rw [pow_succ, mul_inv_rev, ←mul_assoc, h, mul_assoc, mul_inv_cancel hx0, mul_assoc, | |
inv_mul_cancel hx0]), | |
begin | |
rw [geom_sum_eq h₁, div_eq_iff_mul_eq h₂, ← mul_right_inj' h₃, | |
← mul_assoc, ← mul_assoc, mul_inv_cancel h₃], | |
simp [mul_add, add_mul, mul_inv_cancel hx0, mul_assoc, h₄, sub_eq_add_neg, add_comm, | |
add_left_comm], | |
end | |
variables {β : Type*} | |
theorem ring_hom.map_geom_sum [semiring α] [semiring β] (x : α) (n : ℕ) (f : α →+* β) : | |
f (∑ i in range n, x ^ i) = ∑ i in range n, (f x) ^ i := | |
by simp [f.map_sum] | |
theorem ring_hom.map_geom_sum₂ [semiring α] [semiring β] (x y : α) (n : ℕ) (f : α →+* β) : | |
f (∑ i in range n, x ^ i * (y ^ (n - 1 - i))) = | |
∑ i in range n, (f x) ^ i * ((f y) ^ (n - 1 - i)) := | |
by simp [f.map_sum] | |
/-! ### Geometric sum with `ℕ`-division -/ | |
lemma nat.pred_mul_geom_sum_le (a b n : ℕ) : | |
(b - 1) * ∑ i in range n.succ, a/b^i ≤ a * b - a/b^n := | |
calc | |
(b - 1) * (∑ i in range n.succ, a/b^i) | |
= ∑ i in range n, a/b^(i + 1) * b + a * b | |
- (∑ i in range n, a/b^i + a/b^n) | |
: by rw [tsub_mul, mul_comm, sum_mul, one_mul, sum_range_succ', | |
sum_range_succ, pow_zero, nat.div_one] | |
... ≤ ∑ i in range n, a/b^i + a * b - (∑ i in range n, a/b^i + a/b^n) | |
: begin | |
refine tsub_le_tsub_right (add_le_add_right (sum_le_sum $ λ i _, _) _) _, | |
rw [pow_succ', ←nat.div_div_eq_div_mul], | |
exact nat.div_mul_le_self _ _, | |
end | |
... = a * b - a/b^n : add_tsub_add_eq_tsub_left _ _ _ | |
lemma nat.geom_sum_le {b : ℕ} (hb : 2 ≤ b) (a n : ℕ) : | |
∑ i in range n, a/b^i ≤ a * b/(b - 1) := | |
begin | |
refine (nat.le_div_iff_mul_le $ tsub_pos_of_lt hb).2 _, | |
cases n, | |
{ rw [sum_range_zero, zero_mul], | |
exact nat.zero_le _ }, | |
rw mul_comm, | |
exact (nat.pred_mul_geom_sum_le a b n).trans tsub_le_self, | |
end | |
lemma nat.geom_sum_Ico_le {b : ℕ} (hb : 2 ≤ b) (a n : ℕ) : | |
∑ i in Ico 1 n, a/b^i ≤ a/(b - 1) := | |
begin | |
cases n, | |
{ rw [Ico_eq_empty_of_le (zero_le_one' ℕ), sum_empty], | |
exact nat.zero_le _ }, | |
rw ←add_le_add_iff_left a, | |
calc | |
a + ∑ (i : ℕ) in Ico 1 n.succ, a/b^i | |
= a/b^0 + ∑ (i : ℕ) in Ico 1 n.succ, a/b^i : by rw [pow_zero, nat.div_one] | |
... = ∑ i in range n.succ, a/b^i : begin | |
rw [range_eq_Ico, ←nat.Ico_insert_succ_left (nat.succ_pos _), sum_insert], | |
exact λ h, zero_lt_one.not_le (mem_Ico.1 h).1, | |
end | |
... ≤ a * b/(b - 1) : nat.geom_sum_le hb a _ | |
... = (a * 1 + a * (b - 1))/(b - 1) | |
: by rw [←mul_add, add_tsub_cancel_of_le (one_le_two.trans hb)] | |
... = a + a/(b - 1) | |
: by rw [mul_one, nat.add_mul_div_right _ _ (tsub_pos_of_lt hb), add_comm] | |
end | |
section order | |
variables {n : ℕ} {x : α} | |
lemma geom_sum_pos [ordered_semiring α] (hx : 0 < x) (hn : n ≠ 0) : 0 < ∑ i in range n, x ^ i := | |
sum_pos (λ k hk, pow_pos hx _) $ nonempty_range_iff.2 hn | |
lemma geom_sum_pos_and_lt_one [ordered_ring α] (hx : x < 0) (hx' : 0 < x + 1) (hn : 1 < n) : | |
0 < ∑ i in range n, x ^ i ∧ ∑ i in range n, x ^ i < 1 := | |
begin | |
refine nat.le_induction _ _ n (show 2 ≤ n, from hn), | |
{ rw geom_sum_two, | |
exact ⟨hx', (add_lt_iff_neg_right _).2 hx⟩ }, | |
clear hn n, | |
intros n hn ihn, | |
rw [geom_sum_succ, add_lt_iff_neg_right, ← neg_lt_iff_pos_add', neg_mul_eq_neg_mul], | |
exact ⟨mul_lt_one_of_nonneg_of_lt_one_left (neg_nonneg.2 hx.le) | |
(neg_lt_iff_pos_add'.2 hx') ihn.2.le, mul_neg_of_neg_of_pos hx ihn.1⟩ | |
end | |
lemma geom_sum_alternating_of_lt_neg_one [ordered_ring α] (hx : x + 1 < 0) (hn : 1 < n) : | |
if even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i := | |
begin | |
have hx0 : x < 0, from ((le_add_iff_nonneg_right _).2 zero_le_one).trans_lt hx, | |
refine nat.le_induction _ _ n (show 2 ≤ n, from hn), | |
{ simp only [geom_sum_two, hx, true_or, even_bit0, if_true_left_eq_or] }, | |
clear hn n, | |
intros n hn ihn, | |
simp only [nat.even_add_one, geom_sum_succ], | |
by_cases hn' : even n, | |
{ rw [if_pos hn'] at ihn, rw [if_neg, lt_add_iff_pos_left], | |
exact mul_pos_of_neg_of_neg hx0 ihn, exact not_not_intro hn', }, | |
{ rw [if_neg hn'] at ihn, rw [if_pos], swap, { exact hn' }, | |
have := add_lt_add_right (mul_lt_mul_of_neg_left ihn hx0) 1, | |
rw mul_one at this, | |
exact this.trans hx } | |
end | |
lemma odd.geom_sum_pos [linear_ordered_ring α] (h : odd n) : | |
0 < ∑ i in range n, x ^ i := | |
begin | |
rcases n with (_ | _ | k), | |
{ exact ((show ¬ odd 0, from dec_trivial) h).elim }, | |
{ simp only [geom_sum_one, zero_lt_one] }, | |
rw nat.odd_iff_not_even at h, | |
rcases lt_trichotomy (x + 1) 0 with hx | hx | hx, | |
{ have := geom_sum_alternating_of_lt_neg_one hx k.one_lt_succ_succ, | |
simp only [h, if_false] at this, | |
exact zero_lt_one.trans this }, | |
{ simp only [eq_neg_of_add_eq_zero_left hx, h, neg_one_geom_sum, if_false, zero_lt_one] }, | |
rcases lt_trichotomy x 0 with hx' | rfl | hx', | |
{ exact (geom_sum_pos_and_lt_one hx' hx k.one_lt_succ_succ).1 }, | |
{ simp only [zero_geom_sum, nat.succ_ne_zero, if_false, zero_lt_one] }, | |
{ exact geom_sum_pos hx' (by simp only [nat.succ_ne_zero, ne.def, not_false_iff]) } | |
end | |
lemma geom_sum_pos_iff [linear_ordered_ring α] (hn : 1 < n) : | |
0 < ∑ i in range n, x ^ i ↔ odd n ∨ 0 < x + 1 := | |
begin | |
refine ⟨λ h, _, _⟩, | |
{ suffices : ¬ 0 < x + 1 → odd n, by tauto, | |
intro hx, | |
rw not_lt at hx, | |
contrapose! h, | |
rw [←nat.even_iff_not_odd] at h, | |
rcases hx.eq_or_lt with hx | hx, | |
{ rw [←neg_neg (1 : α), add_neg_eq_iff_eq_add, zero_add] at hx, | |
simp only [hx, neg_one_geom_sum, h, if_true] }, | |
apply le_of_lt, | |
simpa [h] using geom_sum_alternating_of_lt_neg_one hx hn }, | |
{ rintro (hn | hx'), | |
{ exact hn.geom_sum_pos }, | |
rcases lt_trichotomy x 0 with hx | rfl | hx, | |
{ exact (geom_sum_pos_and_lt_one hx hx' hn).1 }, | |
{ simp only [(zero_lt_one.trans hn).ne', zero_geom_sum, if_false, zero_lt_one] }, | |
{ exact geom_sum_pos hx (zero_lt_one.trans hn).ne' } } | |
end | |
lemma geom_sum_eq_zero_iff_neg_one [linear_ordered_ring α] (hn : 1 < n) : | |
∑ i in range n, x ^ i = 0 ↔ x = -1 ∧ even n := | |
begin | |
refine ⟨λ h, _, λ ⟨h, hn⟩, by simp only [h, hn, neg_one_geom_sum, if_true]⟩, | |
contrapose! h, | |
rcases eq_or_ne x (-1) with rfl | h, | |
{ simp only [h rfl, neg_one_geom_sum, if_false, ne.def, not_false_iff, one_ne_zero] }, | |
rw [ne.def, eq_neg_iff_add_eq_zero, ←ne.def] at h, | |
rcases h.lt_or_lt with h | h, | |
{ have := geom_sum_alternating_of_lt_neg_one h hn, | |
split_ifs at this, | |
{ exact this.ne }, | |
{ exact (zero_lt_one.trans this).ne' } }, | |
apply ne_of_gt, | |
rcases lt_trichotomy x 0 with h' | rfl | h', | |
{ exact (geom_sum_pos_and_lt_one h' h hn).1 }, | |
{ simp only [(pos_of_gt hn).ne', zero_geom_sum, if_false, zero_lt_one] }, | |
{ exact geom_sum_pos h' (pos_of_gt hn).ne' } | |
end | |
lemma geom_sum_neg_iff [linear_ordered_ring α] (hn : 1 < n) : | |
∑ i in range n, x ^ i < 0 ↔ even n ∧ x + 1 < 0 := | |
by rw [← not_iff_not, not_lt, le_iff_lt_or_eq, eq_comm, | |
or_congr (geom_sum_pos_iff hn) (geom_sum_eq_zero_iff_neg_one hn), nat.odd_iff_not_even, | |
← add_eq_zero_iff_eq_neg, not_and, not_lt, le_iff_lt_or_eq, eq_comm, | |
← imp_iff_not_or, or_comm, and_comm, decidable.and_or_imp, or_comm] | |
end order | |