Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Patrick Massot. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Patrick Massot, Chris Hughes, Michael Howes | |
-/ | |
import algebra.group.semiconj | |
import algebra.group_with_zero.basic | |
import algebra.hom.aut | |
import algebra.hom.group | |
import data.fintype.basic | |
/-! | |
# Conjugacy of group elements | |
See also `mul_aut.conj` and `quandle.conj`. | |
-/ | |
universes u v | |
variables {α : Type u} {β : Type v} | |
section monoid | |
variables [monoid α] [monoid β] | |
/-- We say that `a` is conjugate to `b` if for some unit `c` we have `c * a * c⁻¹ = b`. -/ | |
def is_conj (a b : α) := ∃ c : αˣ, semiconj_by ↑c a b | |
@[refl] lemma is_conj.refl (a : α) : is_conj a a := | |
⟨1, semiconj_by.one_left a⟩ | |
@[symm] lemma is_conj.symm {a b : α} : is_conj a b → is_conj b a | |
| ⟨c, hc⟩ := ⟨c⁻¹, hc.units_inv_symm_left⟩ | |
lemma is_conj_comm {g h : α} : is_conj g h ↔ is_conj h g := | |
⟨is_conj.symm, is_conj.symm⟩ | |
@[trans] lemma is_conj.trans {a b c : α} : is_conj a b → is_conj b c → is_conj a c | |
| ⟨c₁, hc₁⟩ ⟨c₂, hc₂⟩ := ⟨c₂ * c₁, hc₂.mul_left hc₁⟩ | |
@[simp] lemma is_conj_iff_eq {α : Type*} [comm_monoid α] {a b : α} : is_conj a b ↔ a = b := | |
⟨λ ⟨c, hc⟩, begin | |
rw [semiconj_by, mul_comm, ← units.mul_inv_eq_iff_eq_mul, mul_assoc, c.mul_inv, mul_one] at hc, | |
exact hc, | |
end, λ h, by rw h⟩ | |
protected lemma monoid_hom.map_is_conj (f : α →* β) {a b : α} : is_conj a b → is_conj (f a) (f b) | |
| ⟨c, hc⟩ := ⟨units.map f c, by rw [units.coe_map, semiconj_by, ← f.map_mul, hc.eq, f.map_mul]⟩ | |
end monoid | |
section cancel_monoid | |
variables [cancel_monoid α] | |
-- These lemmas hold for `right_cancel_monoid` with the current proofs, but for the sake of | |
-- not duplicating code (these lemmas also hold for `left_cancel_monoids`) we leave these | |
-- not generalised. | |
@[simp] lemma is_conj_one_right {a : α} : is_conj 1 a ↔ a = 1 := | |
⟨λ ⟨c, hc⟩, mul_right_cancel (hc.symm.trans ((mul_one _).trans (one_mul _).symm)), λ h, by rw [h]⟩ | |
@[simp] lemma is_conj_one_left {a : α} : is_conj a 1 ↔ a = 1 := | |
calc is_conj a 1 ↔ is_conj 1 a : ⟨is_conj.symm, is_conj.symm⟩ | |
... ↔ a = 1 : is_conj_one_right | |
end cancel_monoid | |
section group | |
variables [group α] | |
@[simp] lemma is_conj_iff {a b : α} : | |
is_conj a b ↔ ∃ c : α, c * a * c⁻¹ = b := | |
⟨λ ⟨c, hc⟩, ⟨c, mul_inv_eq_iff_eq_mul.2 hc⟩, λ ⟨c, hc⟩, | |
⟨⟨c, c⁻¹, mul_inv_self c, inv_mul_self c⟩, mul_inv_eq_iff_eq_mul.1 hc⟩⟩ | |
@[simp] lemma conj_inv {a b : α} : (b * a * b⁻¹)⁻¹ = b * a⁻¹ * b⁻¹ := | |
((mul_aut.conj b).map_inv a).symm | |
@[simp] lemma conj_mul {a b c : α} : (b * a * b⁻¹) * (b * c * b⁻¹) = b * (a * c) * b⁻¹ := | |
((mul_aut.conj b).map_mul a c).symm | |
@[simp] lemma conj_pow {i : ℕ} {a b : α} : (a * b * a⁻¹) ^ i = a * (b ^ i) * a⁻¹ := | |
begin | |
induction i with i hi, | |
{ simp }, | |
{ simp [pow_succ, hi] } | |
end | |
@[simp] lemma conj_zpow {i : ℤ} {a b : α} : (a * b * a⁻¹) ^ i = a * (b ^ i) * a⁻¹ := | |
begin | |
induction i, | |
{ simp }, | |
{ simp [zpow_neg_succ_of_nat, conj_pow] } | |
end | |
lemma conj_injective {x : α} : function.injective (λ (g : α), x * g * x⁻¹) := | |
(mul_aut.conj x).injective | |
end group | |
@[simp] lemma is_conj_iff₀ [group_with_zero α] {a b : α} : | |
is_conj a b ↔ ∃ c : α, c ≠ 0 ∧ c * a * c⁻¹ = b := | |
⟨λ ⟨c, hc⟩, ⟨c, begin | |
rw [← units.coe_inv, units.mul_inv_eq_iff_eq_mul], | |
exact ⟨c.ne_zero, hc⟩, | |
end⟩, λ ⟨c, c0, hc⟩, | |
⟨units.mk0 c c0, begin | |
rw [semiconj_by, ← units.mul_inv_eq_iff_eq_mul, units.coe_inv, units.coe_mk0], | |
exact hc | |
end⟩⟩ | |
namespace is_conj | |
/- This small quotient API is largely copied from the API of `associates`; | |
where possible, try to keep them in sync -/ | |
/-- The setoid of the relation `is_conj` iff there is a unit `u` such that `u * x = y * u` -/ | |
protected def setoid (α : Type*) [monoid α] : setoid α := | |
{ r := is_conj, iseqv := ⟨is_conj.refl, λa b, is_conj.symm, λa b c, is_conj.trans⟩ } | |
end is_conj | |
local attribute [instance, priority 100] is_conj.setoid | |
/-- The quotient type of conjugacy classes of a group. -/ | |
def conj_classes (α : Type*) [monoid α] : Type* := | |
quotient (is_conj.setoid α) | |
namespace conj_classes | |
section monoid | |
variables [monoid α] [monoid β] | |
/-- The canonical quotient map from a monoid `α` into the `conj_classes` of `α` -/ | |
protected def mk {α : Type*} [monoid α] (a : α) : conj_classes α := | |
⟦a⟧ | |
instance : inhabited (conj_classes α) := ⟨⟦1⟧⟩ | |
theorem mk_eq_mk_iff_is_conj {a b : α} : | |
conj_classes.mk a = conj_classes.mk b ↔ is_conj a b := | |
iff.intro quotient.exact quot.sound | |
theorem quotient_mk_eq_mk (a : α) : ⟦ a ⟧ = conj_classes.mk a := rfl | |
theorem quot_mk_eq_mk (a : α) : quot.mk setoid.r a = conj_classes.mk a := rfl | |
theorem forall_is_conj {p : conj_classes α → Prop} : | |
(∀a, p a) ↔ (∀a, p (conj_classes.mk a)) := | |
iff.intro | |
(assume h a, h _) | |
(assume h a, quotient.induction_on a h) | |
theorem mk_surjective : function.surjective (@conj_classes.mk α _) := | |
forall_is_conj.2 (λ a, ⟨a, rfl⟩) | |
instance : has_one (conj_classes α) := ⟨⟦ 1 ⟧⟩ | |
theorem one_eq_mk_one : (1 : conj_classes α) = conj_classes.mk 1 := rfl | |
lemma exists_rep (a : conj_classes α) : ∃ a0 : α, conj_classes.mk a0 = a := | |
quot.exists_rep a | |
/-- A `monoid_hom` maps conjugacy classes of one group to conjugacy classes of another. -/ | |
def map (f : α →* β) : conj_classes α → conj_classes β := | |
quotient.lift (conj_classes.mk ∘ f) (λ a b ab, mk_eq_mk_iff_is_conj.2 (f.map_is_conj ab)) | |
lemma map_surjective {f : α →* β} (hf : function.surjective f) : | |
function.surjective (conj_classes.map f) := | |
begin | |
intros b, | |
obtain ⟨b, rfl⟩ := conj_classes.mk_surjective b, | |
obtain ⟨a, rfl⟩ := hf b, | |
exact ⟨conj_classes.mk a, rfl⟩, | |
end | |
instance [fintype α] [decidable_rel (is_conj : α → α → Prop)] : | |
fintype (conj_classes α) := | |
quotient.fintype (is_conj.setoid α) | |
/-- | |
Certain instances trigger further searches when they are considered as candidate instances; | |
these instances should be assigned a priority lower than the default of 1000 (for example, 900). | |
The conditions for this rule are as follows: | |
* a class `C` has instances `instT : C T` and `instT' : C T'` | |
* types `T` and `T'` are both specializations of another type `S` | |
* the parameters supplied to `S` to produce `T` are not (fully) determined by `instT`, | |
instead they have to be found by instance search | |
If those conditions hold, the instance `instT` should be assigned lower priority. | |
For example, suppose the search for an instance of `decidable_eq (multiset α)` tries the | |
candidate instance `con.quotient.decidable_eq (c : con M) : decidable_eq c.quotient`. | |
Since `multiset` and `con.quotient` are both quotient types, unification will check | |
that the relations `list.perm` and `c.to_setoid.r` unify. However, `c.to_setoid` depends on | |
a `has_mul M` instance, so this unification triggers a search for `has_mul (list α)`; | |
this will traverse all subclasses of `has_mul` before failing. | |
On the other hand, the search for an instance of `decidable_eq (con.quotient c)` for `c : con M` | |
can quickly reject the candidate instance `multiset.has_decidable_eq` because the type of | |
`list.perm : list ?m_1 → list ?m_1 → Prop` does not unify with `M → M → Prop`. | |
Therefore, we should assign `con.quotient.decidable_eq` a lower priority because it fails slowly. | |
(In terms of the rules above, `C := decidable_eq`, `T := con.quotient`, | |
`instT := con.quotient.decidable_eq`, `T' := multiset`, `instT' := multiset.has_decidable_eq`, | |
and `S := quot`.) | |
If the type involved is a free variable (rather than an instantiation of some type `S`), | |
the instance priority should be even lower, see Note [lower instance priority]. | |
-/ | |
library_note "slow-failing instance priority" | |
@[priority 900] -- see Note [slow-failing instance priority] | |
instance [decidable_rel (is_conj : α → α → Prop)] : decidable_eq (conj_classes α) := | |
quotient.decidable_eq | |
instance [decidable_eq α] [fintype α] : decidable_rel (is_conj : α → α → Prop) := | |
λ a b, by { delta is_conj semiconj_by, apply_instance } | |
end monoid | |
section comm_monoid | |
variable [comm_monoid α] | |
lemma mk_injective : function.injective (@conj_classes.mk α _) := | |
λ _ _, (mk_eq_mk_iff_is_conj.trans is_conj_iff_eq).1 | |
lemma mk_bijective : function.bijective (@conj_classes.mk α _) := | |
⟨mk_injective, mk_surjective⟩ | |
/-- The bijection between a `comm_group` and its `conj_classes`. -/ | |
def mk_equiv : α ≃ conj_classes α := | |
⟨conj_classes.mk, quotient.lift id (λ (a : α) b, is_conj_iff_eq.1), quotient.lift_mk _ _, | |
begin | |
rw [function.right_inverse, function.left_inverse, forall_is_conj], | |
intro x, | |
rw [← quotient_mk_eq_mk, ← quotient_mk_eq_mk, quotient.lift_mk, id.def], | |
end⟩ | |
end comm_monoid | |
end conj_classes | |
section monoid | |
variables [monoid α] | |
/-- Given an element `a`, `conjugates a` is the set of conjugates. -/ | |
def conjugates_of (a : α) : set α := {b | is_conj a b} | |
lemma mem_conjugates_of_self {a : α} : a ∈ conjugates_of a := is_conj.refl _ | |
lemma is_conj.conjugates_of_eq {a b : α} (ab : is_conj a b) : | |
conjugates_of a = conjugates_of b := | |
set.ext (λ g, ⟨λ ag, (ab.symm).trans ag, λ bg, ab.trans bg⟩) | |
lemma is_conj_iff_conjugates_of_eq {a b : α} : | |
is_conj a b ↔ conjugates_of a = conjugates_of b := | |
⟨is_conj.conjugates_of_eq, λ h, begin | |
have ha := mem_conjugates_of_self, | |
rwa ← h at ha, | |
end⟩ | |
instance [fintype α] [decidable_rel (is_conj : α → α → Prop)] {a : α} : fintype (conjugates_of a) := | |
@subtype.fintype _ _ (‹decidable_rel is_conj› a) _ | |
end monoid | |
namespace conj_classes | |
variables [monoid α] | |
local attribute [instance] is_conj.setoid | |
/-- Given a conjugacy class `a`, `carrier a` is the set it represents. -/ | |
def carrier : conj_classes α → set α := | |
quotient.lift conjugates_of (λ (a : α) b ab, is_conj.conjugates_of_eq ab) | |
lemma mem_carrier_mk {a : α} : a ∈ carrier (conj_classes.mk a) := is_conj.refl _ | |
lemma mem_carrier_iff_mk_eq {a : α} {b : conj_classes α} : | |
a ∈ carrier b ↔ conj_classes.mk a = b := | |
begin | |
revert b, | |
rw forall_is_conj, | |
intro b, | |
rw [carrier, eq_comm, mk_eq_mk_iff_is_conj, ← quotient_mk_eq_mk, quotient.lift_mk], | |
refl, | |
end | |
lemma carrier_eq_preimage_mk {a : conj_classes α} : | |
a.carrier = conj_classes.mk ⁻¹' {a} := | |
set.ext (λ x, mem_carrier_iff_mk_eq) | |
section fintype | |
variables [fintype α] [decidable_rel (is_conj : α → α → Prop)] | |
instance {x : conj_classes α} : fintype (carrier x) := | |
quotient.rec_on_subsingleton x $ λ a, conjugates_of.fintype | |
end fintype | |
end conj_classes | |