Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.2 kB
/-
Copyright (c) 2020 Bryan Gin-ge Chen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bryan Gin-ge Chen, Kevin Lacker
-/
import tactic.ring
/-!
# Identities
This file contains some "named" commutative ring identities.
-/
variables {R : Type*} [comm_ring R]
{a b x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈ n : R}
/--
Brahmagupta-Fibonacci identity or Diophantus identity, see
<https://en.wikipedia.org/wiki/Brahmagupta%E2%80%93Fibonacci_identity>.
This sign choice here corresponds to the signs obtained by multiplying two complex numbers.
-/
theorem sq_add_sq_mul_sq_add_sq :
(x₁^2 + x₂^2) * (y₁^2 + y₂^2) = (x₁*y₁ - x₂*y₂)^2 + (x₁*y₂ + x₂*y₁)^2 :=
by ring
/--
Brahmagupta's identity, see <https://en.wikipedia.org/wiki/Brahmagupta%27s_identity>
-/
theorem sq_add_mul_sq_mul_sq_add_mul_sq :
(x₁^2 + n*x₂^2) * (y₁^2 + n*y₂^2) = (x₁*y₁ - n*x₂*y₂)^2 + n*(x₁*y₂ + x₂*y₁)^2 :=
by ring
/--
Sophie Germain's identity, see <https://www.cut-the-knot.org/blue/SophieGermainIdentity.shtml>.
-/
theorem pow_four_add_four_mul_pow_four : a^4 + 4*b^4 = ((a - b)^2 + b^2) * ((a + b)^2 + b^2) :=
by ring
/--
Sophie Germain's identity, see <https://www.cut-the-knot.org/blue/SophieGermainIdentity.shtml>.
-/
theorem pow_four_add_four_mul_pow_four' :
a^4 + 4*b^4 = (a^2 - 2*a*b + 2*b^2) * (a^2 + 2*a*b + 2*b^2) :=
by ring
/--
Euler's four-square identity, see <https://en.wikipedia.org/wiki/Euler%27s_four-square_identity>.
This sign choice here corresponds to the signs obtained by multiplying two quaternions.
-/
theorem sum_four_sq_mul_sum_four_sq : (x₁^2 + x₂^2 + x₃^2 + x₄^2) * (y₁^2 + y₂^2 + y₃^2 + y₄^2) =
(x₁*y₁ - x₂*y₂ - x₃*y₃ - x₄*y₄)^2 + (x₁*y₂ + x₂*y₁ + x₃*y₄ - x₄*y₃)^2 +
(x₁*y₃ - x₂*y₄ + x₃*y₁ + x₄*y₂)^2 + (x₁*y₄ + x₂*y₃ - x₃*y₂ + x₄*y₁)^2 :=
by ring
/--
Degen's eight squares identity, see <https://en.wikipedia.org/wiki/Degen%27s_eight-square_identity>.
This sign choice here corresponds to the signs obtained by multiplying two octonions.
-/
theorem sum_eight_sq_mul_sum_eight_sq : (x₁^2 + x₂^2 + x₃^2 + x₄^2 + x₅^2 + x₆^2 + x₇^2 + x₈^2) *
(y₁^2 + y₂^2 + y₃^2 + y₄^2 + y₅^2 + y₆^2 + y₇^2 + y₈^2) =
(x₁*y₁ - x₂*y₂ - x₃*y₃ - x₄*y₄ - x₅*y₅ - x₆*y₆ - x₇*y₇ - x₈*y₈)^2 +
(x₁*y₂ + x₂*y₁ + x₃*y₄ - x₄*y₃ + x₅*y₆ - x₆*y₅ - x₇*y₈ + x₈*y₇)^2 +
(x₁*y₃ - x₂*y₄ + x₃*y₁ + x₄*y₂ + x₅*y₇ + x₆*y₈ - x₇*y₅ - x₈*y₆)^2 +
(x₁*y₄ + x₂*y₃ - x₃*y₂ + x₄*y₁ + x₅*y₈ - x₆*y₇ + x₇*y₆ - x₈*y₅)^2 +
(x₁*y₅ - x₂*y₆ - x₃*y₇ - x₄*y₈ + x₅*y₁ + x₆*y₂ + x₇*y₃ + x₈*y₄)^2 +
(x₁*y₆ + x₂*y₅ - x₃*y₈ + x₄*y₇ - x₅*y₂ + x₆*y₁ - x₇*y₄ + x₈*y₃)^2 +
(x₁*y₇ + x₂*y₈ + x₃*y₅ - x₄*y₆ - x₅*y₃ + x₆*y₄ + x₇*y₁ - x₈*y₂)^2 +
(x₁*y₈ - x₂*y₇ + x₃*y₆ + x₄*y₅ - x₅*y₄ - x₆*y₃ + x₇*y₂ + x₈*y₁)^2 :=
by ring