Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
11.2 kB
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import algebra.homology.homology
import algebra.homology.single
import category_theory.preadditive.additive_functor
/-!
# Homology is an additive functor
When `V` is preadditive, `homological_complex V c` is also preadditive,
and `homology_functor` is additive.
TODO: similarly for `R`-linear.
-/
universes v u
open_locale classical
noncomputable theory
open category_theory category_theory.category category_theory.limits homological_complex
variables {ι : Type*}
variables {V : Type u} [category.{v} V] [preadditive V]
variables {c : complex_shape ι} {C D E : homological_complex V c}
variables (f g : C ⟶ D) (h k : D ⟶ E) (i : ι)
namespace homological_complex
instance : has_zero (C ⟶ D) := ⟨{ f := λ i, 0 }⟩
instance : has_add (C ⟶ D) := ⟨λ f g, { f := λ i, f.f i + g.f i, }⟩
instance : has_neg (C ⟶ D) := ⟨λ f, { f := λ i, -(f.f i) }⟩
instance : has_sub (C ⟶ D) := ⟨λ f g, { f := λ i, f.f i - g.f i, }⟩
instance has_nat_scalar : has_smul ℕ (C ⟶ D) := ⟨λ n f,
{ f := λ i, n • f.f i,
comm' := λ i j h, by simp [preadditive.nsmul_comp, preadditive.comp_nsmul] }⟩
instance has_int_scalar : has_smul ℤ (C ⟶ D) := ⟨λ n f,
{ f := λ i, n • f.f i,
comm' := λ i j h, by simp [preadditive.zsmul_comp, preadditive.comp_zsmul] }⟩
@[simp] lemma zero_f_apply (i : ι) : (0 : C ⟶ D).f i = 0 := rfl
@[simp] lemma add_f_apply (f g : C ⟶ D) (i : ι) : (f + g).f i = f.f i + g.f i := rfl
@[simp] lemma neg_f_apply (f : C ⟶ D) (i : ι) : (-f).f i = -(f.f i) := rfl
@[simp] lemma sub_f_apply (f g : C ⟶ D) (i : ι) : (f - g).f i = f.f i - g.f i := rfl
@[simp] lemma nsmul_f_apply (n : ℕ) (f : C ⟶ D) (i : ι) : (n • f).f i = n • f.f i := rfl
@[simp] lemma zsmul_f_apply (n : ℤ) (f : C ⟶ D) (i : ι) : (n • f).f i = n • f.f i := rfl
instance : add_comm_group (C ⟶ D) :=
function.injective.add_comm_group hom.f
homological_complex.hom_f_injective (by tidy) (by tidy) (by tidy) (by tidy) (by tidy) (by tidy)
instance : preadditive (homological_complex V c) := {}
/-- The `i`-th component of a chain map, as an additive map from chain maps to morphisms. -/
@[simps]
def hom.f_add_monoid_hom {C₁ C₂ : homological_complex V c} (i : ι) :
(C₁ ⟶ C₂) →+ (C₁.X i ⟶ C₂.X i) :=
add_monoid_hom.mk' (λ f, hom.f f i) (λ _ _, rfl)
end homological_complex
namespace homological_complex
instance eval_additive (i : ι) : (eval V c i).additive := {}
instance cycles_additive [has_equalizers V] : (cycles_functor V c i).additive := {}
variables [has_images V] [has_image_maps V]
instance boundaries_additive : (boundaries_functor V c i).additive := {}
variables [has_equalizers V] [has_cokernels V]
instance homology_additive : (homology_functor V c i).additive :=
{ map_add' := λ C D f g, begin
dsimp [homology_functor],
ext,
simp only [homology.π_map, preadditive.comp_add, ←preadditive.add_comp],
congr,
ext, simp,
end }
end homological_complex
namespace category_theory
variables {W : Type*} [category W] [preadditive W]
/--
An additive functor induces a functor between homological complexes.
This is sometimes called the "prolongation".
-/
@[simps]
def functor.map_homological_complex (F : V ⥤ W) [F.additive] (c : complex_shape ι) :
homological_complex V c ⥤ homological_complex W c :=
{ obj := λ C,
{ X := λ i, F.obj (C.X i),
d := λ i j, F.map (C.d i j),
shape' := λ i j w, by rw [C.shape _ _ w, F.map_zero],
d_comp_d' := λ i j k _ _, by rw [←F.map_comp, C.d_comp_d, F.map_zero], },
map := λ C D f,
{ f := λ i, F.map (f.f i),
comm' := λ i j h, by { dsimp, rw [←F.map_comp, ←F.map_comp, f.comm], }, }, }.
instance functor.map_homogical_complex_additive
(F : V ⥤ W) [F.additive] (c : complex_shape ι) : (F.map_homological_complex c).additive := {}
/--
A natural transformation between functors induces a natural transformation
between those functors applied to homological complexes.
-/
@[simps]
def nat_trans.map_homological_complex {F G : V ⥤ W} [F.additive] [G.additive]
: F ⟶ G) (c : complex_shape ι) : F.map_homological_complex c ⟶ G.map_homological_complex c :=
{ app := λ C, { f := λ i, α.app _, }, }
@[simp] lemma nat_trans.map_homological_complex_id (c : complex_shape ι) (F : V ⥤ W) [F.additive] :
nat_trans.map_homological_complex (𝟙 F) c = 𝟙 (F.map_homological_complex c) :=
by tidy
@[simp] lemma nat_trans.map_homological_complex_comp (c : complex_shape ι)
{F G H : V ⥤ W} [F.additive] [G.additive] [H.additive]
: F ⟶ G) (β : G ⟶ H):
nat_trans.map_homological_complex (α ≫ β) c =
nat_trans.map_homological_complex α c ≫ nat_trans.map_homological_complex β c :=
by tidy
@[simp, reassoc] lemma nat_trans.map_homological_complex_naturality {c : complex_shape ι}
{F G : V ⥤ W} [F.additive] [G.additive] (α : F ⟶ G) {C D : homological_complex V c} (f : C ⟶ D) :
(F.map_homological_complex c).map f ≫ (nat_trans.map_homological_complex α c).app D =
(nat_trans.map_homological_complex α c).app C ≫ (G.map_homological_complex c).map f :=
by tidy
end category_theory
namespace chain_complex
variables {W : Type*} [category W] [preadditive W]
variables {α : Type*} [add_right_cancel_semigroup α] [has_one α] [decidable_eq α]
lemma map_chain_complex_of (F : V ⥤ W) [F.additive] (X : α → V) (d : Π n, X (n+1) ⟶ X n)
(sq : ∀ n, d (n+1) ≫ d n = 0) :
(F.map_homological_complex _).obj (chain_complex.of X d sq) =
chain_complex.of (λ n, F.obj (X n))
(λ n, F.map (d n)) (λ n, by rw [ ← F.map_comp, sq n, functor.map_zero]) :=
begin
refine homological_complex.ext rfl _,
rintro i j (rfl : j + 1 = i),
simp only [category_theory.functor.map_homological_complex_obj_d, of_d,
eq_to_hom_refl, comp_id, id_comp],
end
end chain_complex
variables [has_zero_object V] {W : Type*} [category W] [preadditive W] [has_zero_object W]
namespace homological_complex
local attribute [simp] eq_to_hom_map
/--
Turning an object into a complex supported at `j` then applying a functor is
the same as applying the functor then forming the complex.
-/
def single_map_homological_complex (F : V ⥤ W) [F.additive] (c : complex_shape ι) (j : ι):
single V c j ⋙ F.map_homological_complex _ ≅ F ⋙ single W c j :=
nat_iso.of_components (λ X,
{ hom := { f := λ i, if h : i = j then
eq_to_hom (by simp [h])
else
0, },
inv := { f := λ i, if h : i = j then
eq_to_hom (by simp [h])
else
0, },
hom_inv_id' := begin
ext i,
dsimp,
split_ifs with h,
{ simp [h] },
{ rw [zero_comp, if_neg h],
exact (zero_of_source_iso_zero _ F.map_zero_object).symm, },
end,
inv_hom_id' := begin
ext i,
dsimp,
split_ifs with h,
{ simp [h] },
{ rw [zero_comp, if_neg h],
simp, },
end, })
(λ X Y f, begin
ext i,
dsimp,
split_ifs with h; simp [h],
end).
variables (F : V ⥤ W) [functor.additive F] (c)
@[simp] lemma single_map_homological_complex_hom_app_self (j : ι) (X : V) :
((single_map_homological_complex F c j).hom.app X).f j = eq_to_hom (by simp) :=
by simp [single_map_homological_complex]
@[simp] lemma single_map_homological_complex_hom_app_ne
{i j : ι} (h : i ≠ j) (X : V) :
((single_map_homological_complex F c j).hom.app X).f i = 0 :=
by simp [single_map_homological_complex, h]
@[simp] lemma single_map_homological_complex_inv_app_self (j : ι) (X : V) :
((single_map_homological_complex F c j).inv.app X).f j = eq_to_hom (by simp) :=
by simp [single_map_homological_complex]
@[simp] lemma single_map_homological_complex_inv_app_ne
{i j : ι} (h : i ≠ j) (X : V):
((single_map_homological_complex F c j).inv.app X).f i = 0 :=
by simp [single_map_homological_complex, h]
end homological_complex
namespace chain_complex
/--
Turning an object into a chain complex supported at zero then applying a functor is
the same as applying the functor then forming the complex.
-/
def single₀_map_homological_complex (F : V ⥤ W) [F.additive] :
single₀ V ⋙ F.map_homological_complex _ ≅ F ⋙ single₀ W :=
nat_iso.of_components (λ X,
{ hom := { f := λ i, match i with
| 0 := 𝟙 _
| (i+1) := F.map_zero_object.hom
end, },
inv := { f := λ i, match i with
| 0 := 𝟙 _
| (i+1) := F.map_zero_object.inv
end, },
hom_inv_id' := begin
ext (_|i),
{ unfold_aux, simp, },
{ unfold_aux,
dsimp,
simp only [comp_f, id_f, zero_comp],
exact (zero_of_source_iso_zero _ F.map_zero_object).symm, }
end,
inv_hom_id' := by { ext (_|i); { unfold_aux, dsimp, simp, }, }, })
(λ X Y f, by { ext (_|i); { unfold_aux, dsimp, simp, }, }).
@[simp] lemma single₀_map_homological_complex_hom_app_zero (F : V ⥤ W) [F.additive] (X : V) :
((single₀_map_homological_complex F).hom.app X).f 0 = 𝟙 _ := rfl
@[simp] lemma single₀_map_homological_complex_hom_app_succ
(F : V ⥤ W) [F.additive] (X : V) (n : ℕ) :
((single₀_map_homological_complex F).hom.app X).f (n+1) = 0 := rfl
@[simp] lemma single₀_map_homological_complex_inv_app_zero (F : V ⥤ W) [F.additive] (X : V) :
((single₀_map_homological_complex F).inv.app X).f 0 = 𝟙 _ := rfl
@[simp] lemma single₀_map_homological_complex_inv_app_succ
(F : V ⥤ W) [F.additive] (X : V) (n : ℕ) :
((single₀_map_homological_complex F).inv.app X).f (n+1) = 0 := rfl
end chain_complex
namespace cochain_complex
/--
Turning an object into a cochain complex supported at zero then applying a functor is
the same as applying the functor then forming the cochain complex.
-/
def single₀_map_homological_complex (F : V ⥤ W) [F.additive] :
single₀ V ⋙ F.map_homological_complex _ ≅ F ⋙ single₀ W :=
nat_iso.of_components (λ X,
{ hom := { f := λ i, match i with
| 0 := 𝟙 _
| (i+1) := F.map_zero_object.hom
end, },
inv := { f := λ i, match i with
| 0 := 𝟙 _
| (i+1) := F.map_zero_object.inv
end, },
hom_inv_id' := begin
ext (_|i),
{ unfold_aux, simp, },
{ unfold_aux,
dsimp,
simp only [comp_f, id_f, zero_comp],
exact (zero_of_source_iso_zero _ F.map_zero_object).symm, }
end,
inv_hom_id' := by { ext (_|i); { unfold_aux, dsimp, simp, }, }, })
(λ X Y f, by { ext (_|i); { unfold_aux, dsimp, simp, }, }).
@[simp] lemma single₀_map_homological_complex_hom_app_zero (F : V ⥤ W) [F.additive] (X : V) :
((single₀_map_homological_complex F).hom.app X).f 0 = 𝟙 _ := rfl
@[simp] lemma single₀_map_homological_complex_hom_app_succ
(F : V ⥤ W) [F.additive] (X : V) (n : ℕ) :
((single₀_map_homological_complex F).hom.app X).f (n+1) = 0 := rfl
@[simp] lemma single₀_map_homological_complex_inv_app_zero (F : V ⥤ W) [F.additive] (X : V) :
((single₀_map_homological_complex F).inv.app X).f 0 = 𝟙 _ := rfl
@[simp] lemma single₀_map_homological_complex_inv_app_succ
(F : V ⥤ W) [F.additive] (X : V) (n : ℕ) :
((single₀_map_homological_complex F).inv.app X).f (n+1) = 0 := rfl
end cochain_complex