Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import algebra.homology.homology | |
import algebra.homology.single | |
import category_theory.preadditive.additive_functor | |
/-! | |
# Homology is an additive functor | |
When `V` is preadditive, `homological_complex V c` is also preadditive, | |
and `homology_functor` is additive. | |
TODO: similarly for `R`-linear. | |
-/ | |
universes v u | |
open_locale classical | |
noncomputable theory | |
open category_theory category_theory.category category_theory.limits homological_complex | |
variables {ι : Type*} | |
variables {V : Type u} [category.{v} V] [preadditive V] | |
variables {c : complex_shape ι} {C D E : homological_complex V c} | |
variables (f g : C ⟶ D) (h k : D ⟶ E) (i : ι) | |
namespace homological_complex | |
instance : has_zero (C ⟶ D) := ⟨{ f := λ i, 0 }⟩ | |
instance : has_add (C ⟶ D) := ⟨λ f g, { f := λ i, f.f i + g.f i, }⟩ | |
instance : has_neg (C ⟶ D) := ⟨λ f, { f := λ i, -(f.f i) }⟩ | |
instance : has_sub (C ⟶ D) := ⟨λ f g, { f := λ i, f.f i - g.f i, }⟩ | |
instance has_nat_scalar : has_smul ℕ (C ⟶ D) := ⟨λ n f, | |
{ f := λ i, n • f.f i, | |
comm' := λ i j h, by simp [preadditive.nsmul_comp, preadditive.comp_nsmul] }⟩ | |
instance has_int_scalar : has_smul ℤ (C ⟶ D) := ⟨λ n f, | |
{ f := λ i, n • f.f i, | |
comm' := λ i j h, by simp [preadditive.zsmul_comp, preadditive.comp_zsmul] }⟩ | |
@[simp] lemma zero_f_apply (i : ι) : (0 : C ⟶ D).f i = 0 := rfl | |
@[simp] lemma add_f_apply (f g : C ⟶ D) (i : ι) : (f + g).f i = f.f i + g.f i := rfl | |
@[simp] lemma neg_f_apply (f : C ⟶ D) (i : ι) : (-f).f i = -(f.f i) := rfl | |
@[simp] lemma sub_f_apply (f g : C ⟶ D) (i : ι) : (f - g).f i = f.f i - g.f i := rfl | |
@[simp] lemma nsmul_f_apply (n : ℕ) (f : C ⟶ D) (i : ι) : (n • f).f i = n • f.f i := rfl | |
@[simp] lemma zsmul_f_apply (n : ℤ) (f : C ⟶ D) (i : ι) : (n • f).f i = n • f.f i := rfl | |
instance : add_comm_group (C ⟶ D) := | |
function.injective.add_comm_group hom.f | |
homological_complex.hom_f_injective (by tidy) (by tidy) (by tidy) (by tidy) (by tidy) (by tidy) | |
instance : preadditive (homological_complex V c) := {} | |
/-- The `i`-th component of a chain map, as an additive map from chain maps to morphisms. -/ | |
@[simps] | |
def hom.f_add_monoid_hom {C₁ C₂ : homological_complex V c} (i : ι) : | |
(C₁ ⟶ C₂) →+ (C₁.X i ⟶ C₂.X i) := | |
add_monoid_hom.mk' (λ f, hom.f f i) (λ _ _, rfl) | |
end homological_complex | |
namespace homological_complex | |
instance eval_additive (i : ι) : (eval V c i).additive := {} | |
instance cycles_additive [has_equalizers V] : (cycles_functor V c i).additive := {} | |
variables [has_images V] [has_image_maps V] | |
instance boundaries_additive : (boundaries_functor V c i).additive := {} | |
variables [has_equalizers V] [has_cokernels V] | |
instance homology_additive : (homology_functor V c i).additive := | |
{ map_add' := λ C D f g, begin | |
dsimp [homology_functor], | |
ext, | |
simp only [homology.π_map, preadditive.comp_add, ←preadditive.add_comp], | |
congr, | |
ext, simp, | |
end } | |
end homological_complex | |
namespace category_theory | |
variables {W : Type*} [category W] [preadditive W] | |
/-- | |
An additive functor induces a functor between homological complexes. | |
This is sometimes called the "prolongation". | |
-/ | |
@[simps] | |
def functor.map_homological_complex (F : V ⥤ W) [F.additive] (c : complex_shape ι) : | |
homological_complex V c ⥤ homological_complex W c := | |
{ obj := λ C, | |
{ X := λ i, F.obj (C.X i), | |
d := λ i j, F.map (C.d i j), | |
shape' := λ i j w, by rw [C.shape _ _ w, F.map_zero], | |
d_comp_d' := λ i j k _ _, by rw [←F.map_comp, C.d_comp_d, F.map_zero], }, | |
map := λ C D f, | |
{ f := λ i, F.map (f.f i), | |
comm' := λ i j h, by { dsimp, rw [←F.map_comp, ←F.map_comp, f.comm], }, }, }. | |
instance functor.map_homogical_complex_additive | |
(F : V ⥤ W) [F.additive] (c : complex_shape ι) : (F.map_homological_complex c).additive := {} | |
/-- | |
A natural transformation between functors induces a natural transformation | |
between those functors applied to homological complexes. | |
-/ | |
@[simps] | |
def nat_trans.map_homological_complex {F G : V ⥤ W} [F.additive] [G.additive] | |
(α : F ⟶ G) (c : complex_shape ι) : F.map_homological_complex c ⟶ G.map_homological_complex c := | |
{ app := λ C, { f := λ i, α.app _, }, } | |
@[simp] lemma nat_trans.map_homological_complex_id (c : complex_shape ι) (F : V ⥤ W) [F.additive] : | |
nat_trans.map_homological_complex (𝟙 F) c = 𝟙 (F.map_homological_complex c) := | |
by tidy | |
@[simp] lemma nat_trans.map_homological_complex_comp (c : complex_shape ι) | |
{F G H : V ⥤ W} [F.additive] [G.additive] [H.additive] | |
(α : F ⟶ G) (β : G ⟶ H): | |
nat_trans.map_homological_complex (α ≫ β) c = | |
nat_trans.map_homological_complex α c ≫ nat_trans.map_homological_complex β c := | |
by tidy | |
@[simp, reassoc] lemma nat_trans.map_homological_complex_naturality {c : complex_shape ι} | |
{F G : V ⥤ W} [F.additive] [G.additive] (α : F ⟶ G) {C D : homological_complex V c} (f : C ⟶ D) : | |
(F.map_homological_complex c).map f ≫ (nat_trans.map_homological_complex α c).app D = | |
(nat_trans.map_homological_complex α c).app C ≫ (G.map_homological_complex c).map f := | |
by tidy | |
end category_theory | |
namespace chain_complex | |
variables {W : Type*} [category W] [preadditive W] | |
variables {α : Type*} [add_right_cancel_semigroup α] [has_one α] [decidable_eq α] | |
lemma map_chain_complex_of (F : V ⥤ W) [F.additive] (X : α → V) (d : Π n, X (n+1) ⟶ X n) | |
(sq : ∀ n, d (n+1) ≫ d n = 0) : | |
(F.map_homological_complex _).obj (chain_complex.of X d sq) = | |
chain_complex.of (λ n, F.obj (X n)) | |
(λ n, F.map (d n)) (λ n, by rw [ ← F.map_comp, sq n, functor.map_zero]) := | |
begin | |
refine homological_complex.ext rfl _, | |
rintro i j (rfl : j + 1 = i), | |
simp only [category_theory.functor.map_homological_complex_obj_d, of_d, | |
eq_to_hom_refl, comp_id, id_comp], | |
end | |
end chain_complex | |
variables [has_zero_object V] {W : Type*} [category W] [preadditive W] [has_zero_object W] | |
namespace homological_complex | |
local attribute [simp] eq_to_hom_map | |
/-- | |
Turning an object into a complex supported at `j` then applying a functor is | |
the same as applying the functor then forming the complex. | |
-/ | |
def single_map_homological_complex (F : V ⥤ W) [F.additive] (c : complex_shape ι) (j : ι): | |
single V c j ⋙ F.map_homological_complex _ ≅ F ⋙ single W c j := | |
nat_iso.of_components (λ X, | |
{ hom := { f := λ i, if h : i = j then | |
eq_to_hom (by simp [h]) | |
else | |
0, }, | |
inv := { f := λ i, if h : i = j then | |
eq_to_hom (by simp [h]) | |
else | |
0, }, | |
hom_inv_id' := begin | |
ext i, | |
dsimp, | |
split_ifs with h, | |
{ simp [h] }, | |
{ rw [zero_comp, if_neg h], | |
exact (zero_of_source_iso_zero _ F.map_zero_object).symm, }, | |
end, | |
inv_hom_id' := begin | |
ext i, | |
dsimp, | |
split_ifs with h, | |
{ simp [h] }, | |
{ rw [zero_comp, if_neg h], | |
simp, }, | |
end, }) | |
(λ X Y f, begin | |
ext i, | |
dsimp, | |
split_ifs with h; simp [h], | |
end). | |
variables (F : V ⥤ W) [functor.additive F] (c) | |
@[simp] lemma single_map_homological_complex_hom_app_self (j : ι) (X : V) : | |
((single_map_homological_complex F c j).hom.app X).f j = eq_to_hom (by simp) := | |
by simp [single_map_homological_complex] | |
@[simp] lemma single_map_homological_complex_hom_app_ne | |
{i j : ι} (h : i ≠ j) (X : V) : | |
((single_map_homological_complex F c j).hom.app X).f i = 0 := | |
by simp [single_map_homological_complex, h] | |
@[simp] lemma single_map_homological_complex_inv_app_self (j : ι) (X : V) : | |
((single_map_homological_complex F c j).inv.app X).f j = eq_to_hom (by simp) := | |
by simp [single_map_homological_complex] | |
@[simp] lemma single_map_homological_complex_inv_app_ne | |
{i j : ι} (h : i ≠ j) (X : V): | |
((single_map_homological_complex F c j).inv.app X).f i = 0 := | |
by simp [single_map_homological_complex, h] | |
end homological_complex | |
namespace chain_complex | |
/-- | |
Turning an object into a chain complex supported at zero then applying a functor is | |
the same as applying the functor then forming the complex. | |
-/ | |
def single₀_map_homological_complex (F : V ⥤ W) [F.additive] : | |
single₀ V ⋙ F.map_homological_complex _ ≅ F ⋙ single₀ W := | |
nat_iso.of_components (λ X, | |
{ hom := { f := λ i, match i with | |
| 0 := 𝟙 _ | |
| (i+1) := F.map_zero_object.hom | |
end, }, | |
inv := { f := λ i, match i with | |
| 0 := 𝟙 _ | |
| (i+1) := F.map_zero_object.inv | |
end, }, | |
hom_inv_id' := begin | |
ext (_|i), | |
{ unfold_aux, simp, }, | |
{ unfold_aux, | |
dsimp, | |
simp only [comp_f, id_f, zero_comp], | |
exact (zero_of_source_iso_zero _ F.map_zero_object).symm, } | |
end, | |
inv_hom_id' := by { ext (_|i); { unfold_aux, dsimp, simp, }, }, }) | |
(λ X Y f, by { ext (_|i); { unfold_aux, dsimp, simp, }, }). | |
@[simp] lemma single₀_map_homological_complex_hom_app_zero (F : V ⥤ W) [F.additive] (X : V) : | |
((single₀_map_homological_complex F).hom.app X).f 0 = 𝟙 _ := rfl | |
@[simp] lemma single₀_map_homological_complex_hom_app_succ | |
(F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : | |
((single₀_map_homological_complex F).hom.app X).f (n+1) = 0 := rfl | |
@[simp] lemma single₀_map_homological_complex_inv_app_zero (F : V ⥤ W) [F.additive] (X : V) : | |
((single₀_map_homological_complex F).inv.app X).f 0 = 𝟙 _ := rfl | |
@[simp] lemma single₀_map_homological_complex_inv_app_succ | |
(F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : | |
((single₀_map_homological_complex F).inv.app X).f (n+1) = 0 := rfl | |
end chain_complex | |
namespace cochain_complex | |
/-- | |
Turning an object into a cochain complex supported at zero then applying a functor is | |
the same as applying the functor then forming the cochain complex. | |
-/ | |
def single₀_map_homological_complex (F : V ⥤ W) [F.additive] : | |
single₀ V ⋙ F.map_homological_complex _ ≅ F ⋙ single₀ W := | |
nat_iso.of_components (λ X, | |
{ hom := { f := λ i, match i with | |
| 0 := 𝟙 _ | |
| (i+1) := F.map_zero_object.hom | |
end, }, | |
inv := { f := λ i, match i with | |
| 0 := 𝟙 _ | |
| (i+1) := F.map_zero_object.inv | |
end, }, | |
hom_inv_id' := begin | |
ext (_|i), | |
{ unfold_aux, simp, }, | |
{ unfold_aux, | |
dsimp, | |
simp only [comp_f, id_f, zero_comp], | |
exact (zero_of_source_iso_zero _ F.map_zero_object).symm, } | |
end, | |
inv_hom_id' := by { ext (_|i); { unfold_aux, dsimp, simp, }, }, }) | |
(λ X Y f, by { ext (_|i); { unfold_aux, dsimp, simp, }, }). | |
@[simp] lemma single₀_map_homological_complex_hom_app_zero (F : V ⥤ W) [F.additive] (X : V) : | |
((single₀_map_homological_complex F).hom.app X).f 0 = 𝟙 _ := rfl | |
@[simp] lemma single₀_map_homological_complex_hom_app_succ | |
(F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : | |
((single₀_map_homological_complex F).hom.app X).f (n+1) = 0 := rfl | |
@[simp] lemma single₀_map_homological_complex_inv_app_zero (F : V ⥤ W) [F.additive] (X : V) : | |
((single₀_map_homological_complex F).inv.app X).f 0 = 𝟙 _ := rfl | |
@[simp] lemma single₀_map_homological_complex_inv_app_succ | |
(F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : | |
((single₀_map_homological_complex F).inv.app X).f (n+1) = 0 := rfl | |
end cochain_complex | |