Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import algebra.homology.single | |
import tactic.linarith | |
/-! | |
# Augmentation and truncation of `ℕ`-indexed (co)chain complexes. | |
-/ | |
noncomputable theory | |
open category_theory | |
open category_theory.limits | |
open homological_complex | |
universes v u | |
variables {V : Type u} [category.{v} V] | |
namespace chain_complex | |
/-- | |
The truncation of a `ℕ`-indexed chain complex, | |
deleting the object at `0` and shifting everything else down. | |
-/ | |
@[simps] | |
def truncate [has_zero_morphisms V] : chain_complex V ℕ ⥤ chain_complex V ℕ := | |
{ obj := λ C, | |
{ X := λ i, C.X (i+1), | |
d := λ i j, C.d (i+1) (j+1), | |
shape' := λ i j w, by { apply C.shape, simpa }, }, | |
map := λ C D f, | |
{ f := λ i, f.f (i+1), }, } | |
/-- | |
There is a canonical chain map from the truncation of a chain map `C` to | |
the "single object" chain complex consisting of the truncated object `C.X 0` in degree 0. | |
The components of this chain map are `C.d 1 0` in degree 0, and zero otherwise. | |
-/ | |
def truncate_to [has_zero_object V] [has_zero_morphisms V] (C : chain_complex V ℕ) : | |
truncate.obj C ⟶ (single₀ V).obj (C.X 0) := | |
(to_single₀_equiv (truncate.obj C) (C.X 0)).symm ⟨C.d 1 0, by tidy⟩ | |
-- PROJECT when `V` is abelian (but not generally?) | |
-- `[∀ n, exact (C.d (n+2) (n+1)) (C.d (n+1) n)] [epi (C.d 1 0)]` iff `quasi_iso (C.truncate_to)` | |
variables [has_zero_morphisms V] | |
/-- | |
We can "augment" a chain complex by inserting an arbitrary object in degree zero | |
(shifting everything else up), along with a suitable differential. | |
-/ | |
def augment (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) : | |
chain_complex V ℕ := | |
{ X := λ i, match i with | |
| 0 := X | |
| (i+1) := C.X i | |
end, | |
d := λ i j, match i, j with | |
| 1, 0 := f | |
| (i+1), (j+1) := C.d i j | |
| _, _ := 0 | |
end, | |
shape' := λ i j s, begin | |
simp at s, | |
rcases i with _|_|i; cases j; unfold_aux; try { simp }, | |
{ simpa using s, }, | |
{ rw [C.shape], simpa [← ne.def, nat.succ_ne_succ] using s }, | |
end, | |
d_comp_d' := λ i j k hij hjk, begin | |
rcases i with _|_|i; rcases j with _|_|j; cases k; unfold_aux; try { simp }, | |
cases i, | |
{ exact w, }, | |
{ rw [C.shape, zero_comp], | |
simpa using i.succ_succ_ne_one.symm }, | |
end, } | |
@[simp] lemma augment_X_zero (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) : | |
(augment C f w).X 0 = X := rfl | |
@[simp] lemma augment_X_succ (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) | |
(i : ℕ) : | |
(augment C f w).X (i+1) = C.X i := rfl | |
@[simp] lemma augment_d_one_zero | |
(C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) : | |
(augment C f w).d 1 0 = f := rfl | |
@[simp] lemma augment_d_succ_succ | |
(C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) (i j : ℕ) : | |
(augment C f w).d (i+1) (j+1) = C.d i j := | |
by { dsimp [augment], rcases i with _|i, refl, refl, } | |
/-- | |
Truncating an augmented chain complex is isomorphic (with components the identity) | |
to the original complex. | |
-/ | |
def truncate_augment (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) : | |
truncate.obj (augment C f w) ≅ C := | |
{ hom := | |
{ f := λ i, 𝟙 _, }, | |
inv := | |
{ f := λ i, by { exact 𝟙 _, }, | |
comm' := λ i j, by { cases j; { dsimp, simp, }, }, }, | |
hom_inv_id' := by { ext i, cases i; { dsimp, simp, }, }, | |
inv_hom_id' := by { ext i, cases i; { dsimp, simp, }, }, }. | |
@[simp] lemma truncate_augment_hom_f | |
(C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) (i : ℕ) : | |
(truncate_augment C f w).hom.f i = 𝟙 (C.X i) := rfl | |
@[simp] lemma truncate_augment_inv_f | |
(C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) (i : ℕ) : | |
(truncate_augment C f w).inv.f i = 𝟙 ((truncate.obj (augment C f w)).X i) := | |
rfl | |
@[simp] lemma chain_complex_d_succ_succ_zero (C : chain_complex V ℕ) (i : ℕ) : | |
C.d (i+2) 0 = 0 := | |
by { rw C.shape, simpa using i.succ_succ_ne_one.symm } | |
/-- | |
Augmenting a truncated complex with the original object and morphism is isomorphic | |
(with components the identity) to the original complex. | |
-/ | |
def augment_truncate (C : chain_complex V ℕ) : | |
augment (truncate.obj C) (C.d 1 0) (C.d_comp_d _ _ _) ≅ C := | |
{ hom := | |
{ f := λ i, by { cases i; exact 𝟙 _, }, | |
comm' := λ i j, by { rcases i with _|_|i; cases j; { dsimp, simp, }, }, }, | |
inv := | |
{ f := λ i, by { cases i; exact 𝟙 _, }, | |
comm' := λ i j, by { rcases i with _|_|i; cases j; { dsimp, simp, }, }, }, | |
hom_inv_id' := by { ext i, cases i; { dsimp, simp, }, }, | |
inv_hom_id' := by { ext i, cases i; { dsimp, simp, }, }, }. | |
@[simp] lemma augment_truncate_hom_f_zero (C : chain_complex V ℕ) : | |
(augment_truncate C).hom.f 0 = 𝟙 (C.X 0) := | |
rfl | |
@[simp] lemma augment_truncate_hom_f_succ (C : chain_complex V ℕ) (i : ℕ) : | |
(augment_truncate C).hom.f (i+1) = 𝟙 (C.X (i+1)) := | |
rfl | |
@[simp] lemma augment_truncate_inv_f_zero (C : chain_complex V ℕ) : | |
(augment_truncate C).inv.f 0 = 𝟙 (C.X 0) := | |
rfl | |
@[simp] lemma augment_truncate_inv_f_succ (C : chain_complex V ℕ) (i : ℕ) : | |
(augment_truncate C).inv.f (i+1) = 𝟙 (C.X (i+1)) := | |
rfl | |
/-- | |
A chain map from a chain complex to a single object chain complex in degree zero | |
can be reinterpreted as a chain complex. | |
Ths is the inverse construction of `truncate_to`. | |
-/ | |
def to_single₀_as_complex | |
[has_zero_object V] (C : chain_complex V ℕ) (X : V) (f : C ⟶ (single₀ V).obj X) : | |
chain_complex V ℕ := | |
let ⟨f, w⟩ := to_single₀_equiv C X f in augment C f w | |
end chain_complex | |
namespace cochain_complex | |
/-- | |
The truncation of a `ℕ`-indexed cochain complex, | |
deleting the object at `0` and shifting everything else down. | |
-/ | |
@[simps] | |
def truncate [has_zero_morphisms V] : cochain_complex V ℕ ⥤ cochain_complex V ℕ := | |
{ obj := λ C, | |
{ X := λ i, C.X (i+1), | |
d := λ i j, C.d (i+1) (j+1), | |
shape' := λ i j w, by { apply C.shape, simpa }, }, | |
map := λ C D f, | |
{ f := λ i, f.f (i+1), }, } | |
/-- | |
There is a canonical chain map from the truncation of a cochain complex `C` to | |
the "single object" cochain complex consisting of the truncated object `C.X 0` in degree 0. | |
The components of this chain map are `C.d 0 1` in degree 0, and zero otherwise. | |
-/ | |
def to_truncate [has_zero_object V] [has_zero_morphisms V] (C : cochain_complex V ℕ) : | |
(single₀ V).obj (C.X 0) ⟶ truncate.obj C := | |
(from_single₀_equiv (truncate.obj C) (C.X 0)).symm ⟨C.d 0 1, by tidy⟩ | |
variables [has_zero_morphisms V] | |
/-- | |
We can "augment" a cochain complex by inserting an arbitrary object in degree zero | |
(shifting everything else up), along with a suitable differential. | |
-/ | |
def augment (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) : | |
cochain_complex V ℕ := | |
{ X := λ i, match i with | |
| 0 := X | |
| (i+1) := C.X i | |
end, | |
d := λ i j, match i, j with | |
| 0, 1 := f | |
| (i+1), (j+1) := C.d i j | |
| _, _ := 0 | |
end, | |
shape' := λ i j s, begin | |
simp at s, | |
rcases j with _|_|j; cases i; unfold_aux; try { simp }, | |
{ simpa using s, }, | |
{ rw [C.shape], simp only [complex_shape.up_rel], contrapose! s, rw ←s }, | |
end, | |
d_comp_d' := λ i j k hij hjk, begin | |
rcases k with _|_|k; rcases j with _|_|j; cases i; unfold_aux; try { simp }, | |
cases k, | |
{ exact w, }, | |
{ rw [C.shape, comp_zero], | |
simp only [nat.nat_zero_eq_zero, complex_shape.up_rel, zero_add], | |
exact (nat.one_lt_succ_succ _).ne }, | |
end, } | |
@[simp] lemma augment_X_zero | |
(C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) : | |
(augment C f w).X 0 = X := rfl | |
@[simp] lemma augment_X_succ | |
(C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) (i : ℕ) : | |
(augment C f w).X (i+1) = C.X i := rfl | |
@[simp] lemma augment_d_zero_one | |
(C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) : | |
(augment C f w).d 0 1 = f := rfl | |
@[simp] lemma augment_d_succ_succ | |
(C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) (i j : ℕ) : | |
(augment C f w).d (i+1) (j+1) = C.d i j := | |
rfl | |
/-- | |
Truncating an augmented cochain complex is isomorphic (with components the identity) | |
to the original complex. | |
-/ | |
def truncate_augment (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) : | |
truncate.obj (augment C f w) ≅ C := | |
{ hom := | |
{ f := λ i, 𝟙 _, }, | |
inv := | |
{ f := λ i, by { exact 𝟙 _, }, | |
comm' := λ i j, by { cases j; { dsimp, simp, }, }, }, | |
hom_inv_id' := by { ext i, cases i; { dsimp, simp, }, }, | |
inv_hom_id' := by { ext i, cases i; { dsimp, simp, }, }, }. | |
@[simp] lemma truncate_augment_hom_f | |
(C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) (i : ℕ) : | |
(truncate_augment C f w).hom.f i = 𝟙 (C.X i) := rfl | |
@[simp] lemma truncate_augment_inv_f | |
(C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) (i : ℕ) : | |
(truncate_augment C f w).inv.f i = 𝟙 ((truncate.obj (augment C f w)).X i) := | |
rfl | |
@[simp] lemma cochain_complex_d_succ_succ_zero (C : cochain_complex V ℕ) (i : ℕ) : | |
C.d 0 (i+2) = 0 := | |
by { rw C.shape, simp only [complex_shape.up_rel, zero_add], exact (nat.one_lt_succ_succ _).ne } | |
/-- | |
Augmenting a truncated complex with the original object and morphism is isomorphic | |
(with components the identity) to the original complex. | |
-/ | |
def augment_truncate (C : cochain_complex V ℕ) : | |
augment (truncate.obj C) (C.d 0 1) (C.d_comp_d _ _ _) ≅ C := | |
{ hom := | |
{ f := λ i, by { cases i; exact 𝟙 _, }, | |
comm' := λ i j, by { rcases j with _|_|j; cases i; { dsimp, simp, }, }, }, | |
inv := | |
{ f := λ i, by { cases i; exact 𝟙 _, }, | |
comm' := λ i j, by { rcases j with _|_|j; cases i; { dsimp, simp, }, }, }, | |
hom_inv_id' := by { ext i, cases i; { dsimp, simp, }, }, | |
inv_hom_id' := by { ext i, cases i; { dsimp, simp, }, }, }. | |
@[simp] lemma augment_truncate_hom_f_zero (C : cochain_complex V ℕ) : | |
(augment_truncate C).hom.f 0 = 𝟙 (C.X 0) := | |
rfl | |
@[simp] lemma augment_truncate_hom_f_succ (C : cochain_complex V ℕ) (i : ℕ) : | |
(augment_truncate C).hom.f (i+1) = 𝟙 (C.X (i+1)) := | |
rfl | |
@[simp] lemma augment_truncate_inv_f_zero (C : cochain_complex V ℕ) : | |
(augment_truncate C).inv.f 0 = 𝟙 (C.X 0) := | |
rfl | |
@[simp] lemma augment_truncate_inv_f_succ (C : cochain_complex V ℕ) (i : ℕ) : | |
(augment_truncate C).inv.f (i+1) = 𝟙 (C.X (i+1)) := | |
rfl | |
/-- | |
A chain map from a single object cochain complex in degree zero to a cochain complex | |
can be reinterpreted as a cochain complex. | |
Ths is the inverse construction of `to_truncate`. | |
-/ | |
def from_single₀_as_complex | |
[has_zero_object V] (C : cochain_complex V ℕ) (X : V) (f : (single₀ V).obj X ⟶ C) : | |
cochain_complex V ℕ := | |
let ⟨f, w⟩ := from_single₀_equiv C X f in augment C f w | |
end cochain_complex | |