Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import algebra.homology.homological_complex | |
/-! | |
# Flip a complex of complexes | |
For now we don't have double complexes as a distinct thing, | |
but we can model them as complexes of complexes. | |
Here we show how to flip a complex of complexes over the diagonal, | |
exchanging the horizontal and vertical directions. | |
-/ | |
universes v u | |
open category_theory category_theory.limits | |
namespace homological_complex | |
variables {V : Type u} [category.{v} V] [has_zero_morphisms V] | |
variables {ι : Type*} {c : complex_shape ι} {ι' : Type*} {c' : complex_shape ι'} | |
/-- | |
Flip a complex of complexes over the diagonal, | |
exchanging the horizontal and vertical directions. | |
-/ | |
@[simps] | |
def flip_obj (C : homological_complex (homological_complex V c) c') : | |
homological_complex (homological_complex V c') c := | |
{ X := λ i, | |
{ X := λ j, (C.X j).X i, | |
d := λ j j', (C.d j j').f i, | |
shape' := λ j j' w, by { rw C.shape j j' w, simp, }, | |
d_comp_d' := λ j₁ j₂ j₃ _ _, congr_hom (C.d_comp_d j₁ j₂ j₃) i, }, | |
d := λ i i', | |
{ f := λ j, (C.X j).d i i', | |
comm' := λ j j' h, ((C.d j j').comm i i').symm, }, | |
shape' := λ i i' w, by { ext j, exact (C.X j).shape i i' w, } }. | |
variables V c c' | |
/-- Flipping a complex of complexes over the diagonal, as a functor. -/ | |
@[simps] | |
def flip : homological_complex (homological_complex V c) c' ⥤ | |
homological_complex (homological_complex V c') c := | |
{ obj := λ C, flip_obj C, | |
map := λ C D f, | |
{ f := λ i, | |
{ f := λ j, (f.f j).f i, | |
comm' := λ j j' h, congr_hom (f.comm j j') i, }, }, }. | |
/-- Auxiliary definition for `homological_complex.flip_equivalence` .-/ | |
@[simps] | |
def flip_equivalence_unit_iso : | |
𝟭 (homological_complex (homological_complex V c) c') ≅ flip V c c' ⋙ flip V c' c := | |
nat_iso.of_components | |
(λ C, | |
{ hom := | |
{ f := λ i, { f := λ j, 𝟙 ((C.X i).X j), }, | |
comm' := λ i j h, by { ext, dsimp, simp only [category.id_comp, category.comp_id] }, }, | |
inv := | |
{ f := λ i, { f := λ j, 𝟙 ((C.X i).X j), }, | |
comm' := λ i j h, by { ext, dsimp, simp only [category.id_comp, category.comp_id] }, } }) | |
(λ X Y f, by { ext, dsimp, simp only [category.id_comp, category.comp_id], }) | |
/-- Auxiliary definition for `homological_complex.flip_equivalence` .-/ | |
@[simps] | |
def flip_equivalence_counit_iso : | |
flip V c' c ⋙ flip V c c' ≅ 𝟭 (homological_complex (homological_complex V c') c) := | |
nat_iso.of_components | |
(λ C, | |
{ hom := | |
{ f := λ i, { f := λ j, 𝟙 ((C.X i).X j), }, | |
comm' := λ i j h, by { ext, dsimp, simp only [category.id_comp, category.comp_id] }, }, | |
inv := | |
{ f := λ i, { f := λ j, 𝟙 ((C.X i).X j), }, | |
comm' := λ i j h, by { ext, dsimp, simp only [category.id_comp, category.comp_id] }, } }) | |
(λ X Y f, by { ext, dsimp, simp only [category.id_comp, category.comp_id], }) | |
/-- Flipping a complex of complexes over the diagonal, as an equivalence of categories. -/ | |
@[simps] | |
def flip_equivalence : | |
homological_complex (homological_complex V c) c' ≌ | |
homological_complex (homological_complex V c') c := | |
{ functor := flip V c c', | |
inverse := flip V c' c, | |
unit_iso := flip_equivalence_unit_iso V c c', | |
counit_iso := flip_equivalence_counit_iso V c c', } | |
end homological_complex | |