Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import algebra.homology.additive | |
import tactic.abel | |
/-! | |
# Chain homotopies | |
We define chain homotopies, and prove that homotopic chain maps induce the same map on homology. | |
-/ | |
universes v u | |
open_locale classical | |
noncomputable theory | |
open category_theory category_theory.limits homological_complex | |
variables {ι : Type*} | |
variables {V : Type u} [category.{v} V] [preadditive V] | |
variables {c : complex_shape ι} {C D E : homological_complex V c} | |
variables (f g : C ⟶ D) (h k : D ⟶ E) (i : ι) | |
section | |
/-- The composition of `C.d i i' ≫ f i' i` if there is some `i'` coming after `i`, | |
and `0` otherwise. -/ | |
def d_next (i : ι) : (Π i j, C.X i ⟶ D.X j) →+ (C.X i ⟶ D.X i) := | |
add_monoid_hom.mk' (λ f, C.d i (c.next i) ≫ f (c.next i) i) $ | |
λ f g, preadditive.comp_add _ _ _ _ _ _ | |
/-- `f i' i` if `i'` comes after `i`, and 0 if there's no such `i'`. | |
Hopefully there won't be much need for this, except in `d_next_eq_d_from_from_next` | |
to see that `d_next` factors through `C.d_from i`. -/ | |
def from_next (i : ι) : (Π i j, C.X i ⟶ D.X j) →+ (C.X_next i ⟶ D.X i) := | |
add_monoid_hom.mk' (λ f, f (c.next i) i) $ λ f g, rfl | |
@[simp] | |
lemma d_next_eq_d_from_from_next (f : Π i j, C.X i ⟶ D.X j) (i : ι) : | |
d_next i f = C.d_from i ≫ from_next i f := rfl | |
lemma d_next_eq (f : Π i j, C.X i ⟶ D.X j) {i i' : ι} (w : c.rel i i') : | |
d_next i f = C.d i i' ≫ f i' i := | |
by { obtain rfl := c.next_eq' w, refl } | |
@[simp] lemma d_next_comp_left (f : C ⟶ D) (g : Π i j, D.X i ⟶ E.X j) (i : ι) : | |
d_next i (λ i j, f.f i ≫ g i j) = f.f i ≫ d_next i g := | |
(f.comm_assoc _ _ _).symm | |
@[simp] lemma d_next_comp_right (f : Π i j, C.X i ⟶ D.X j) (g : D ⟶ E) (i : ι) : | |
d_next i (λ i j, f i j ≫ g.f j) = d_next i f ≫ g.f i := | |
(category.assoc _ _ _).symm | |
/-- The composition of `f j j' ≫ D.d j' j` if there is some `j'` coming before `j`, | |
and `0` otherwise. -/ | |
def prev_d (j : ι) : (Π i j, C.X i ⟶ D.X j) →+ (C.X j ⟶ D.X j) := | |
add_monoid_hom.mk' (λ f, f j (c.prev j) ≫ D.d (c.prev j) j) $ | |
λ f g, preadditive.add_comp _ _ _ _ _ _ | |
/-- `f j j'` if `j'` comes after `j`, and 0 if there's no such `j'`. | |
Hopefully there won't be much need for this, except in `d_next_eq_d_from_from_next` | |
to see that `d_next` factors through `C.d_from i`. -/ | |
def to_prev (j : ι) : (Π i j, C.X i ⟶ D.X j) →+ (C.X j ⟶ D.X_prev j) := | |
add_monoid_hom.mk' (λ f, f j (c.prev j)) $ λ f g, rfl | |
@[simp] | |
lemma prev_d_eq_to_prev_d_to (f : Π i j, C.X i ⟶ D.X j) (j : ι) : | |
prev_d j f = to_prev j f ≫ D.d_to j := rfl | |
lemma prev_d_eq (f : Π i j, C.X i ⟶ D.X j) {j j' : ι} (w : c.rel j' j) : | |
prev_d j f = f j j' ≫ D.d j' j := | |
by { obtain rfl := c.prev_eq' w, refl } | |
@[simp] lemma prev_d_comp_left (f : C ⟶ D) (g : Π i j, D.X i ⟶ E.X j) (j : ι) : | |
prev_d j (λ i j, f.f i ≫ g i j) = f.f j ≫ prev_d j g := | |
category.assoc _ _ _ | |
@[simp] lemma prev_d_comp_right (f : Π i j, C.X i ⟶ D.X j) (g : D ⟶ E) (j : ι) : | |
prev_d j (λ i j, f i j ≫ g.f j) = prev_d j f ≫ g.f j := | |
by { dsimp [prev_d], simp only [category.assoc, g.comm] } | |
lemma d_next_nat (C D : chain_complex V ℕ) (i : ℕ) (f : Π i j, C.X i ⟶ D.X j) : | |
d_next i f = C.d i (i-1) ≫ f (i-1) i := | |
begin | |
dsimp [d_next], | |
cases i, | |
{ simp only [shape, chain_complex.next_nat_zero, complex_shape.down_rel, | |
nat.one_ne_zero, not_false_iff, zero_comp], }, | |
{ dsimp only [nat.succ_eq_add_one], | |
have : (complex_shape.down ℕ).next (i + 1) = i + 1 - 1, | |
{ rw chain_complex.next_nat_succ, refl }, | |
congr' 2, } | |
end | |
lemma prev_d_nat (C D : cochain_complex V ℕ) (i : ℕ) (f : Π i j, C.X i ⟶ D.X j) : | |
prev_d i f = f i (i-1) ≫ D.d (i-1) i := | |
begin | |
dsimp [prev_d], | |
cases i, | |
{ simp only [shape, cochain_complex.prev_nat_zero, complex_shape.up_rel, | |
nat.one_ne_zero, not_false_iff, comp_zero]}, | |
{ dsimp only [nat.succ_eq_add_one], | |
have : (complex_shape.up ℕ).prev (i + 1) = i + 1 - 1, | |
{ rw cochain_complex.prev_nat_succ, refl }, | |
congr' 2, }, | |
end | |
/-- | |
A homotopy `h` between chain maps `f` and `g` consists of components `h i j : C.X i ⟶ D.X j` | |
which are zero unless `c.rel j i`, satisfying the homotopy condition. | |
-/ | |
@[ext, nolint has_nonempty_instance] | |
structure homotopy (f g : C ⟶ D) := | |
(hom : Π i j, C.X i ⟶ D.X j) | |
(zero' : ∀ i j, ¬ c.rel j i → hom i j = 0 . obviously) | |
(comm : ∀ i, f.f i = d_next i hom + prev_d i hom + g.f i . obviously') | |
variables {f g} | |
namespace homotopy | |
restate_axiom homotopy.zero' | |
/-- | |
`f` is homotopic to `g` iff `f - g` is homotopic to `0`. | |
-/ | |
def equiv_sub_zero : homotopy f g ≃ homotopy (f - g) 0 := | |
{ to_fun := λ h, | |
{ hom := λ i j, h.hom i j, | |
zero' := λ i j w, h.zero _ _ w, | |
comm := λ i, by simp [h.comm] }, | |
inv_fun := λ h, | |
{ hom := λ i j, h.hom i j, | |
zero' := λ i j w, h.zero _ _ w, | |
comm := λ i, by simpa [sub_eq_iff_eq_add] using h.comm i }, | |
left_inv := by tidy, | |
right_inv := by tidy, } | |
/-- Equal chain maps are homotopic. -/ | |
@[simps] | |
def of_eq (h : f = g) : homotopy f g := | |
{ hom := 0, | |
zero' := λ _ _ _, rfl, | |
comm := λ _, by simp only [add_monoid_hom.map_zero, zero_add, h] } | |
/-- Every chain map is homotopic to itself. -/ | |
@[simps, refl] | |
def refl (f : C ⟶ D) : homotopy f f := | |
of_eq (rfl : f = f) | |
/-- `f` is homotopic to `g` iff `g` is homotopic to `f`. -/ | |
@[simps, symm] | |
def symm {f g : C ⟶ D} (h : homotopy f g) : homotopy g f := | |
{ hom := -h.hom, | |
zero' := λ i j w, by rw [pi.neg_apply, pi.neg_apply, h.zero i j w, neg_zero], | |
comm := λ i, by rw [add_monoid_hom.map_neg, add_monoid_hom.map_neg, h.comm, ← neg_add, | |
← add_assoc, neg_add_self, zero_add] } | |
/-- homotopy is a transitive relation. -/ | |
@[simps, trans] | |
def trans {e f g : C ⟶ D} (h : homotopy e f) (k : homotopy f g) : homotopy e g := | |
{ hom := h.hom + k.hom, | |
zero' := λ i j w, by rw [pi.add_apply, pi.add_apply, h.zero i j w, k.zero i j w, zero_add], | |
comm := λ i, by { rw [add_monoid_hom.map_add, add_monoid_hom.map_add, h.comm, k.comm], abel }, } | |
/-- the sum of two homotopies is a homotopy between the sum of the respective morphisms. -/ | |
@[simps] | |
def add {f₁ g₁ f₂ g₂ : C ⟶ D} | |
(h₁ : homotopy f₁ g₁) (h₂ : homotopy f₂ g₂) : homotopy (f₁+f₂) (g₁+g₂) := | |
{ hom := h₁.hom + h₂.hom, | |
zero' := λ i j hij, by | |
rw [pi.add_apply, pi.add_apply, h₁.zero' i j hij, h₂.zero' i j hij, add_zero], | |
comm := λ i, by | |
{ simp only [homological_complex.add_f_apply, h₁.comm, h₂.comm, | |
add_monoid_hom.map_add], | |
abel, }, } | |
/-- homotopy is closed under composition (on the right) -/ | |
@[simps] | |
def comp_right {e f : C ⟶ D} (h : homotopy e f) (g : D ⟶ E) : homotopy (e ≫ g) (f ≫ g) := | |
{ hom := λ i j, h.hom i j ≫ g.f j, | |
zero' := λ i j w, by rw [h.zero i j w, zero_comp], | |
comm := λ i, by simp only [h.comm i, d_next_comp_right, preadditive.add_comp, | |
prev_d_comp_right, comp_f], } | |
/-- homotopy is closed under composition (on the left) -/ | |
@[simps] | |
def comp_left {f g : D ⟶ E} (h : homotopy f g) (e : C ⟶ D) : homotopy (e ≫ f) (e ≫ g) := | |
{ hom := λ i j, e.f i ≫ h.hom i j, | |
zero' := λ i j w, by rw [h.zero i j w, comp_zero], | |
comm := λ i, by simp only [h.comm i, d_next_comp_left, preadditive.comp_add, | |
prev_d_comp_left, comp_f], } | |
/-- homotopy is closed under composition -/ | |
@[simps] | |
def comp {C₁ C₂ C₃ : homological_complex V c} {f₁ g₁ : C₁ ⟶ C₂} {f₂ g₂ : C₂ ⟶ C₃} | |
(h₁ : homotopy f₁ g₁) (h₂ : homotopy f₂ g₂) : homotopy (f₁ ≫ f₂) (g₁ ≫ g₂) := | |
(h₁.comp_right _).trans (h₂.comp_left _) | |
/-- a variant of `homotopy.comp_right` useful for dealing with homotopy equivalences. -/ | |
@[simps] | |
def comp_right_id {f : C ⟶ C} (h : homotopy f (𝟙 C)) (g : C ⟶ D) : homotopy (f ≫ g) g := | |
(h.comp_right g).trans (of_eq $ category.id_comp _) | |
/-- a variant of `homotopy.comp_left` useful for dealing with homotopy equivalences. -/ | |
@[simps] | |
def comp_left_id {f : D ⟶ D} (h : homotopy f (𝟙 D)) (g : C ⟶ D) : homotopy (g ≫ f) g := | |
(h.comp_left g).trans (of_eq $ category.comp_id _) | |
/-! | |
Null homotopic maps can be constructed using the formula `hd+dh`. We show that | |
these morphisms are homotopic to `0` and provide some convenient simplification | |
lemmas that give a degreewise description of `hd+dh`, depending on whether we have | |
two differentials going to and from a certain degree, only one, or none. | |
-/ | |
/-- The null homotopic map associated to a family `hom` of morphisms `C_i ⟶ D_j`. | |
This is the same datum as for the field `hom` in the structure `homotopy`. For | |
this definition, we do not need the field `zero` of that structure | |
as this definition uses only the maps `C_i ⟶ C_j` when `c.rel j i`. -/ | |
def null_homotopic_map (hom : Π i j, C.X i ⟶ D.X j) : C ⟶ D := | |
{ f := λ i, d_next i hom + prev_d i hom, | |
comm' := λ i j hij, | |
begin | |
have eq1 : prev_d i hom ≫ D.d i j = 0, | |
{ simp only [prev_d, add_monoid_hom.mk'_apply, category.assoc, d_comp_d, comp_zero], }, | |
have eq2 : C.d i j ≫ d_next j hom = 0, | |
{ simp only [d_next, add_monoid_hom.mk'_apply, d_comp_d_assoc, zero_comp], }, | |
rw [d_next_eq hom hij, prev_d_eq hom hij, preadditive.comp_add, preadditive.add_comp, | |
eq1, eq2, add_zero, zero_add, category.assoc], | |
end } | |
/-- Variant of `null_homotopic_map` where the input consists only of the | |
relevant maps `C_i ⟶ D_j` such that `c.rel j i`. -/ | |
def null_homotopic_map' (h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) : C ⟶ D := | |
null_homotopic_map (λ i j, dite (c.rel j i) (h i j) (λ _, 0)) | |
/-- Compatibility of `null_homotopic_map` with the postcomposition by a morphism | |
of complexes. -/ | |
lemma null_homotopic_map_comp (hom : Π i j, C.X i ⟶ D.X j) (g : D ⟶ E) : | |
null_homotopic_map hom ≫ g = null_homotopic_map (λ i j, hom i j ≫ g.f j) := | |
begin | |
ext n, | |
dsimp [null_homotopic_map, from_next, to_prev, add_monoid_hom.mk'_apply], | |
simp only [preadditive.add_comp, category.assoc, g.comm], | |
end | |
/-- Compatibility of `null_homotopic_map'` with the postcomposition by a morphism | |
of complexes. -/ | |
lemma null_homotopic_map'_comp (hom : Π i j, c.rel j i → (C.X i ⟶ D.X j)) (g : D ⟶ E) : | |
null_homotopic_map' hom ≫ g = null_homotopic_map' (λ i j hij, hom i j hij ≫ g.f j) := | |
begin | |
ext n, | |
erw null_homotopic_map_comp, | |
congr', | |
ext i j, | |
split_ifs, | |
{ refl, }, | |
{ rw zero_comp, }, | |
end | |
/-- Compatibility of `null_homotopic_map` with the precomposition by a morphism | |
of complexes. -/ | |
lemma comp_null_homotopic_map (f : C ⟶ D) (hom : Π i j, D.X i ⟶ E.X j) : | |
f ≫ null_homotopic_map hom = null_homotopic_map (λ i j, f.f i ≫ hom i j) := | |
begin | |
ext n, | |
dsimp [null_homotopic_map, from_next, to_prev, add_monoid_hom.mk'_apply], | |
simp only [preadditive.comp_add, category.assoc, f.comm_assoc], | |
end | |
/-- Compatibility of `null_homotopic_map'` with the precomposition by a morphism | |
of complexes. -/ | |
lemma comp_null_homotopic_map' (f : C ⟶ D) (hom : Π i j, c.rel j i → (D.X i ⟶ E.X j)) : | |
f ≫ null_homotopic_map' hom = null_homotopic_map' (λ i j hij, f.f i ≫ hom i j hij) := | |
begin | |
ext n, | |
erw comp_null_homotopic_map, | |
congr', | |
ext i j, | |
split_ifs, | |
{ refl, }, | |
{ rw comp_zero, }, | |
end | |
/-- Compatibility of `null_homotopic_map` with the application of additive functors -/ | |
lemma map_null_homotopic_map {W : Type*} [category W] [preadditive W] | |
(G : V ⥤ W) [G.additive] (hom : Π i j, C.X i ⟶ D.X j) : | |
(G.map_homological_complex c).map (null_homotopic_map hom) = | |
null_homotopic_map (λ i j, G.map (hom i j)) := | |
begin | |
ext i, | |
dsimp [null_homotopic_map, d_next, prev_d], | |
simp only [G.map_comp, functor.map_add], | |
end | |
/-- Compatibility of `null_homotopic_map'` with the application of additive functors -/ | |
lemma map_null_homotopic_map' {W : Type*} [category W] [preadditive W] | |
(G : V ⥤ W) [G.additive] (hom : Π i j, c.rel j i → (C.X i ⟶ D.X j)) : | |
(G.map_homological_complex c).map (null_homotopic_map' hom) = | |
null_homotopic_map' (λ i j hij, G.map (hom i j hij)) := | |
begin | |
ext n, | |
erw map_null_homotopic_map, | |
congr', | |
ext i j, | |
split_ifs, | |
{ refl, }, | |
{ rw G.map_zero, } | |
end | |
/-- Tautological construction of the `homotopy` to zero for maps constructed by | |
`null_homotopic_map`, at least when we have the `zero'` condition. -/ | |
@[simps] | |
def null_homotopy (hom : Π i j, C.X i ⟶ D.X j) (zero' : ∀ i j, ¬ c.rel j i → hom i j = 0) : | |
homotopy (null_homotopic_map hom) 0 := | |
{ hom := hom, | |
zero' := zero', | |
comm := by { intro i, rw [homological_complex.zero_f_apply, add_zero], refl, }, } | |
/-- Homotopy to zero for maps constructed with `null_homotopic_map'` -/ | |
@[simps] | |
def null_homotopy' (h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) : | |
homotopy (null_homotopic_map' h) 0 := | |
begin | |
apply null_homotopy (λ i j, dite (c.rel j i) (h i j) (λ _, 0)), | |
intros i j hij, | |
dsimp, | |
rw [dite_eq_right_iff], | |
intro hij', | |
exfalso, | |
exact hij hij', | |
end | |
/-! This lemma and the following ones can be used in order to compute | |
the degreewise morphisms induced by the null homotopic maps constructed | |
with `null_homotopic_map` or `null_homotopic_map'` -/ | |
@[simp] | |
lemma null_homotopic_map_f {k₂ k₁ k₀ : ι} (r₂₁ : c.rel k₂ k₁) (r₁₀ : c.rel k₁ k₀) | |
(hom : Π i j, C.X i ⟶ D.X j) : | |
(null_homotopic_map hom).f k₁ = C.d k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ D.d k₂ k₁ := | |
by { dsimp only [null_homotopic_map], rw [d_next_eq hom r₁₀, prev_d_eq hom r₂₁], } | |
@[simp] | |
lemma null_homotopic_map'_f {k₂ k₁ k₀ : ι} (r₂₁ : c.rel k₂ k₁) (r₁₀ : c.rel k₁ k₀) | |
(h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) : | |
(null_homotopic_map' h).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ D.d k₂ k₁ := | |
begin | |
simp only [← null_homotopic_map'], | |
rw null_homotopic_map_f r₂₁ r₁₀ (λ i j, dite (c.rel j i) (h i j) (λ _, 0)), | |
dsimp, | |
split_ifs, | |
refl, | |
end | |
@[simp] | |
lemma null_homotopic_map_f_of_not_rel_left {k₁ k₀ : ι} (r₁₀ : c.rel k₁ k₀) | |
(hk₀ : ∀ l : ι, ¬c.rel k₀ l) | |
(hom : Π i j, C.X i ⟶ D.X j) : | |
(null_homotopic_map hom).f k₀ = hom k₀ k₁ ≫ D.d k₁ k₀ := | |
begin | |
dsimp only [null_homotopic_map], | |
rw [prev_d_eq hom r₁₀, d_next, add_monoid_hom.mk'_apply, C.shape, zero_comp, zero_add], | |
exact hk₀ _ | |
end | |
@[simp] | |
lemma null_homotopic_map'_f_of_not_rel_left {k₁ k₀ : ι} (r₁₀ : c.rel k₁ k₀) | |
(hk₀ : ∀ l : ι, ¬c.rel k₀ l) | |
(h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) : | |
(null_homotopic_map' h).f k₀ = h k₀ k₁ r₁₀ ≫ D.d k₁ k₀ := | |
begin | |
simp only [← null_homotopic_map'], | |
rw null_homotopic_map_f_of_not_rel_left r₁₀ hk₀ (λ i j, dite (c.rel j i) (h i j) (λ _, 0)), | |
dsimp, | |
split_ifs, | |
refl, | |
end | |
@[simp] | |
lemma null_homotopic_map_f_of_not_rel_right {k₁ k₀ : ι} (r₁₀ : c.rel k₁ k₀) | |
(hk₁ : ∀ l : ι, ¬c.rel l k₁) | |
(hom : Π i j, C.X i ⟶ D.X j) : | |
(null_homotopic_map hom).f k₁ = C.d k₁ k₀ ≫ hom k₀ k₁ := | |
begin | |
dsimp only [null_homotopic_map], | |
rw [d_next_eq hom r₁₀, prev_d, add_monoid_hom.mk'_apply, D.shape, comp_zero, add_zero], | |
exact hk₁ _, | |
end | |
@[simp] | |
lemma null_homotopic_map'_f_of_not_rel_right {k₁ k₀ : ι} (r₁₀ : c.rel k₁ k₀) | |
(hk₁ : ∀ l : ι, ¬c.rel l k₁) | |
(h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) : | |
(null_homotopic_map' h).f k₁ = C.d k₁ k₀ ≫ h k₀ k₁ r₁₀ := | |
begin | |
simp only [← null_homotopic_map'], | |
rw null_homotopic_map_f_of_not_rel_right r₁₀ hk₁ (λ i j, dite (c.rel j i) (h i j) (λ _, 0)), | |
dsimp, | |
split_ifs, | |
refl, | |
end | |
@[simp] | |
lemma null_homotopic_map_f_eq_zero {k₀ : ι} | |
(hk₀ : ∀ l : ι, ¬c.rel k₀ l) (hk₀' : ∀ l : ι, ¬c.rel l k₀) | |
(hom : Π i j, C.X i ⟶ D.X j) : | |
(null_homotopic_map hom).f k₀ = 0 := | |
begin | |
dsimp [null_homotopic_map, d_next, prev_d], | |
rw [C.shape, D.shape, zero_comp, comp_zero, add_zero]; apply_assumption, | |
end | |
@[simp] | |
lemma null_homotopic_map'_f_eq_zero {k₀ : ι} | |
(hk₀ : ∀ l : ι, ¬c.rel k₀ l) (hk₀' : ∀ l : ι, ¬c.rel l k₀) | |
(h : Π i j, c.rel j i → (C.X i ⟶ D.X j)) : | |
(null_homotopic_map' h).f k₀ = 0 := | |
begin | |
simp only [← null_homotopic_map'], | |
exact null_homotopic_map_f_eq_zero hk₀ hk₀' | |
(λ i j, dite (c.rel j i) (h i j) (λ _, 0)), | |
end | |
/-! | |
`homotopy.mk_inductive` allows us to build a homotopy of chain complexes inductively, | |
so that as we construct each component, we have available the previous two components, | |
and the fact that they satisfy the homotopy condition. | |
To simplify the situation, we only construct homotopies of the form `homotopy e 0`. | |
`homotopy.equiv_sub_zero` can provide the general case. | |
Notice however, that this construction does not have particularly good definitional properties: | |
we have to insert `eq_to_hom` in several places. | |
Hopefully this is okay in most applications, where we only need to have the existence of some | |
homotopy. | |
-/ | |
section mk_inductive | |
variables {P Q : chain_complex V ℕ} | |
@[simp] lemma prev_d_chain_complex (f : Π i j, P.X i ⟶ Q.X j) (j : ℕ) : | |
prev_d j f = f j (j+1) ≫ Q.d _ _ := | |
begin | |
dsimp [prev_d], | |
have : (complex_shape.down ℕ).prev j = j + 1 := chain_complex.prev ℕ j, | |
congr' 2, | |
end | |
@[simp] lemma d_next_succ_chain_complex (f : Π i j, P.X i ⟶ Q.X j) (i : ℕ) : | |
d_next (i+1) f = P.d _ _ ≫ f i (i+1) := | |
begin | |
dsimp [d_next], | |
have : (complex_shape.down ℕ).next (i + 1) = i := chain_complex.next_nat_succ _, | |
congr' 2, | |
end | |
@[simp] lemma d_next_zero_chain_complex (f : Π i j, P.X i ⟶ Q.X j) : | |
d_next 0 f = 0 := | |
begin | |
dsimp [d_next], | |
rw [P.shape, zero_comp], | |
rw chain_complex.next_nat_zero, dsimp, dec_trivial, | |
end | |
variables (e : P ⟶ Q) | |
(zero : P.X 0 ⟶ Q.X 1) | |
(comm_zero : e.f 0 = zero ≫ Q.d 1 0) | |
(one : P.X 1 ⟶ Q.X 2) | |
(comm_one : e.f 1 = P.d 1 0 ≫ zero + one ≫ Q.d 2 1) | |
(succ : ∀ (n : ℕ) | |
(p : Σ' (f : P.X n ⟶ Q.X (n+1)) (f' : P.X (n+1) ⟶ Q.X (n+2)), | |
e.f (n+1) = P.d (n+1) n ≫ f + f' ≫ Q.d (n+2) (n+1)), | |
Σ' f'' : P.X (n+2) ⟶ Q.X (n+3), e.f (n+2) = P.d (n+2) (n+1) ≫ p.2.1 + f'' ≫ Q.d (n+3) (n+2)) | |
include comm_one comm_zero | |
/-- | |
An auxiliary construction for `mk_inductive`. | |
Here we build by induction a family of diagrams, | |
but don't require at the type level that these successive diagrams actually agree. | |
They do in fact agree, and we then capture that at the type level (i.e. by constructing a homotopy) | |
in `mk_inductive`. | |
At this stage, we don't check the homotopy condition in degree 0, | |
because it "falls off the end", and is easier to treat using `X_next` and `X_prev`, | |
which we do in `mk_inductive_aux₂`. | |
-/ | |
@[simp, nolint unused_arguments] | |
def mk_inductive_aux₁ : | |
Π n, Σ' (f : P.X n ⟶ Q.X (n+1)) (f' : P.X (n+1) ⟶ Q.X (n+2)), | |
e.f (n+1) = P.d (n+1) n ≫ f + f' ≫ Q.d (n+2) (n+1) | |
| 0 := ⟨zero, one, comm_one⟩ | |
| 1 := ⟨one, (succ 0 ⟨zero, one, comm_one⟩).1, (succ 0 ⟨zero, one, comm_one⟩).2⟩ | |
| (n+2) := | |
⟨(mk_inductive_aux₁ (n+1)).2.1, | |
(succ (n+1) (mk_inductive_aux₁ (n+1))).1, | |
(succ (n+1) (mk_inductive_aux₁ (n+1))).2⟩ | |
section | |
/-- | |
An auxiliary construction for `mk_inductive`. | |
-/ | |
@[simp] | |
def mk_inductive_aux₂ : | |
Π n, Σ' (f : P.X_next n ⟶ Q.X n) (f' : P.X n ⟶ Q.X_prev n), e.f n = P.d_from n ≫ f + f' ≫ Q.d_to n | |
| 0 := ⟨0, zero ≫ (Q.X_prev_iso rfl).inv, by simpa using comm_zero⟩ | |
| (n+1) := let I := mk_inductive_aux₁ e zero comm_zero one comm_one succ n in | |
⟨(P.X_next_iso rfl).hom ≫ I.1, I.2.1 ≫ (Q.X_prev_iso rfl).inv, by simpa using I.2.2⟩ | |
lemma mk_inductive_aux₃ (i j : ℕ) (h : i+1 = j) : | |
(mk_inductive_aux₂ e zero comm_zero one comm_one succ i).2.1 ≫ (Q.X_prev_iso h).hom | |
= (P.X_next_iso h).inv ≫ (mk_inductive_aux₂ e zero comm_zero one comm_one succ j).1 := | |
by subst j; rcases i with (_|_|i); { dsimp, simp, } | |
/-- | |
A constructor for a `homotopy e 0`, for `e` a chain map between `ℕ`-indexed chain complexes, | |
working by induction. | |
You need to provide the components of the homotopy in degrees 0 and 1, | |
show that these satisfy the homotopy condition, | |
and then give a construction of each component, | |
and the fact that it satisfies the homotopy condition, | |
using as an inductive hypothesis the data and homotopy condition for the previous two components. | |
-/ | |
def mk_inductive : homotopy e 0 := | |
{ hom := λ i j, if h : i + 1 = j then | |
(mk_inductive_aux₂ e zero comm_zero one comm_one succ i).2.1 ≫ (Q.X_prev_iso h).hom | |
else | |
0, | |
zero' := λ i j w, by rwa dif_neg, | |
comm := λ i, begin | |
dsimp, simp only [add_zero], | |
convert (mk_inductive_aux₂ e zero comm_zero one comm_one succ i).2.2, | |
{ cases i, | |
{ dsimp [from_next], rw dif_neg, | |
simp only [chain_complex.next_nat_zero, nat.one_ne_zero, not_false_iff], }, | |
{ dsimp [from_next], rw dif_pos, swap, { simp only [chain_complex.next_nat_succ] }, | |
have aux : (complex_shape.down ℕ).next i.succ = i := chain_complex.next_nat_succ i, | |
rw mk_inductive_aux₃ e zero comm_zero one comm_one succ | |
((complex_shape.down ℕ).next i.succ) (i+1) (by rw aux), | |
dsimp [X_next_iso], erw category.id_comp, } }, | |
{ dsimp [to_prev], rw dif_pos, swap, { simp only [chain_complex.prev] }, | |
dsimp [X_prev_iso], erw category.comp_id, }, | |
end, } | |
end | |
end mk_inductive | |
/-! | |
`homotopy.mk_coinductive` allows us to build a homotopy of cochain complexes inductively, | |
so that as we construct each component, we have available the previous two components, | |
and the fact that they satisfy the homotopy condition. | |
-/ | |
section mk_coinductive | |
variables {P Q : cochain_complex V ℕ} | |
@[simp] lemma d_next_cochain_complex (f : Π i j, P.X i ⟶ Q.X j) (j : ℕ) : | |
d_next j f = P.d _ _ ≫ f (j+1) j := | |
begin | |
dsimp [d_next], | |
have : (complex_shape.up ℕ).next j = j + 1 := cochain_complex.next ℕ j, | |
congr' 2, | |
end | |
@[simp] lemma prev_d_succ_cochain_complex (f : Π i j, P.X i ⟶ Q.X j) (i : ℕ) : | |
prev_d (i+1) f = f (i+1) _ ≫ Q.d i (i+1) := | |
begin | |
dsimp [prev_d], | |
have : (complex_shape.up ℕ).prev (i+1) = i := cochain_complex.prev_nat_succ i, | |
congr' 2, | |
end | |
@[simp] lemma prev_d_zero_cochain_complex (f : Π i j, P.X i ⟶ Q.X j) : | |
prev_d 0 f = 0 := | |
begin | |
dsimp [prev_d], | |
rw [Q.shape, comp_zero], | |
rw [cochain_complex.prev_nat_zero], dsimp, dec_trivial, | |
end | |
variables (e : P ⟶ Q) | |
(zero : P.X 1 ⟶ Q.X 0) | |
(comm_zero : e.f 0 = P.d 0 1 ≫ zero) | |
(one : P.X 2 ⟶ Q.X 1) | |
(comm_one : e.f 1 = zero ≫ Q.d 0 1 + P.d 1 2 ≫ one) | |
(succ : ∀ (n : ℕ) | |
(p : Σ' (f : P.X (n+1) ⟶ Q.X n) (f' : P.X (n+2) ⟶ Q.X (n+1)), | |
e.f (n+1) = f ≫ Q.d n (n+1) + P.d (n+1) (n+2) ≫ f'), | |
Σ' f'' : P.X (n+3) ⟶ Q.X (n+2), e.f (n+2) = p.2.1 ≫ Q.d (n+1) (n+2) + P.d (n+2) (n+3) ≫ f'') | |
include comm_one comm_zero succ | |
/-- | |
An auxiliary construction for `mk_coinductive`. | |
Here we build by induction a family of diagrams, | |
but don't require at the type level that these successive diagrams actually agree. | |
They do in fact agree, and we then capture that at the type level (i.e. by constructing a homotopy) | |
in `mk_coinductive`. | |
At this stage, we don't check the homotopy condition in degree 0, | |
because it "falls off the end", and is easier to treat using `X_next` and `X_prev`, | |
which we do in `mk_inductive_aux₂`. | |
-/ | |
@[simp, nolint unused_arguments] | |
def mk_coinductive_aux₁ : | |
Π n, Σ' (f : P.X (n+1) ⟶ Q.X n) (f' : P.X (n+2) ⟶ Q.X (n+1)), | |
e.f (n+1) = f ≫ Q.d n (n+1) + P.d (n+1) (n+2) ≫ f' | |
| 0 := ⟨zero, one, comm_one⟩ | |
| 1 := ⟨one, (succ 0 ⟨zero, one, comm_one⟩).1, (succ 0 ⟨zero, one, comm_one⟩).2⟩ | |
| (n+2) := | |
⟨(mk_coinductive_aux₁ (n+1)).2.1, | |
(succ (n+1) (mk_coinductive_aux₁ (n+1))).1, | |
(succ (n+1) (mk_coinductive_aux₁ (n+1))).2⟩ | |
section | |
/-- | |
An auxiliary construction for `mk_inductive`. | |
-/ | |
@[simp] | |
def mk_coinductive_aux₂ : | |
Π n, Σ' (f : P.X n ⟶ Q.X_prev n) (f' : P.X_next n ⟶ Q.X n), | |
e.f n = f ≫ Q.d_to n + P.d_from n ≫ f' | |
| 0 := ⟨0, (P.X_next_iso rfl).hom ≫ zero, by simpa using comm_zero⟩ | |
| (n+1) := let I := mk_coinductive_aux₁ e zero comm_zero one comm_one succ n in | |
⟨I.1 ≫ (Q.X_prev_iso rfl).inv, (P.X_next_iso rfl).hom ≫ I.2.1, by simpa using I.2.2⟩ | |
lemma mk_coinductive_aux₃ (i j : ℕ) (h : i + 1 = j) : | |
(P.X_next_iso h).inv ≫ (mk_coinductive_aux₂ e zero comm_zero one comm_one succ i).2.1 | |
= (mk_coinductive_aux₂ e zero comm_zero one comm_one succ j).1 ≫ (Q.X_prev_iso h).hom := | |
by subst j; rcases i with (_|_|i); { dsimp, simp, } | |
/-- | |
A constructor for a `homotopy e 0`, for `e` a chain map between `ℕ`-indexed cochain complexes, | |
working by induction. | |
You need to provide the components of the homotopy in degrees 0 and 1, | |
show that these satisfy the homotopy condition, | |
and then give a construction of each component, | |
and the fact that it satisfies the homotopy condition, | |
using as an inductive hypothesis the data and homotopy condition for the previous two components. | |
-/ | |
def mk_coinductive : homotopy e 0 := | |
{ hom := λ i j, if h : j + 1 = i then | |
(P.X_next_iso h).inv ≫ (mk_coinductive_aux₂ e zero comm_zero one comm_one succ j).2.1 | |
else | |
0, | |
zero' := λ i j w, by rwa dif_neg, | |
comm := λ i, begin | |
dsimp, | |
rw [add_zero, add_comm], | |
convert (mk_coinductive_aux₂ e zero comm_zero one comm_one succ i).2.2 using 2, | |
{ cases i, | |
{ dsimp [to_prev], rw dif_neg, | |
simp only [cochain_complex.prev_nat_zero, nat.one_ne_zero, not_false_iff], }, | |
{ dsimp [to_prev], rw dif_pos, swap, { simp only [cochain_complex.prev_nat_succ] }, | |
have aux : (complex_shape.up ℕ).prev i.succ = i := cochain_complex.prev_nat_succ i, | |
rw mk_coinductive_aux₃ e zero comm_zero one comm_one succ | |
((complex_shape.up ℕ).prev i.succ) (i+1) (by rw aux), | |
dsimp [X_prev_iso], erw category.comp_id, } }, | |
{ dsimp [from_next], rw dif_pos, swap, { simp only [cochain_complex.next] }, | |
dsimp [X_next_iso], erw category.id_comp, }, | |
end } | |
end | |
end mk_coinductive | |
end homotopy | |
/-- | |
A homotopy equivalence between two chain complexes consists of a chain map each way, | |
and homotopies from the compositions to the identity chain maps. | |
Note that this contains data; | |
arguably it might be more useful for many applications if we truncated it to a Prop. | |
-/ | |
structure homotopy_equiv (C D : homological_complex V c) := | |
(hom : C ⟶ D) | |
(inv : D ⟶ C) | |
(homotopy_hom_inv_id : homotopy (hom ≫ inv) (𝟙 C)) | |
(homotopy_inv_hom_id : homotopy (inv ≫ hom) (𝟙 D)) | |
namespace homotopy_equiv | |
/-- Any complex is homotopy equivalent to itself. -/ | |
@[refl] def refl (C : homological_complex V c) : homotopy_equiv C C := | |
{ hom := 𝟙 C, | |
inv := 𝟙 C, | |
homotopy_hom_inv_id := by simp, | |
homotopy_inv_hom_id := by simp, } | |
instance : inhabited (homotopy_equiv C C) := ⟨refl C⟩ | |
/-- Being homotopy equivalent is a symmetric relation. -/ | |
@[symm] def symm | |
{C D : homological_complex V c} (f : homotopy_equiv C D) : | |
homotopy_equiv D C := | |
{ hom := f.inv, | |
inv := f.hom, | |
homotopy_hom_inv_id := f.homotopy_inv_hom_id, | |
homotopy_inv_hom_id := f.homotopy_hom_inv_id, } | |
/-- Homotopy equivalence is a transitive relation. -/ | |
@[trans] def trans | |
{C D E : homological_complex V c} (f : homotopy_equiv C D) (g : homotopy_equiv D E) : | |
homotopy_equiv C E := | |
{ hom := f.hom ≫ g.hom, | |
inv := g.inv ≫ f.inv, | |
homotopy_hom_inv_id := by simpa using | |
((g.homotopy_hom_inv_id.comp_right_id f.inv).comp_left f.hom).trans f.homotopy_hom_inv_id, | |
homotopy_inv_hom_id := by simpa using | |
((f.homotopy_inv_hom_id.comp_right_id g.hom).comp_left g.inv).trans g.homotopy_inv_hom_id, } | |
end homotopy_equiv | |
variables [has_equalizers V] [has_cokernels V] [has_images V] [has_image_maps V] | |
/-- | |
Homotopic maps induce the same map on homology. | |
-/ | |
theorem homology_map_eq_of_homotopy (h : homotopy f g) (i : ι) : | |
(homology_functor V c i).map f = (homology_functor V c i).map g := | |
begin | |
dsimp [homology_functor], | |
apply eq_of_sub_eq_zero, | |
ext, | |
simp only [homology.π_map, comp_zero, preadditive.comp_sub], | |
dsimp [kernel_subobject_map], | |
simp_rw [h.comm i], | |
simp only [zero_add, zero_comp, d_next_eq_d_from_from_next, kernel_subobject_arrow_comp_assoc, | |
preadditive.comp_add], | |
rw [←preadditive.sub_comp], | |
simp only [category_theory.subobject.factor_thru_add_sub_factor_thru_right], | |
erw [subobject.factor_thru_of_le (D.boundaries_le_cycles i)], | |
{ simp, }, | |
{ rw [prev_d_eq_to_prev_d_to, ←category.assoc], | |
apply image_subobject_factors_comp_self, }, | |
end | |
/-- Homotopy equivalent complexes have isomorphic homologies. -/ | |
def homology_obj_iso_of_homotopy_equiv (f : homotopy_equiv C D) (i : ι) : | |
(homology_functor V c i).obj C ≅ (homology_functor V c i).obj D := | |
{ hom := (homology_functor V c i).map f.hom, | |
inv := (homology_functor V c i).map f.inv, | |
hom_inv_id' := begin | |
rw [←functor.map_comp, homology_map_eq_of_homotopy f.homotopy_hom_inv_id, | |
category_theory.functor.map_id], | |
end, | |
inv_hom_id' := begin | |
rw [←functor.map_comp, homology_map_eq_of_homotopy f.homotopy_inv_hom_id, | |
category_theory.functor.map_id], | |
end, } | |
end | |
namespace category_theory | |
variables {W : Type*} [category W] [preadditive W] | |
/-- An additive functor takes homotopies to homotopies. -/ | |
@[simps] | |
def functor.map_homotopy (F : V ⥤ W) [F.additive] {f g : C ⟶ D} (h : homotopy f g) : | |
homotopy ((F.map_homological_complex c).map f) ((F.map_homological_complex c).map g) := | |
{ hom := λ i j, F.map (h.hom i j), | |
zero' := λ i j w, by { rw [h.zero i j w, F.map_zero], }, | |
comm := λ i, begin | |
dsimp [d_next, prev_d] at *, | |
rw h.comm i, | |
simp only [F.map_add, ← F.map_comp], | |
refl | |
end, } | |
/-- An additive functor preserves homotopy equivalences. -/ | |
@[simps] | |
def functor.map_homotopy_equiv (F : V ⥤ W) [F.additive] (h : homotopy_equiv C D) : | |
homotopy_equiv ((F.map_homological_complex c).obj C) ((F.map_homological_complex c).obj D) := | |
{ hom := (F.map_homological_complex c).map h.hom, | |
inv := (F.map_homological_complex c).map h.inv, | |
homotopy_hom_inv_id := begin | |
rw [←(F.map_homological_complex c).map_comp, ←(F.map_homological_complex c).map_id], | |
exact F.map_homotopy h.homotopy_hom_inv_id, | |
end, | |
homotopy_inv_hom_id := begin | |
rw [←(F.map_homological_complex c).map_comp, ←(F.map_homological_complex c).map_id], | |
exact F.map_homotopy h.homotopy_inv_hom_id, | |
end } | |
end category_theory | |