Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Eric Wieser. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Eric Wieser | |
-/ | |
import algebra.module.equiv | |
import group_theory.group_action.opposite | |
/-! | |
# Module operations on `Mᵐᵒᵖ` | |
This file contains definitions that build on top of the group action definitions in | |
`group_theory.group_action.opposite`. | |
-/ | |
namespace mul_opposite | |
universes u v | |
variables (R : Type u) {M : Type v} [semiring R] [add_comm_monoid M] [module R M] | |
/-- `mul_opposite.distrib_mul_action` extends to a `module` -/ | |
instance : module R (mul_opposite M) := | |
{ add_smul := λ r₁ r₂ x, unop_injective $ add_smul r₁ r₂ (unop x), | |
zero_smul := λ x, unop_injective $ zero_smul _ (unop x), | |
..mul_opposite.distrib_mul_action M R } | |
/-- The function `op` is a linear equivalence. -/ | |
def op_linear_equiv : M ≃ₗ[R] Mᵐᵒᵖ := | |
{ map_smul' := mul_opposite.op_smul, .. op_add_equiv } | |
@[simp] lemma coe_op_linear_equiv : | |
(op_linear_equiv R : M → Mᵐᵒᵖ) = op := rfl | |
@[simp] lemma coe_op_linear_equiv_symm : | |
((op_linear_equiv R).symm : Mᵐᵒᵖ → M) = unop := rfl | |
@[simp] lemma coe_op_linear_equiv_to_linear_map : | |
((op_linear_equiv R).to_linear_map : M → Mᵐᵒᵖ) = op := rfl | |
@[simp] lemma coe_op_linear_equiv_symm_to_linear_map : | |
((op_linear_equiv R).symm.to_linear_map : Mᵐᵒᵖ → M) = unop := rfl | |
@[simp] lemma op_linear_equiv_to_add_equiv : | |
(op_linear_equiv R : M ≃ₗ[R] Mᵐᵒᵖ).to_add_equiv = op_add_equiv := rfl | |
@[simp] lemma op_linear_equiv_symm_to_add_equiv : | |
(op_linear_equiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm.to_add_equiv = op_add_equiv.symm := rfl | |
end mul_opposite | |