Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Fox Thomson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Fox Thomson | |
-/ | |
import tactic.rcases | |
import computability.language | |
/-! | |
# Regular Expressions | |
This file contains the formal definition for regular expressions and basic lemmas. Note these are | |
regular expressions in terms of formal language theory. Note this is different to regex's used in | |
computer science such as the POSIX standard. | |
## TODO | |
* Show that this regular expressions and DFA/NFA's are equivalent. | |
* `attribute [pattern] has_mul.mul` has been added into this file, it could be moved. | |
-/ | |
open list set | |
universe u | |
variables {α β γ : Type*} [dec : decidable_eq α] | |
/-- | |
This is the definition of regular expressions. The names used here is to mirror the definition | |
of a Kleene algebra (https://en.wikipedia.org/wiki/Kleene_algebra). | |
* `0` (`zero`) matches nothing | |
* `1` (`epsilon`) matches only the empty string | |
* `char a` matches only the string 'a' | |
* `star P` matches any finite concatenation of strings which match `P` | |
* `P + Q` (`plus P Q`) matches anything which match `P` or `Q` | |
* `P * Q` (`comp P Q`) matches `x ++ y` if `x` matches `P` and `y` matches `Q` | |
-/ | |
inductive regular_expression (α : Type u) : Type u | |
| zero : regular_expression | |
| epsilon : regular_expression | |
| char : α → regular_expression | |
| plus : regular_expression → regular_expression → regular_expression | |
| comp : regular_expression → regular_expression → regular_expression | |
| star : regular_expression → regular_expression | |
namespace regular_expression | |
variables {a b : α} | |
instance : inhabited (regular_expression α) := ⟨zero⟩ | |
instance : has_add (regular_expression α) := ⟨plus⟩ | |
instance : has_mul (regular_expression α) := ⟨comp⟩ | |
instance : has_one (regular_expression α) := ⟨epsilon⟩ | |
instance : has_zero (regular_expression α) := ⟨zero⟩ | |
instance : has_pow (regular_expression α) ℕ := ⟨λ n r, npow_rec r n⟩ | |
attribute [pattern] has_mul.mul | |
@[simp] lemma zero_def : (zero : regular_expression α) = 0 := rfl | |
@[simp] lemma one_def : (epsilon : regular_expression α) = 1 := rfl | |
@[simp] lemma plus_def (P Q : regular_expression α) : plus P Q = P + Q := rfl | |
@[simp] lemma comp_def (P Q : regular_expression α) : comp P Q = P * Q := rfl | |
/-- `matches P` provides a language which contains all strings that `P` matches -/ | |
@[simp] def matches : regular_expression α → language α | |
| 0 := 0 | |
| 1 := 1 | |
| (char a) := {[a]} | |
| (P + Q) := P.matches + Q.matches | |
| (P * Q) := P.matches * Q.matches | |
| (star P) := P.matches.star | |
@[simp] lemma matches_zero : (0 : regular_expression α).matches = 0 := rfl | |
@[simp] lemma matches_epsilon : (1 : regular_expression α).matches = 1 := rfl | |
@[simp] lemma matches_char (a : α) : (char a).matches = {[a]} := rfl | |
@[simp] lemma matches_add (P Q : regular_expression α) : | |
(P + Q).matches = P.matches + Q.matches := rfl | |
@[simp] lemma matches_mul (P Q : regular_expression α) : | |
(P * Q).matches = P.matches * Q.matches := rfl | |
@[simp] lemma matches_pow (P : regular_expression α) : | |
∀ n : ℕ, (P ^ n).matches = P.matches ^ n | |
| 0 := matches_epsilon | |
| (n + 1) := (matches_mul _ _).trans $ eq.trans (congr_arg _ (matches_pow n)) (pow_succ _ _).symm | |
@[simp] lemma matches_star (P : regular_expression α) : P.star.matches = P.matches.star := rfl | |
/-- `match_epsilon P` is true if and only if `P` matches the empty string -/ | |
def match_epsilon : regular_expression α → bool | |
| 0 := ff | |
| 1 := tt | |
| (char _) := ff | |
| (P + Q) := P.match_epsilon || Q.match_epsilon | |
| (P * Q) := P.match_epsilon && Q.match_epsilon | |
| (star P) := tt | |
include dec | |
/-- `P.deriv a` matches `x` if `P` matches `a :: x`, the Brzozowski derivative of `P` with respect | |
to `a` -/ | |
def deriv : regular_expression α → α → regular_expression α | |
| 0 _ := 0 | |
| 1 _ := 0 | |
| (char a₁) a₂ := if a₁ = a₂ then 1 else 0 | |
| (P + Q) a := deriv P a + deriv Q a | |
| (P * Q) a := | |
if P.match_epsilon then | |
deriv P a * Q + deriv Q a | |
else | |
deriv P a * Q | |
| (star P) a := deriv P a * star P | |
@[simp] lemma deriv_zero (a : α) : deriv 0 a = 0 := rfl | |
@[simp] lemma deriv_one (a : α) : deriv 1 a = 0 := rfl | |
@[simp] lemma deriv_char_self (a : α) : deriv (char a) a = 1 := if_pos rfl | |
@[simp] lemma deriv_char_of_ne (h : a ≠ b) : deriv (char a) b = 0 := if_neg h | |
@[simp] lemma deriv_add (P Q : regular_expression α) (a : α) : | |
deriv (P + Q) a = deriv P a + deriv Q a := rfl | |
@[simp] lemma deriv_star (P : regular_expression α) (a : α) : | |
deriv (P.star) a = deriv P a * star P := rfl | |
/-- `P.rmatch x` is true if and only if `P` matches `x`. This is a computable definition equivalent | |
to `matches`. -/ | |
def rmatch : regular_expression α → list α → bool | |
| P [] := match_epsilon P | |
| P (a::as) := rmatch (P.deriv a) as | |
@[simp] lemma zero_rmatch (x : list α) : rmatch 0 x = ff := | |
by induction x; simp [rmatch, match_epsilon, *] | |
lemma one_rmatch_iff (x : list α) : rmatch 1 x ↔ x = [] := | |
by induction x; simp [rmatch, match_epsilon, *] | |
lemma char_rmatch_iff (a : α) (x : list α) : rmatch (char a) x ↔ x = [a] := | |
begin | |
cases x with _ x, | |
dec_trivial, | |
cases x, | |
rw [rmatch, deriv], | |
split_ifs; | |
tauto, | |
rw [rmatch, deriv], | |
split_ifs, | |
rw one_rmatch_iff, | |
tauto, | |
rw zero_rmatch, | |
tauto | |
end | |
lemma add_rmatch_iff (P Q : regular_expression α) (x : list α) : | |
(P + Q).rmatch x ↔ P.rmatch x ∨ Q.rmatch x := | |
begin | |
induction x with _ _ ih generalizing P Q, | |
{ simp only [rmatch, match_epsilon, bor_coe_iff] }, | |
{ repeat {rw rmatch}, | |
rw deriv, | |
exact ih _ _ } | |
end | |
lemma mul_rmatch_iff (P Q : regular_expression α) (x : list α) : | |
(P * Q).rmatch x ↔ ∃ t u : list α, x = t ++ u ∧ P.rmatch t ∧ Q.rmatch u := | |
begin | |
induction x with a x ih generalizing P Q, | |
{ rw [rmatch, match_epsilon], | |
split, | |
{ intro h, | |
refine ⟨ [], [], rfl, _ ⟩, | |
rw [rmatch, rmatch], | |
rwa band_coe_iff at h }, | |
{ rintro ⟨ t, u, h₁, h₂ ⟩, | |
cases list.append_eq_nil.1 h₁.symm with ht hu, | |
subst ht, | |
subst hu, | |
repeat {rw rmatch at h₂}, | |
simp [h₂] } }, | |
{ rw [rmatch, deriv], | |
split_ifs with hepsilon, | |
{ rw [add_rmatch_iff, ih], | |
split, | |
{ rintro (⟨ t, u, _ ⟩ | h), | |
{ exact ⟨ a :: t, u, by tauto ⟩ }, | |
{ exact ⟨ [], a :: x, rfl, hepsilon, h ⟩ } }, | |
{ rintro ⟨ t, u, h, hP, hQ ⟩, | |
cases t with b t, | |
{ right, | |
rw list.nil_append at h, | |
rw ←h at hQ, | |
exact hQ }, | |
{ left, | |
simp only [list.cons_append] at h, | |
refine ⟨ t, u, h.2, _, hQ ⟩, | |
rw rmatch at hP, | |
convert hP, | |
exact h.1 } } }, | |
{ rw ih, | |
split; | |
rintro ⟨ t, u, h, hP, hQ ⟩, | |
{ exact ⟨ a :: t, u, by tauto ⟩ }, | |
{ cases t with b t, | |
{ contradiction }, | |
{ simp only [list.cons_append] at h, | |
refine ⟨ t, u, h.2, _, hQ ⟩, | |
rw rmatch at hP, | |
convert hP, | |
exact h.1 } } } } | |
end | |
lemma star_rmatch_iff (P : regular_expression α) : ∀ (x : list α), | |
(star P).rmatch x ↔ ∃ S : list (list α), x = S.join ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t | |
| x := | |
begin | |
have A : ∀ (m n : ℕ), n < m + n + 1, | |
{ assume m n, | |
convert add_lt_add_of_le_of_lt (add_le_add (zero_le m) (le_refl n)) zero_lt_one, | |
simp }, | |
have IH := λ t (h : list.length t < list.length x), star_rmatch_iff t, | |
clear star_rmatch_iff, | |
split, | |
{ cases x with a x, | |
{ intro, | |
fconstructor, | |
exact [], | |
tauto }, | |
{ rw [rmatch, deriv, mul_rmatch_iff], | |
rintro ⟨ t, u, hs, ht, hu ⟩, | |
have hwf : u.length < (list.cons a x).length, | |
{ rw [hs, list.length_cons, list.length_append], | |
apply A }, | |
rw IH _ hwf at hu, | |
rcases hu with ⟨ S', hsum, helem ⟩, | |
use (a :: t) :: S', | |
split, | |
{ simp [hs, hsum] }, | |
{ intros t' ht', | |
cases ht' with ht' ht', | |
{ rw ht', | |
exact ⟨ dec_trivial, ht ⟩ }, | |
{ exact helem _ ht' } } } }, | |
{ rintro ⟨ S, hsum, helem ⟩, | |
cases x with a x, | |
{ dec_trivial }, | |
{ rw [rmatch, deriv, mul_rmatch_iff], | |
cases S with t' U, | |
{ exact ⟨ [], [], by tauto ⟩ }, | |
{ cases t' with b t, | |
{ simp only [forall_eq_or_imp, list.mem_cons_iff] at helem, | |
simp only [eq_self_iff_true, not_true, ne.def, false_and] at helem, | |
cases helem }, | |
simp only [list.join, list.cons_append] at hsum, | |
refine ⟨ t, U.join, hsum.2, _, _ ⟩, | |
{ specialize helem (b :: t) (by simp), | |
rw rmatch at helem, | |
convert helem.2, | |
exact hsum.1 }, | |
{ have hwf : U.join.length < (list.cons a x).length, | |
{ rw [hsum.1, hsum.2], | |
simp only [list.length_append, list.length_join, list.length], | |
apply A }, | |
rw IH _ hwf, | |
refine ⟨ U, rfl, λ t h, helem t _ ⟩, | |
right, | |
assumption } } } } | |
end | |
using_well_founded | |
{ rel_tac := λ _ _, `[exact ⟨(λ L₁ L₂ : list _, L₁.length < L₂.length), inv_image.wf _ nat.lt_wf⟩] } | |
@[simp] lemma rmatch_iff_matches (P : regular_expression α) : | |
∀ x : list α, P.rmatch x ↔ x ∈ P.matches := | |
begin | |
intro x, | |
induction P generalizing x, | |
all_goals | |
{ try {rw zero_def}, | |
try {rw one_def}, | |
try {rw plus_def}, | |
try {rw comp_def}, | |
rw matches }, | |
case zero : | |
{ rw zero_rmatch, | |
tauto }, | |
case epsilon : | |
{ rw one_rmatch_iff, | |
refl }, | |
case char : | |
{ rw char_rmatch_iff, | |
refl }, | |
case plus : _ _ ih₁ ih₂ | |
{ rw [add_rmatch_iff, ih₁, ih₂], | |
refl }, | |
case comp : P Q ih₁ ih₂ | |
{ simp only [mul_rmatch_iff, comp_def, language.mul_def, exists_and_distrib_left, set.mem_image2, | |
set.image_prod], | |
split, | |
{ rintro ⟨ x, y, hsum, hmatch₁, hmatch₂ ⟩, | |
rw ih₁ at hmatch₁, | |
rw ih₂ at hmatch₂, | |
exact ⟨ x, hmatch₁, y, hmatch₂, hsum.symm ⟩ }, | |
{ rintro ⟨ x, hmatch₁, y, hmatch₂, hsum ⟩, | |
rw ←ih₁ at hmatch₁, | |
rw ←ih₂ at hmatch₂, | |
exact ⟨ x, y, hsum.symm, hmatch₁, hmatch₂ ⟩ } }, | |
case star : _ ih | |
{ rw [star_rmatch_iff, language.star_def_nonempty], | |
split, | |
all_goals | |
{ rintro ⟨ S, hx, hS ⟩, | |
refine ⟨ S, hx, _ ⟩, | |
intro y, | |
specialize hS y }, | |
{ rw ←ih y, | |
tauto }, | |
{ rw ih y, | |
tauto } } | |
end | |
instance (P : regular_expression α) : decidable_pred P.matches := | |
begin | |
intro x, | |
change decidable (x ∈ P.matches), | |
rw ←rmatch_iff_matches, | |
exact eq.decidable _ _ | |
end | |
omit dec | |
/-- Map the alphabet of a regular expression. -/ | |
@[simp] def map (f : α → β) : regular_expression α → regular_expression β | |
| 0 := 0 | |
| 1 := 1 | |
| (char a) := char (f a) | |
| (R + S) := map R + map S | |
| (R * S) := map R * map S | |
| (star R) := star (map R) | |
@[simp] protected lemma map_pow (f : α → β) (P : regular_expression α) : | |
∀ n : ℕ, map f (P ^ n) = map f P ^ n | |
| 0 := rfl | |
| (n + 1) := (congr_arg ((*) (map f P)) (map_pow n) : _) | |
@[simp] lemma map_id : ∀ (P : regular_expression α), P.map id = P | |
| 0 := rfl | |
| 1 := rfl | |
| (char a) := rfl | |
| (R + S) := by simp_rw [map, map_id] | |
| (R * S) := by simp_rw [map, map_id] | |
| (star R) := by simp_rw [map, map_id] | |
@[simp] lemma map_map (g : β → γ) (f : α → β) : | |
∀ (P : regular_expression α), (P.map f).map g = P.map (g ∘ f) | |
| 0 := rfl | |
| 1 := rfl | |
| (char a) := rfl | |
| (R + S) := by simp_rw [map, map_map] | |
| (R * S) := by simp_rw [map, map_map] | |
| (star R) := by simp_rw [map, map_map] | |
/-- The language of the map is the map of the language. -/ | |
@[simp] lemma matches_map (f : α → β) : | |
∀ P : regular_expression α, (P.map f).matches = language.map f P.matches | |
| 0 := (map_zero _).symm | |
| 1 := (map_one _).symm | |
| (char a) := by { rw eq_comm, exact image_singleton } | |
| (R + S) := by simp only [matches_map, map, matches_add, map_add] | |
| (R * S) := by simp only [matches_map, map, matches_mul, map_mul] | |
| (star R) := begin | |
simp_rw [map, matches, matches_map], | |
rw [language.star_eq_supr_pow, language.star_eq_supr_pow], | |
simp_rw ←map_pow, | |
exact image_Union.symm, | |
end | |
end regular_expression | |