Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.06 kB
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import control.functor
import data.sum.basic
/-!
# Functors with two arguments
This file defines bifunctors.
A bifunctor is a function `F : Type* → Type* → Type*` along with a bimap which turns `F α β` into
`F α' β'` given two functions `α → α'` and `β → β'`. It further
* respects the identity: `bimap id id = id`
* composes in the obvious way: `(bimap f' g') ∘ (bimap f g) = bimap (f' ∘ f) (g' ∘ g)`
## Main declarations
* `bifunctor`: A typeclass for the bare bimap of a bifunctor.
* `is_lawful_bifunctor`: A typeclass asserting this bimap respects the bifunctor laws.
-/
universes u₀ u₁ u₂ v₀ v₁ v₂
open function
/-- Lawless bifunctor. This typeclass only holds the data for the bimap. -/
class bifunctor (F : Type u₀ → Type u₁ → Type u₂) :=
(bimap : Π {α α' β β'}, (α → α') → (β → β') → F α β → F α' β')
export bifunctor ( bimap )
/-- Bifunctor. This typeclass asserts that a lawless `bifunctor` is lawful. -/
class is_lawful_bifunctor (F : Type u₀ → Type u₁ → Type u₂) [bifunctor F] :=
(id_bimap : Π {α β} (x : F α β), bimap id id x = x)
(bimap_bimap : Π {α₀ α₁ α₂ β₀ β₁ β₂} (f : α₀ → α₁) (f' : α₁ → α₂)
(g : β₀ → β₁) (g' : β₁ → β₂) (x : F α₀ β₀),
bimap f' g' (bimap f g x) = bimap (f'f) (g'g) x)
export is_lawful_bifunctor (id_bimap bimap_bimap)
attribute [higher_order bimap_id_id] id_bimap
attribute [higher_order bimap_comp_bimap] bimap_bimap
export is_lawful_bifunctor (bimap_id_id bimap_comp_bimap)
variables {F : Type u₀ → Type u₁ → Type u₂} [bifunctor F]
namespace bifunctor
/-- Left map of a bifunctor. -/
@[reducible] def fst {α α' β} (f : α → α') : F α β → F α' β := bimap f id
/-- Right map of a bifunctor. -/
@[reducible] def snd {α β β'} (f : β → β') : F α β → F α β' := bimap id f
variable [is_lawful_bifunctor F]
@[higher_order fst_id]
lemma id_fst : Π {α β} (x : F α β), fst id x = x :=
@id_bimap _ _ _
@[higher_order snd_id]
lemma id_snd : Π {α β} (x : F α β), snd id x = x :=
@id_bimap _ _ _
@[higher_order fst_comp_fst]
lemma comp_fst {α₀ α₁ α₂ β}
(f : α₀ → α₁) (f' : α₁ → α₂) (x : F α₀ β) :
fst f' (fst f x) = fst (f'f) x :=
by simp [fst,bimap_bimap]
@[higher_order fst_comp_snd]
lemma fst_snd {α₀ α₁ β₀ β₁}
(f : α₀ → α₁) (f' : β₀ → β₁) (x : F α₀ β₀) :
fst f (snd f' x) = bimap f f' x :=
by simp [fst,bimap_bimap]
@[higher_order snd_comp_fst]
lemma snd_fst {α₀ α₁ β₀ β₁}
(f : α₀ → α₁) (f' : β₀ → β₁) (x : F α₀ β₀) :
snd f' (fst f x) = bimap f f' x :=
by simp [snd,bimap_bimap]
@[higher_order snd_comp_snd]
lemma comp_snd {α β₀ β₁ β₂}
(g : β₀ → β₁) (g' : β₁ → β₂) (x : F α β₀) :
snd g' (snd g x) = snd (g'g) x :=
by simp [snd,bimap_bimap]
attribute [functor_norm] bimap_bimap comp_snd comp_fst
snd_comp_snd snd_comp_fst fst_comp_snd fst_comp_fst bimap_comp_bimap
bimap_id_id fst_id snd_id
end bifunctor
open functor
instance : bifunctor prod :=
{ bimap := @prod.map }
instance : is_lawful_bifunctor prod :=
by refine { .. }; intros; cases x; refl
instance bifunctor.const : bifunctor const :=
{ bimap := (λ α α' β β f _, f) }
instance is_lawful_bifunctor.const : is_lawful_bifunctor const :=
by refine { .. }; intros; refl
instance bifunctor.flip : bifunctor (flip F) :=
{ bimap := (λ α α' β β' f f' x, (bimap f' f x : F β' α')) }
instance is_lawful_bifunctor.flip [is_lawful_bifunctor F] : is_lawful_bifunctor (flip F) :=
by refine { .. }; intros; simp [bimap] with functor_norm
instance : bifunctor sum :=
{ bimap := @sum.map }
instance : is_lawful_bifunctor sum :=
by refine { .. }; intros; cases x; refl
open bifunctor functor
@[priority 10]
instance bifunctor.functor {α} : functor (F α) :=
{ map := λ _ _, snd }
@[priority 10]
instance bifunctor.is_lawful_functor [is_lawful_bifunctor F] {α} : is_lawful_functor (F α) :=
by refine {..}; intros; simp [functor.map] with functor_norm
section bicompl
variables (G : Type* → Type u₀) (H : Type* → Type u₁) [functor G] [functor H]
instance : bifunctor (bicompl F G H) :=
{ bimap := λ α α' β β' f f' x, (bimap (map f) (map f') x : F (G α') (H β')) }
instance [is_lawful_functor G] [is_lawful_functor H] [is_lawful_bifunctor F] :
is_lawful_bifunctor (bicompl F G H) :=
by constructor; intros; simp [bimap,map_id,map_comp_map] with functor_norm
end bicompl
section bicompr
variables (G : Type u₂ → Type*) [functor G]
instance : bifunctor (bicompr G F) :=
{ bimap := λ α α' β β' f f' x, (map (bimap f f') x : G (F α' β')) }
instance [is_lawful_functor G] [is_lawful_bifunctor F] :
is_lawful_bifunctor (bicompr G F) :=
by constructor; intros; simp [bimap] with functor_norm
end bicompr