Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Simon Hudon. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Simon Hudon | |
-/ | |
import logic.equiv.basic | |
import tactic.basic | |
/-! | |
# Monad | |
## Attributes | |
* ext | |
* functor_norm | |
* monad_norm | |
## Implementation Details | |
Set of rewrite rules and automation for monads in general and | |
`reader_t`, `state_t`, `except_t` and `option_t` in particular. | |
The rewrite rules for monads are carefully chosen so that `simp with | |
functor_norm` will not introduce monadic vocabulary in a context where | |
applicatives would do just fine but will handle monadic notation | |
already present in an expression. | |
In a context where monadic reasoning is desired `simp with monad_norm` | |
will translate functor and applicative notation into monad notation | |
and use regular `functor_norm` rules as well. | |
## Tags | |
functor, applicative, monad, simp | |
-/ | |
mk_simp_attribute monad_norm none with functor_norm | |
attribute [ext] reader_t.ext state_t.ext except_t.ext option_t.ext | |
attribute [functor_norm] bind_assoc pure_bind bind_pure | |
attribute [monad_norm] seq_eq_bind_map | |
universes u v | |
@[monad_norm] | |
lemma map_eq_bind_pure_comp | |
(m : Type u → Type v) [monad m] [is_lawful_monad m] {α β : Type u} (f : α → β) (x : m α) : | |
f <$> x = x >>= pure ∘ f := by rw bind_pure_comp_eq_map | |
/-- run a `state_t` program and discard the final state -/ | |
def state_t.eval {m : Type u → Type v} [functor m] {σ α} (cmd : state_t σ m α) (s : σ) : m α := | |
prod.fst <$> cmd.run s | |
universes u₀ u₁ v₀ v₁ | |
/-- reduce the equivalence between two state monads to the equivalence between | |
their respective function spaces -/ | |
def state_t.equiv {m₁ : Type u₀ → Type v₀} {m₂ : Type u₁ → Type v₁} | |
{α₁ σ₁ : Type u₀} {α₂ σ₂ : Type u₁} (F : (σ₁ → m₁ (α₁ × σ₁)) ≃ (σ₂ → m₂ (α₂ × σ₂))) : | |
state_t σ₁ m₁ α₁ ≃ state_t σ₂ m₂ α₂ := | |
{ to_fun := λ ⟨f⟩, ⟨F f⟩, | |
inv_fun := λ ⟨f⟩, ⟨F.symm f⟩, | |
left_inv := λ ⟨f⟩, congr_arg state_t.mk $ F.left_inv _, | |
right_inv := λ ⟨f⟩, congr_arg state_t.mk $ F.right_inv _ } | |
/-- reduce the equivalence between two reader monads to the equivalence between | |
their respective function spaces -/ | |
def reader_t.equiv {m₁ : Type u₀ → Type v₀} {m₂ : Type u₁ → Type v₁} | |
{α₁ ρ₁ : Type u₀} {α₂ ρ₂ : Type u₁} (F : (ρ₁ → m₁ α₁) ≃ (ρ₂ → m₂ α₂)) : | |
reader_t ρ₁ m₁ α₁ ≃ reader_t ρ₂ m₂ α₂ := | |
{ to_fun := λ ⟨f⟩, ⟨F f⟩, | |
inv_fun := λ ⟨f⟩, ⟨F.symm f⟩, | |
left_inv := λ ⟨f⟩, congr_arg reader_t.mk $ F.left_inv _, | |
right_inv := λ ⟨f⟩, congr_arg reader_t.mk $ F.right_inv _ } | |