Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.47 kB
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import control.applicative
import data.list.forall2
import data.set.functor
/-!
# Traversable instances
This file provides instances of `traversable` for types from the core library: `option`, `list` and
`sum`.
-/
universes u v
section option
open functor
variables {F G : Type uType u}
variables [applicative F] [applicative G]
variables [is_lawful_applicative F] [is_lawful_applicative G]
lemma option.id_traverse {α} (x : option α) : option.traverse id.mk x = x :=
by cases x; refl
@[nolint unused_arguments]
lemma option.comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : option α) :
option.traverse (comp.mk ∘ (<$>) f ∘ g) x =
comp.mk (option.traverse f <$> option.traverse g x) :=
by cases x; simp! with functor_norm; refl
lemma option.traverse_eq_map_id {α β} (f : α → β) (x : option α) :
traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by cases x; refl
variable (η : applicative_transformation F G)
lemma option.naturality {α β} (f : α → F β) (x : option α) :
η (option.traverse f x) = option.traverse (@η _f) x :=
by cases x with x; simp! [*] with functor_norm
end option
instance : is_lawful_traversable option :=
{ id_traverse := @option.id_traverse,
comp_traverse := @option.comp_traverse,
traverse_eq_map_id := @option.traverse_eq_map_id,
naturality := @option.naturality,
.. option.is_lawful_monad }
namespace list
variables {F G : Type uType u}
variables [applicative F] [applicative G]
section
variables [is_lawful_applicative F] [is_lawful_applicative G]
open applicative functor list
protected lemma id_traverse {α} (xs : list α) :
list.traverse id.mk xs = xs :=
by induction xs; simp! * with functor_norm; refl
@[nolint unused_arguments]
protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : list α) :
list.traverse (comp.mk ∘ (<$>) f ∘ g) x =
comp.mk (list.traverse f <$> list.traverse g x) :=
by induction x; simp! * with functor_norm; refl
protected lemma traverse_eq_map_id {α β} (f : α → β) (x : list α) :
list.traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by induction x; simp! * with functor_norm; refl
variable (η : applicative_transformation F G)
protected lemma naturality {α β} (f : α → F β) (x : list α) :
η (list.traverse f x) = list.traverse (@η _f) x :=
by induction x; simp! * with functor_norm
open nat
instance : is_lawful_traversable.{u} list :=
{ id_traverse := @list.id_traverse,
comp_traverse := @list.comp_traverse,
traverse_eq_map_id := @list.traverse_eq_map_id,
naturality := @list.naturality,
.. list.is_lawful_monad }
end
section traverse
variables' β' : Type u} (f : α' → F β')
@[simp] lemma traverse_nil : traverse f ([] : list α') = (pure [] : F (list β')) := rfl
@[simp] lemma traverse_cons (a : α') (l : list α') :
traverse f (a :: l) = (::) <$> f a <*> traverse f l := rfl
variables [is_lawful_applicative F]
@[simp] lemma traverse_append :
∀ (as bs : list α'), traverse f (as ++ bs) = (++) <$> traverse f as <*> traverse f bs
| [] bs :=
have has_append.append ([] : list β') = id, by funext; refl,
by simp [this] with functor_norm
| (a :: as) bs := by simp [traverse_append as bs] with functor_norm; congr
lemma mem_traverse {f : α' → set β'} :
∀(l : list α') (n : list β'), n ∈ traverse f l ↔ forall₂ (λb a, b ∈ f a) n l
| [] [] := by simp
| (a::as) [] := by simp
| [] (b::bs) := by simp
| (a::as) (b::bs) := by simp [mem_traverse as bs]
end traverse
end list
namespace sum
section traverse
variables {σ : Type u}
variables {F G : Type uType u}
variables [applicative F] [applicative G]
open applicative functor
open list (cons)
protected lemma traverse_map {α β γ : Type u} (g : α → β) (f : β → G γ) (x : σ ⊕ α) :
sum.traverse f (g <$> x) = sum.traverse (fg) x :=
by cases x; simp [sum.traverse, id_map] with functor_norm; refl
variables [is_lawful_applicative F] [is_lawful_applicative G]
protected lemma id_traverse {σ α} (x : σ ⊕ α) : sum.traverse id.mk x = x :=
by cases x; refl
@[nolint unused_arguments]
protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : σ ⊕ α) :
sum.traverse (comp.mk ∘ (<$>) f ∘ g) x =
comp.mk (sum.traverse f <$> sum.traverse g x) :=
by cases x; simp! [sum.traverse,map_id] with functor_norm; refl
protected lemma traverse_eq_map_id {α β} (f : α → β) (x : σ ⊕ α) :
sum.traverse (id.mk ∘ f) x = id.mk (f <$> x) :=
by induction x; simp! * with functor_norm; refl
protected lemma map_traverse {α β γ} (g : α → G β) (f : β → γ) (x : σ ⊕ α) :
(<$>) f <$> sum.traverse g x = sum.traverse ((<$>) f ∘ g) x :=
by cases x; simp [sum.traverse, id_map] with functor_norm; congr; refl
variable (η : applicative_transformation F G)
protected lemma naturality {α β} (f : α → F β) (x : σ ⊕ α) :
η (sum.traverse f x) = sum.traverse (@η _f) x :=
by cases x; simp! [sum.traverse] with functor_norm
end traverse
instance {σ : Type u} : is_lawful_traversable.{u} (sum σ) :=
{ id_traverse := @sum.id_traverse σ,
comp_traverse := @sum.comp_traverse σ,
traverse_eq_map_id := @sum.traverse_eq_map_id σ,
naturality := @sum.naturality σ,
.. sum.is_lawful_monad }
end sum