Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Simon Hudon. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Simon Hudon | |
-/ | |
import control.applicative | |
import data.list.forall2 | |
import data.set.functor | |
/-! | |
# Traversable instances | |
This file provides instances of `traversable` for types from the core library: `option`, `list` and | |
`sum`. | |
-/ | |
universes u v | |
section option | |
open functor | |
variables {F G : Type u → Type u} | |
variables [applicative F] [applicative G] | |
variables [is_lawful_applicative F] [is_lawful_applicative G] | |
lemma option.id_traverse {α} (x : option α) : option.traverse id.mk x = x := | |
by cases x; refl | |
@[nolint unused_arguments] | |
lemma option.comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : option α) : | |
option.traverse (comp.mk ∘ (<$>) f ∘ g) x = | |
comp.mk (option.traverse f <$> option.traverse g x) := | |
by cases x; simp! with functor_norm; refl | |
lemma option.traverse_eq_map_id {α β} (f : α → β) (x : option α) : | |
traverse (id.mk ∘ f) x = id.mk (f <$> x) := | |
by cases x; refl | |
variable (η : applicative_transformation F G) | |
lemma option.naturality {α β} (f : α → F β) (x : option α) : | |
η (option.traverse f x) = option.traverse (@η _ ∘ f) x := | |
by cases x with x; simp! [*] with functor_norm | |
end option | |
instance : is_lawful_traversable option := | |
{ id_traverse := @option.id_traverse, | |
comp_traverse := @option.comp_traverse, | |
traverse_eq_map_id := @option.traverse_eq_map_id, | |
naturality := @option.naturality, | |
.. option.is_lawful_monad } | |
namespace list | |
variables {F G : Type u → Type u} | |
variables [applicative F] [applicative G] | |
section | |
variables [is_lawful_applicative F] [is_lawful_applicative G] | |
open applicative functor list | |
protected lemma id_traverse {α} (xs : list α) : | |
list.traverse id.mk xs = xs := | |
by induction xs; simp! * with functor_norm; refl | |
@[nolint unused_arguments] | |
protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : list α) : | |
list.traverse (comp.mk ∘ (<$>) f ∘ g) x = | |
comp.mk (list.traverse f <$> list.traverse g x) := | |
by induction x; simp! * with functor_norm; refl | |
protected lemma traverse_eq_map_id {α β} (f : α → β) (x : list α) : | |
list.traverse (id.mk ∘ f) x = id.mk (f <$> x) := | |
by induction x; simp! * with functor_norm; refl | |
variable (η : applicative_transformation F G) | |
protected lemma naturality {α β} (f : α → F β) (x : list α) : | |
η (list.traverse f x) = list.traverse (@η _ ∘ f) x := | |
by induction x; simp! * with functor_norm | |
open nat | |
instance : is_lawful_traversable.{u} list := | |
{ id_traverse := @list.id_traverse, | |
comp_traverse := @list.comp_traverse, | |
traverse_eq_map_id := @list.traverse_eq_map_id, | |
naturality := @list.naturality, | |
.. list.is_lawful_monad } | |
end | |
section traverse | |
variables {α' β' : Type u} (f : α' → F β') | |
@[simp] lemma traverse_nil : traverse f ([] : list α') = (pure [] : F (list β')) := rfl | |
@[simp] lemma traverse_cons (a : α') (l : list α') : | |
traverse f (a :: l) = (::) <$> f a <*> traverse f l := rfl | |
variables [is_lawful_applicative F] | |
@[simp] lemma traverse_append : | |
∀ (as bs : list α'), traverse f (as ++ bs) = (++) <$> traverse f as <*> traverse f bs | |
| [] bs := | |
have has_append.append ([] : list β') = id, by funext; refl, | |
by simp [this] with functor_norm | |
| (a :: as) bs := by simp [traverse_append as bs] with functor_norm; congr | |
lemma mem_traverse {f : α' → set β'} : | |
∀(l : list α') (n : list β'), n ∈ traverse f l ↔ forall₂ (λb a, b ∈ f a) n l | |
| [] [] := by simp | |
| (a::as) [] := by simp | |
| [] (b::bs) := by simp | |
| (a::as) (b::bs) := by simp [mem_traverse as bs] | |
end traverse | |
end list | |
namespace sum | |
section traverse | |
variables {σ : Type u} | |
variables {F G : Type u → Type u} | |
variables [applicative F] [applicative G] | |
open applicative functor | |
open list (cons) | |
protected lemma traverse_map {α β γ : Type u} (g : α → β) (f : β → G γ) (x : σ ⊕ α) : | |
sum.traverse f (g <$> x) = sum.traverse (f ∘ g) x := | |
by cases x; simp [sum.traverse, id_map] with functor_norm; refl | |
variables [is_lawful_applicative F] [is_lawful_applicative G] | |
protected lemma id_traverse {σ α} (x : σ ⊕ α) : sum.traverse id.mk x = x := | |
by cases x; refl | |
@[nolint unused_arguments] | |
protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : σ ⊕ α) : | |
sum.traverse (comp.mk ∘ (<$>) f ∘ g) x = | |
comp.mk (sum.traverse f <$> sum.traverse g x) := | |
by cases x; simp! [sum.traverse,map_id] with functor_norm; refl | |
protected lemma traverse_eq_map_id {α β} (f : α → β) (x : σ ⊕ α) : | |
sum.traverse (id.mk ∘ f) x = id.mk (f <$> x) := | |
by induction x; simp! * with functor_norm; refl | |
protected lemma map_traverse {α β γ} (g : α → G β) (f : β → γ) (x : σ ⊕ α) : | |
(<$>) f <$> sum.traverse g x = sum.traverse ((<$>) f ∘ g) x := | |
by cases x; simp [sum.traverse, id_map] with functor_norm; congr; refl | |
variable (η : applicative_transformation F G) | |
protected lemma naturality {α β} (f : α → F β) (x : σ ⊕ α) : | |
η (sum.traverse f x) = sum.traverse (@η _ ∘ f) x := | |
by cases x; simp! [sum.traverse] with functor_norm | |
end traverse | |
instance {σ : Type u} : is_lawful_traversable.{u} (sum σ) := | |
{ id_traverse := @sum.id_traverse σ, | |
comp_traverse := @sum.comp_traverse σ, | |
traverse_eq_map_id := @sum.traverse_eq_map_id σ, | |
naturality := @sum.naturality σ, | |
.. sum.is_lawful_monad } | |
end sum | |