Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin | |
-/ | |
import linear_algebra.finite_dimensional | |
import linear_algebra.basic | |
import ring_theory.mv_polynomial.basic | |
import data.mv_polynomial.expand | |
import field_theory.finite.basic | |
/-! | |
## Polynomials over finite fields | |
-/ | |
namespace mv_polynomial | |
variables {σ : Type*} | |
/-- A polynomial over the integers is divisible by `n : ℕ` | |
if and only if it is zero over `zmod n`. -/ | |
lemma C_dvd_iff_zmod (n : ℕ) (φ : mv_polynomial σ ℤ) : | |
C (n:ℤ) ∣ φ ↔ map (int.cast_ring_hom (zmod n)) φ = 0 := | |
C_dvd_iff_map_hom_eq_zero _ _ (char_p.int_cast_eq_zero_iff (zmod n) n) _ | |
section frobenius | |
variables {p : ℕ} [fact p.prime] | |
lemma frobenius_zmod (f : mv_polynomial σ (zmod p)) : frobenius _ p f = expand p f := | |
begin | |
apply induction_on f, | |
{ intro a, rw [expand_C, frobenius_def, ← C_pow, zmod.pow_card], }, | |
{ simp only [alg_hom.map_add, ring_hom.map_add], intros _ _ hf hg, rw [hf, hg] }, | |
{ simp only [expand_X, ring_hom.map_mul, alg_hom.map_mul], | |
intros _ _ hf, rw [hf, frobenius_def], }, | |
end | |
lemma expand_zmod (f : mv_polynomial σ (zmod p)) : expand p f = f ^ p := | |
(frobenius_zmod _).symm | |
end frobenius | |
end mv_polynomial | |
namespace mv_polynomial | |
noncomputable theory | |
open_locale big_operators classical | |
open set linear_map submodule | |
variables {K : Type*} {σ : Type*} | |
section indicator | |
variables [fintype K] [fintype σ] | |
/-- Over a field, this is the indicator function as an `mv_polynomial`. -/ | |
def indicator [comm_ring K] (a : σ → K) : mv_polynomial σ K := | |
∏ n, (1 - (X n - C (a n)) ^ (fintype.card K - 1)) | |
section comm_ring | |
variables [comm_ring K] | |
lemma eval_indicator_apply_eq_one (a : σ → K) : | |
eval a (indicator a) = 1 := | |
begin | |
nontriviality, | |
have : 0 < fintype.card K - 1 := tsub_pos_of_lt fintype.one_lt_card, | |
simp only [indicator, map_prod, map_sub, map_one, map_pow, eval_X, eval_C, | |
sub_self, zero_pow this, sub_zero, finset.prod_const_one] | |
end | |
lemma degrees_indicator (c : σ → K) : | |
degrees (indicator c) ≤ ∑ s : σ, (fintype.card K - 1) • {s} := | |
begin | |
rw [indicator], | |
refine le_trans (degrees_prod _ _) (finset.sum_le_sum $ assume s hs, _), | |
refine le_trans (degrees_sub _ _) _, | |
rw [degrees_one, ← bot_eq_zero, bot_sup_eq], | |
refine le_trans (degrees_pow _ _) (nsmul_le_nsmul_of_le_right _ _), | |
refine le_trans (degrees_sub _ _) _, | |
rw [degrees_C, ← bot_eq_zero, sup_bot_eq], | |
exact degrees_X' _ | |
end | |
lemma indicator_mem_restrict_degree (c : σ → K) : | |
indicator c ∈ restrict_degree σ K (fintype.card K - 1) := | |
begin | |
rw [mem_restrict_degree_iff_sup, indicator], | |
assume n, | |
refine le_trans (multiset.count_le_of_le _ $ degrees_indicator _) (le_of_eq _), | |
simp_rw [ ← multiset.coe_count_add_monoid_hom, (multiset.count_add_monoid_hom n).map_sum, | |
add_monoid_hom.map_nsmul, multiset.coe_count_add_monoid_hom, nsmul_eq_mul, nat.cast_id], | |
transitivity, | |
refine finset.sum_eq_single n _ _, | |
{ assume b hb ne, rw [multiset.count_singleton, if_neg ne.symm, mul_zero] }, | |
{ assume h, exact (h $ finset.mem_univ _).elim }, | |
{ rw [multiset.count_singleton_self, mul_one] } | |
end | |
end comm_ring | |
variables [field K] | |
lemma eval_indicator_apply_eq_zero (a b : σ → K) (h : a ≠ b) : | |
eval a (indicator b) = 0 := | |
begin | |
obtain ⟨i, hi⟩ : ∃ i, a i ≠ b i := by rwa [(≠), function.funext_iff, not_forall] at h, | |
simp only [indicator, map_prod, map_sub, map_one, map_pow, eval_X, eval_C, | |
sub_self, finset.prod_eq_zero_iff], | |
refine ⟨i, finset.mem_univ _, _⟩, | |
rw [finite_field.pow_card_sub_one_eq_one, sub_self], | |
rwa [(≠), sub_eq_zero], | |
end | |
end indicator | |
section | |
variables (K σ) | |
/-- `mv_polynomial.eval` as a `K`-linear map. -/ | |
@[simps] def evalₗ [comm_semiring K] : mv_polynomial σ K →ₗ[K] (σ → K) → K := | |
{ to_fun := λ p e, eval e p, | |
map_add' := λ p q, by { ext x, rw ring_hom.map_add, refl, }, | |
map_smul' := λ a p, by { ext e, rw [smul_eq_C_mul, ring_hom.map_mul, eval_C], refl } } | |
end | |
variables [field K] [fintype K] [fintype σ] | |
lemma map_restrict_dom_evalₗ : (restrict_degree σ K (fintype.card K - 1)).map (evalₗ K σ) = ⊤ := | |
begin | |
refine top_unique (set_like.le_def.2 $ assume e _, mem_map.2 _), | |
refine ⟨∑ n : σ → K, e n • indicator n, _, _⟩, | |
{ exact sum_mem (assume c _, smul_mem _ _ (indicator_mem_restrict_degree _)) }, | |
{ ext n, | |
simp only [linear_map.map_sum, @finset.sum_apply (σ → K) (λ_, K) _ _ _ _ _, | |
pi.smul_apply, linear_map.map_smul], | |
simp only [evalₗ_apply], | |
transitivity, | |
refine finset.sum_eq_single n (λ b _ h, _) _, | |
{ rw [eval_indicator_apply_eq_zero _ _ h.symm, smul_zero] }, | |
{ exact λ h, (h $ finset.mem_univ n).elim }, | |
{ rw [eval_indicator_apply_eq_one, smul_eq_mul, mul_one] } } | |
end | |
end mv_polynomial | |
namespace mv_polynomial | |
open_locale classical cardinal | |
open linear_map submodule | |
universe u | |
variables (σ : Type u) (K : Type u) [fintype K] | |
/-- The submodule of multivariate polynomials whose degree of each variable is strictly less | |
than the cardinality of K. -/ | |
@[derive [add_comm_group, module K, inhabited]] | |
def R [comm_ring K] : Type u := restrict_degree σ K (fintype.card K - 1) | |
/-- Evaluation in the `mv_polynomial.R` subtype. -/ | |
def evalᵢ [comm_ring K] : R σ K →ₗ[K] (σ → K) → K := | |
((evalₗ K σ).comp (restrict_degree σ K (fintype.card K - 1)).subtype) | |
section comm_ring | |
variables [comm_ring K] | |
noncomputable instance decidable_restrict_degree (m : ℕ) : | |
decidable_pred (∈ {n : σ →₀ ℕ | ∀i, n i ≤ m }) := | |
by simp only [set.mem_set_of_eq]; apply_instance | |
end comm_ring | |
variables [field K] | |
lemma dim_R [fintype σ] : module.rank K (R σ K) = fintype.card (σ → K) := | |
calc module.rank K (R σ K) = | |
module.rank K (↥{s : σ →₀ ℕ | ∀ (n : σ), s n ≤ fintype.card K - 1} →₀ K) : | |
linear_equiv.dim_eq | |
(finsupp.supported_equiv_finsupp {s : σ →₀ ℕ | ∀n:σ, s n ≤ fintype.card K - 1 }) | |
... = #{s : σ →₀ ℕ | ∀ (n : σ), s n ≤ fintype.card K - 1} : | |
by rw [finsupp.dim_eq, dim_self, mul_one] | |
... = #{s : σ → ℕ | ∀ (n : σ), s n < fintype.card K } : | |
begin | |
refine quotient.sound ⟨equiv.subtype_equiv finsupp.equiv_fun_on_fintype $ assume f, _⟩, | |
refine forall_congr (assume n, le_tsub_iff_right _), | |
exact fintype.card_pos_iff.2 ⟨0⟩ | |
end | |
... = #(σ → {n // n < fintype.card K}) : | |
(@equiv.subtype_pi_equiv_pi σ (λ_, ℕ) (λs n, n < fintype.card K)).cardinal_eq | |
... = #(σ → fin (fintype.card K)) : | |
(equiv.arrow_congr (equiv.refl σ) (equiv.refl _)).cardinal_eq | |
... = #(σ → K) : | |
(equiv.arrow_congr (equiv.refl σ) (fintype.equiv_fin K).symm).cardinal_eq | |
... = fintype.card (σ → K) : cardinal.mk_fintype _ | |
instance [fintype σ] : finite_dimensional K (R σ K) := | |
is_noetherian.iff_fg.1 $ is_noetherian.iff_dim_lt_aleph_0.mpr | |
(by simpa only [dim_R] using cardinal.nat_lt_aleph_0 (fintype.card (σ → K))) | |
lemma finrank_R [fintype σ] : finite_dimensional.finrank K (R σ K) = fintype.card (σ → K) := | |
finite_dimensional.finrank_eq_of_dim_eq (dim_R σ K) | |
lemma range_evalᵢ [fintype σ] : (evalᵢ σ K).range = ⊤ := | |
begin | |
rw [evalᵢ, linear_map.range_comp, range_subtype], | |
exact map_restrict_dom_evalₗ | |
end | |
lemma ker_evalₗ [fintype σ] : (evalᵢ σ K).ker = ⊥ := | |
begin | |
refine (ker_eq_bot_iff_range_eq_top_of_finrank_eq_finrank _).mpr (range_evalᵢ _ _), | |
rw [finite_dimensional.finrank_fintype_fun_eq_card, finrank_R] | |
end | |
lemma eq_zero_of_eval_eq_zero [fintype σ] (p : mv_polynomial σ K) | |
(h : ∀v:σ → K, eval v p = 0) (hp : p ∈ restrict_degree σ K (fintype.card K - 1)) : | |
p = 0 := | |
let p' : R σ K := ⟨p, hp⟩ in | |
have p' ∈ (evalᵢ σ K).ker := funext h, | |
show p'.1 = (0 : R σ K).1, from congr_arg _ $ by rwa [ker_evalₗ, mem_bot] at this | |
end mv_polynomial | |