Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Yakov Pechersky. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yakov Pechersky | |
-/ | |
import data.polynomial.taylor | |
import field_theory.ratfunc | |
import ring_theory.laurent_series | |
/-! | |
# Laurent expansions of rational functions | |
## Main declarations | |
* `ratfunc.laurent`: the Laurent expansion of the rational function `f` at `r`, as an `alg_hom`. | |
* `ratfunc.laurent_injective`: the Laurent expansion at `r` is unique | |
## Implementation details | |
Implemented as the quotient of two Taylor expansions, over domains. | |
An auxiliary definition is provided first to make the construction of the `alg_hom` easier, | |
which works on `comm_ring` which are not necessarily domains. | |
-/ | |
universe u | |
namespace ratfunc | |
noncomputable theory | |
open polynomial | |
open_locale classical non_zero_divisors polynomial | |
variables {R : Type u} [comm_ring R] [hdomain : is_domain R] | |
(r s : R) (p q : R[X]) (f : ratfunc R) | |
lemma taylor_mem_non_zero_divisors (hp : p β R[X]β°) : taylor r p β R[X]β° := | |
begin | |
rw mem_non_zero_divisors_iff, | |
intros x hx, | |
have : x = taylor (r - r) x, | |
{ simp }, | |
rwa [this, sub_eq_add_neg, βtaylor_taylor, βtaylor_mul, | |
linear_map.map_eq_zero_iff _ (taylor_injective _), | |
mul_right_mem_non_zero_divisors_eq_zero_iff hp, | |
linear_map.map_eq_zero_iff _ (taylor_injective _)] at hx, | |
end | |
/-- The Laurent expansion of rational functions about a value. | |
Auxiliary definition, usage when over integral domains should prefer `ratfunc.laurent`. -/ | |
def laurent_aux : ratfunc R β+* ratfunc R := | |
ratfunc.map_ring_hom (ring_hom.mk (taylor r) (taylor_one _) (taylor_mul _) | |
(linear_map.map_zero _) (linear_map.map_add _)) (taylor_mem_non_zero_divisors _) | |
lemma laurent_aux_of_fraction_ring_mk (q : R[X]β°) : | |
laurent_aux r (of_fraction_ring (localization.mk p q)) = | |
of_fraction_ring (localization.mk (taylor r p) | |
β¨taylor r q, taylor_mem_non_zero_divisors r q q.propβ©) := | |
map_apply_of_fraction_ring_mk _ _ _ _ | |
include hdomain | |
lemma laurent_aux_div : | |
laurent_aux r (algebra_map _ _ p / (algebra_map _ _ q)) = | |
algebra_map _ _ (taylor r p) / (algebra_map _ _ (taylor r q)) := | |
map_apply_div _ _ _ _ | |
@[simp] lemma laurent_aux_algebra_map : | |
laurent_aux r (algebra_map _ _ p) = algebra_map _ _ (taylor r p) := | |
by rw [βmk_one, βmk_one, mk_eq_div, laurent_aux_div, mk_eq_div, taylor_one, _root_.map_one] | |
/-- The Laurent expansion of rational functions about a value. -/ | |
def laurent : ratfunc R ββ[R] ratfunc R := | |
ratfunc.map_alg_hom (alg_hom.mk (taylor r) (taylor_one _) (taylor_mul _) | |
(linear_map.map_zero _) (linear_map.map_add _) (by simp [polynomial.algebra_map_apply])) | |
(taylor_mem_non_zero_divisors _) | |
lemma laurent_div : | |
laurent r (algebra_map _ _ p / (algebra_map _ _ q)) = | |
algebra_map _ _ (taylor r p) / (algebra_map _ _ (taylor r q)) := | |
laurent_aux_div r p q | |
@[simp] lemma laurent_algebra_map : | |
laurent r (algebra_map _ _ p) = algebra_map _ _ (taylor r p) := | |
laurent_aux_algebra_map _ _ | |
@[simp] lemma laurent_X : laurent r X = X + C r := | |
by rw [βalgebra_map_X, laurent_algebra_map, taylor_X, _root_.map_add, algebra_map_C] | |
@[simp] lemma laurent_C (x : R) : laurent r (C x) = C x := | |
by rw [βalgebra_map_C, laurent_algebra_map, taylor_C] | |
@[simp] lemma laurent_at_zero : laurent 0 f = f := | |
by { induction f using ratfunc.induction_on, simp } | |
lemma laurent_laurent : | |
laurent r (laurent s f) = laurent (r + s) f := | |
begin | |
induction f using ratfunc.induction_on, | |
simp_rw [laurent_div, taylor_taylor] | |
end | |
lemma laurent_injective : function.injective (laurent r) := | |
Ξ» _ _ h, by simpa [laurent_laurent] using congr_arg (laurent (-r)) h | |
end ratfunc | |