Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
29.3 kB
/-
Copyright (c) 2020 Alexander Bentkamp. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alexander Bentkamp
-/
import linear_algebra.charpoly.basic
import linear_algebra.finsupp
import linear_algebra.matrix.to_lin
import algebra.algebra.spectrum
import order.hom.basic
/-!
# Eigenvectors and eigenvalues
This file defines eigenspaces, eigenvalues, and eigenvalues, as well as their generalized
counterparts. We follow Axler's approach [axler2015] because it allows us to derive many properties
without choosing a basis and without using matrices.
An eigenspace of a linear map `f` for a scalar `μ` is the kernel of the map `(f - μ • id)`. The
nonzero elements of an eigenspace are eigenvectors `x`. They have the property `f x = μ • x`. If
there are eigenvectors for a scalar `μ`, the scalar `μ` is called an eigenvalue.
There is no consensus in the literature whether `0` is an eigenvector. Our definition of
`has_eigenvector` permits only nonzero vectors. For an eigenvector `x` that may also be `0`, we
write `x ∈ f.eigenspace μ`.
A generalized eigenspace of a linear map `f` for a natural number `k` and a scalar `μ` is the kernel
of the map `(f - μ • id) ^ k`. The nonzero elements of a generalized eigenspace are generalized
eigenvectors `x`. If there are generalized eigenvectors for a natural number `k` and a scalar `μ`,
the scalar `μ` is called a generalized eigenvalue.
## References
* [Sheldon Axler, *Linear Algebra Done Right*][axler2015]
* https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
## Tags
eigenspace, eigenvector, eigenvalue, eigen
-/
universes u v w
namespace module
namespace End
open module principal_ideal_ring polynomial finite_dimensional
open_locale polynomial
variables {K R : Type v} {V M : Type w}
[comm_ring R] [add_comm_group M] [module R M] [field K] [add_comm_group V] [module K V]
/-- The submodule `eigenspace f μ` for a linear map `f` and a scalar `μ` consists of all vectors `x`
such that `f x = μ • x`. (Def 5.36 of [axler2015])-/
def eigenspace (f : End R M) (μ : R) : submodule R M :=
(f - algebra_map R (End R M) μ).ker
@[simp] lemma eigenspace_zero (f : End R M) : f.eigenspace 0 = f.ker :=
by simp [eigenspace]
/-- A nonzero element of an eigenspace is an eigenvector. (Def 5.7 of [axler2015]) -/
def has_eigenvector (f : End R M) (μ : R) (x : M) : Prop :=
x ∈ eigenspace f μ ∧ x ≠ 0
/-- A scalar `μ` is an eigenvalue for a linear map `f` if there are nonzero vectors `x`
such that `f x = μ • x`. (Def 5.5 of [axler2015]) -/
def has_eigenvalue (f : End R M) (a : R) : Prop :=
eigenspace f a ≠ ⊥
/-- The eigenvalues of the endomorphism `f`, as a subtype of `R`. -/
def eigenvalues (f : End R M) : Type* := {μ : R // f.has_eigenvalue μ}
instance (f : End R M) : has_coe f.eigenvalues R := coe_subtype
lemma has_eigenvalue_of_has_eigenvector {f : End R M} {μ : R} {x : M} (h : has_eigenvector f μ x) :
has_eigenvalue f μ :=
begin
rw [has_eigenvalue, submodule.ne_bot_iff],
use x, exact h,
end
lemma mem_eigenspace_iff {f : End R M} {μ : R} {x : M} : x ∈ eigenspace f μ ↔ f x = μ • x :=
by rw [eigenspace, linear_map.mem_ker, linear_map.sub_apply, algebra_map_End_apply,
sub_eq_zero]
lemma has_eigenvector.apply_eq_smul {f : End R M} {μ : R} {x : M} (hx : f.has_eigenvector μ x) :
f x = μ • x :=
mem_eigenspace_iff.mp hx.1
lemma has_eigenvalue.exists_has_eigenvector {f : End R M} {μ : R} (hμ : f.has_eigenvalue μ) :
∃ v, f.has_eigenvector μ v :=
submodule.exists_mem_ne_zero_of_ne_bot hμ
lemma mem_spectrum_of_has_eigenvalue {f : End R M} {μ : R} (hμ : has_eigenvalue f μ) :
μ ∈ spectrum R f :=
begin
refine spectrum.mem_iff.mpr (λ h_unit, _),
set f' := linear_map.general_linear_group.to_linear_equiv h_unit.unit,
rcases hμ.exists_has_eigenvector with ⟨v, hv⟩,
refine hv.2 ((linear_map.ker_eq_bot'.mp f'.ker) v (_ : μ • v - f v = 0)),
rw [hv.apply_eq_smul, sub_self]
end
lemma has_eigenvalue_iff_mem_spectrum [finite_dimensional K V] {f : End K V} {μ : K} :
f.has_eigenvalue μ ↔ μ ∈ spectrum K f :=
iff.intro mem_spectrum_of_has_eigenvalue
(λ h, by rwa [spectrum.mem_iff, is_unit.sub_iff, linear_map.is_unit_iff_ker_eq_bot] at h)
lemma eigenspace_div (f : End K V) (a b : K) (hb : b ≠ 0) :
eigenspace f (a / b) = (b • f - algebra_map K (End K V) a).ker :=
calc
eigenspace f (a / b) = eigenspace f (b⁻¹ * a) : by { rw [div_eq_mul_inv, mul_comm] }
... = (f - (b⁻¹ * a) • linear_map.id).ker : rfl
... = (f - b⁻¹ • a • linear_map.id).ker : by rw smul_smul
... = (f - b⁻¹ • algebra_map K (End K V) a).ker : rfl
... = (b • (f - b⁻¹ • algebra_map K (End K V) a)).ker : by rw linear_map.ker_smul _ b hb
... = (b • f - algebra_map K (End K V) a).ker : by rw [smul_sub, smul_inv_smul₀ hb]
lemma eigenspace_aeval_polynomial_degree_1
(f : End K V) (q : K[X]) (hq : degree q = 1) :
eigenspace f (- q.coeff 0 / q.leading_coeff) = (aeval f q).ker :=
calc
eigenspace f (- q.coeff 0 / q.leading_coeff)
= (q.leading_coeff • f - algebra_map K (End K V) (- q.coeff 0)).ker
: by { rw eigenspace_div, intro h, rw leading_coeff_eq_zero_iff_deg_eq_bot.1 h at hq, cases hq }
... = (aeval f (C q.leading_coeff * X + C (q.coeff 0))).ker
: by { rw [C_mul', aeval_def], simp [algebra_map, algebra.to_ring_hom], }
... = (aeval f q).ker
: by rwa ← eq_X_add_C_of_degree_eq_one
lemma ker_aeval_ring_hom'_unit_polynomial
(f : End K V) (c : (K[X])ˣ) :
(aeval f (c : K[X])).ker = ⊥ :=
begin
rw polynomial.eq_C_of_degree_eq_zero (degree_coe_units c),
simp only [aeval_def, eval₂_C],
apply ker_algebra_map_End,
apply coeff_coe_units_zero_ne_zero c
end
theorem aeval_apply_of_has_eigenvector {f : End K V}
{p : K[X]} {μ : K} {x : V} (h : f.has_eigenvector μ x) :
aeval f p x = (p.eval μ) • x :=
begin
apply p.induction_on,
{ intro a, simp [module.algebra_map_End_apply] },
{ intros p q hp hq, simp [hp, hq, add_smul] },
{ intros n a hna,
rw [mul_comm, pow_succ, mul_assoc, alg_hom.map_mul, linear_map.mul_apply, mul_comm, hna],
simp only [mem_eigenspace_iff.1 h.1, smul_smul, aeval_X, eval_mul, eval_C, eval_pow, eval_X,
linear_map.map_smulₛₗ, ring_hom.id_apply, mul_comm] }
end
section minpoly
theorem is_root_of_has_eigenvalue {f : End K V} {μ : K} (h : f.has_eigenvalue μ) :
(minpoly K f).is_root μ :=
begin
rcases (submodule.ne_bot_iff _).1 h with ⟨w, ⟨H, ne0⟩⟩,
refine or.resolve_right (smul_eq_zero.1 _) ne0,
simp [← aeval_apply_of_has_eigenvector ⟨H, ne0⟩, minpoly.aeval K f],
end
variables [finite_dimensional K V] (f : End K V)
variables {f} {μ : K}
theorem has_eigenvalue_of_is_root (h : (minpoly K f).is_root μ) :
f.has_eigenvalue μ :=
begin
cases dvd_iff_is_root.2 h with p hp,
rw [has_eigenvalue, eigenspace],
intro con,
cases (linear_map.is_unit_iff_ker_eq_bot _).2 con with u hu,
have p_ne_0 : p ≠ 0,
{ intro con,
apply minpoly.ne_zero f.is_integral,
rw [hp, con, mul_zero] },
have h_deg := minpoly.degree_le_of_ne_zero K f p_ne_0 _,
{ rw [hp, degree_mul, degree_X_sub_C, polynomial.degree_eq_nat_degree p_ne_0] at h_deg,
norm_cast at h_deg,
linarith, },
{ have h_aeval := minpoly.aeval K f,
revert h_aeval,
simp [hp, ← hu] },
end
theorem has_eigenvalue_iff_is_root :
f.has_eigenvalue μ ↔ (minpoly K f).is_root μ :=
⟨is_root_of_has_eigenvalue, has_eigenvalue_of_is_root⟩
/-- An endomorphism of a finite-dimensional vector space has finitely many eigenvalues. -/
noncomputable instance (f : End K V) : fintype f.eigenvalues :=
set.finite.fintype
begin
have h : minpoly K f ≠ 0 := minpoly.ne_zero f.is_integral,
convert (minpoly K f).root_set_finite K,
ext μ,
have : (μ ∈ {μ : K | f.eigenspace μ = ⊥ → false}) ↔ ¬f.eigenspace μ = ⊥ := by tauto,
convert rfl.mpr this,
simp [polynomial.root_set_def, polynomial.mem_roots h, ← has_eigenvalue_iff_is_root,
has_eigenvalue]
end
end minpoly
/-- Every linear operator on a vector space over an algebraically closed field has
an eigenvalue. -/
-- This is Lemma 5.21 of [axler2015], although we are no longer following that proof.
lemma exists_eigenvalue [is_alg_closed K] [finite_dimensional K V] [nontrivial V] (f : End K V) :
∃ (c : K), f.has_eigenvalue c :=
by { simp_rw has_eigenvalue_iff_mem_spectrum,
exact spectrum.nonempty_of_is_alg_closed_of_finite_dimensional K f }
noncomputable instance [is_alg_closed K] [finite_dimensional K V] [nontrivial V] (f : End K V) :
inhabited f.eigenvalues :=
⟨⟨f.exists_eigenvalue.some, f.exists_eigenvalue.some_spec⟩⟩
/-- The eigenspaces of a linear operator form an independent family of subspaces of `V`. That is,
any eigenspace has trivial intersection with the span of all the other eigenspaces. -/
lemma eigenspaces_independent (f : End K V) : complete_lattice.independent f.eigenspace :=
begin
classical,
-- Define an operation from `Π₀ μ : K, f.eigenspace μ`, the vector space of of finitely-supported
-- choices of an eigenvector from each eigenspace, to `V`, by sending a collection to its sum.
let S : @linear_map K K _ _ (ring_hom.id K) (Π₀ μ : K, f.eigenspace μ) V
(@dfinsupp.add_comm_monoid K (λ μ, f.eigenspace μ) _) _
(@dfinsupp.module K _ (λ μ, f.eigenspace μ) _ _ _) _ :=
@dfinsupp.lsum K K ℕ _ V _ _ _ _ _ _ _ _ _
(λ μ, (f.eigenspace μ).subtype),
-- We need to show that if a finitely-supported collection `l` of representatives of the
-- eigenspaces has sum `0`, then it itself is zero.
suffices : ∀ l : Π₀ μ, f.eigenspace μ, S l = 0 → l = 0,
{ rw complete_lattice.independent_iff_dfinsupp_lsum_injective,
change function.injective S,
rw ← @linear_map.ker_eq_bot K K (Π₀ μ, (f.eigenspace μ)) V _ _
(@dfinsupp.add_comm_group K (λ μ, f.eigenspace μ) _),
rw eq_bot_iff,
exact this },
intros l hl,
-- We apply induction on the finite set of eigenvalues from which `l` selects a nonzero
-- eigenvector, i.e. on the support of `l`.
induction h_l_support : l.support using finset.induction with μ₀ l_support' hμ₀ ih generalizing l,
-- If the support is empty, all coefficients are zero and we are done.
{ exact dfinsupp.support_eq_empty.1 h_l_support },
-- Now assume that the support of `l` contains at least one eigenvalue `μ₀`. We define a new
-- collection of representatives `l'` to apply the induction hypothesis on later. The collection
-- of representatives `l'` is derived from `l` by multiplying the coefficient of the eigenvector
-- with eigenvalue `μ` by `μ - μ₀`.
{ let l' := dfinsupp.map_range.linear_map
(λ μ, (μ - μ₀) • @linear_map.id K (f.eigenspace μ) _ _ _) l,
-- The support of `l'` is the support of `l` without `μ₀`.
have h_l_support' : l'.support = l_support',
{ rw [← finset.erase_insert hμ₀, ← h_l_support],
ext a,
have : ¬(a = μ₀ ∨ l a = 0) ↔ ¬a = μ₀ ∧ ¬l a = 0 := not_or_distrib,
simp only [l', dfinsupp.map_range.linear_map_apply, dfinsupp.map_range_apply,
dfinsupp.mem_support_iff, finset.mem_erase, id.def, linear_map.id_coe,
linear_map.smul_apply, ne.def, smul_eq_zero, sub_eq_zero, this] },
-- The entries of `l'` add up to `0`.
have total_l' : S l' = 0,
{ let g := f - algebra_map K (End K V) μ₀,
let a : Π₀ μ : K, V := dfinsupp.map_range.linear_map (λ μ, (f.eigenspace μ).subtype) l,
calc S l'
= dfinsupp.lsum ℕ (λ μ, (f.eigenspace μ).subtype.comp ((μ - μ₀) • linear_map.id)) l : _
... = dfinsupp.lsum ℕ (λ μ, g.comp (f.eigenspace μ).subtype) l : _
... = dfinsupp.lsum ℕ (λ μ, g) a : _
... = g (dfinsupp.lsum ℕ (λ μ, (linear_map.id : V →ₗ[K] V)) a) : _
... = g (S l) : _
... = 0 : by rw [hl, g.map_zero],
{ exact dfinsupp.sum_map_range_index.linear_map },
{ congr,
ext μ v,
simp only [g, eq_self_iff_true, function.comp_app, id.def, linear_map.coe_comp,
linear_map.id_coe, linear_map.smul_apply, linear_map.sub_apply,
module.algebra_map_End_apply, sub_left_inj, sub_smul, submodule.coe_smul_of_tower,
submodule.coe_sub, submodule.subtype_apply, mem_eigenspace_iff.1 v.prop], },
{ rw dfinsupp.sum_map_range_index.linear_map },
{ simp only [dfinsupp.sum_add_hom_apply, linear_map.id_coe, linear_map.map_dfinsupp_sum,
id.def, linear_map.to_add_monoid_hom_coe, dfinsupp.lsum_apply_apply], },
{ congr,
simp only [S, a, dfinsupp.sum_map_range_index.linear_map, linear_map.id_comp] } },
-- Therefore, by the induction hypothesis, all entries of `l'` are zero.
have l'_eq_0 := ih l' total_l' h_l_support',
-- By the definition of `l'`, this means that `(μ - μ₀) • l μ = 0` for all `μ`.
have h_smul_eq_0 : ∀ μ, (μ - μ₀) • l μ = 0,
{ intro μ,
calc (μ - μ₀) • l μ = l' μ : by simp only [l', linear_map.id_coe, id.def,
linear_map.smul_apply, dfinsupp.map_range_apply, dfinsupp.map_range.linear_map_apply]
... = 0 : by { rw [l'_eq_0], refl } },
-- Thus, the eigenspace-representatives in `l` for all `μ ≠ μ₀` are `0`.
have h_lμ_eq_0 : ∀ μ : K, μ ≠ μ₀ → l μ = 0,
{ intros μ hμ,
apply or_iff_not_imp_left.1 (smul_eq_zero.1 (h_smul_eq_0 μ)),
rwa [sub_eq_zero] },
-- So if we sum over all these representatives, we obtain `0`.
have h_sum_l_support'_eq_0 : finset.sum l_support' (λ μ, (l μ : V)) = 0,
{ rw ←finset.sum_const_zero,
apply finset.sum_congr rfl,
intros μ hμ,
rw [submodule.coe_eq_zero, h_lμ_eq_0],
rintro rfl,
exact hμ₀ hμ },
-- The only potentially nonzero eigenspace-representative in `l` is the one corresponding to
-- `μ₀`. But since the overall sum is `0` by assumption, this representative must also be `0`.
have : l μ₀ = 0,
{ simp only [S, dfinsupp.lsum_apply_apply, dfinsupp.sum_add_hom_apply,
linear_map.to_add_monoid_hom_coe, dfinsupp.sum, h_l_support, submodule.subtype_apply,
submodule.coe_eq_zero, finset.sum_insert hμ₀, h_sum_l_support'_eq_0, add_zero] at hl,
exact hl },
-- Thus, all coefficients in `l` are `0`.
show l = 0,
{ ext μ,
by_cases h_cases : μ = μ₀,
{ rwa [h_cases, set_like.coe_eq_coe, dfinsupp.coe_zero, pi.zero_apply] },
exact congr_arg (coe : _ → V) (h_lμ_eq_0 μ h_cases) }}
end
/-- Eigenvectors corresponding to distinct eigenvalues of a linear operator are linearly
independent. (Lemma 5.10 of [axler2015])
We use the eigenvalues as indexing set to ensure that there is only one eigenvector for each
eigenvalue in the image of `xs`. -/
lemma eigenvectors_linear_independent (f : End K V) (μs : set K) (xs : μs → V)
(h_eigenvec : ∀ μ : μs, f.has_eigenvector μ (xs μ)) :
linear_independent K xs :=
complete_lattice.independent.linear_independent _
(f.eigenspaces_independent.comp subtype.coe_injective)
(λ μ, (h_eigenvec μ).1) (λ μ, (h_eigenvec μ).2)
/-- The generalized eigenspace for a linear map `f`, a scalar `μ`, and an exponent `k ∈ ℕ` is the
kernel of `(f - μ • id) ^ k`. (Def 8.10 of [axler2015]). Furthermore, a generalized eigenspace for
some exponent `k` is contained in the generalized eigenspace for exponents larger than `k`. -/
def generalized_eigenspace (f : End R M) (μ : R) : ℕ →o submodule R M :=
{ to_fun := λ k, ((f - algebra_map R (End R M) μ) ^ k).ker,
monotone' := λ k m hm,
begin
simp only [← pow_sub_mul_pow _ hm],
exact linear_map.ker_le_ker_comp
((f - algebra_map R (End R M) μ) ^ k) ((f - algebra_map R (End R M) μ) ^ (m - k)),
end }
@[simp] lemma mem_generalized_eigenspace (f : End R M) (μ : R) (k : ℕ) (m : M) :
m ∈ f.generalized_eigenspace μ k ↔ ((f - μ • 1)^k) m = 0 :=
iff.rfl
@[simp] lemma generalized_eigenspace_zero (f : End R M) (k : ℕ) :
f.generalized_eigenspace 0 k = (f^k).ker :=
by simp [module.End.generalized_eigenspace]
/-- A nonzero element of a generalized eigenspace is a generalized eigenvector.
(Def 8.9 of [axler2015])-/
def has_generalized_eigenvector (f : End R M) (μ : R) (k : ℕ) (x : M) : Prop :=
x ≠ 0 ∧ x ∈ generalized_eigenspace f μ k
/-- A scalar `μ` is a generalized eigenvalue for a linear map `f` and an exponent `k ∈ ℕ` if there
are generalized eigenvectors for `f`, `k`, and `μ`. -/
def has_generalized_eigenvalue (f : End R M) (μ : R) (k : ℕ) : Prop :=
generalized_eigenspace f μ k ≠ ⊥
/-- The generalized eigenrange for a linear map `f`, a scalar `μ`, and an exponent `k ∈ ℕ` is the
range of `(f - μ • id) ^ k`. -/
def generalized_eigenrange (f : End R M) (μ : R) (k : ℕ) : submodule R M :=
((f - algebra_map R (End R M) μ) ^ k).range
/-- The exponent of a generalized eigenvalue is never 0. -/
lemma exp_ne_zero_of_has_generalized_eigenvalue {f : End R M} {μ : R} {k : ℕ}
(h : f.has_generalized_eigenvalue μ k) : k ≠ 0 :=
begin
rintro rfl,
exact h linear_map.ker_id
end
/-- The union of the kernels of `(f - μ • id) ^ k` over all `k`. -/
def maximal_generalized_eigenspace (f : End R M) (μ : R) : submodule R M :=
⨆ k, f.generalized_eigenspace μ k
lemma generalized_eigenspace_le_maximal (f : End R M) (μ : R) (k : ℕ) :
f.generalized_eigenspace μ k ≤ f.maximal_generalized_eigenspace μ :=
le_supr _ _
@[simp] lemma mem_maximal_generalized_eigenspace (f : End R M) (μ : R) (m : M) :
m ∈ f.maximal_generalized_eigenspace μ ↔ ∃ (k : ℕ), ((f - μ • 1)^k) m = 0 :=
by simp only [maximal_generalized_eigenspace, ← mem_generalized_eigenspace,
submodule.mem_supr_of_chain]
/-- If there exists a natural number `k` such that the kernel of `(f - μ • id) ^ k` is the
maximal generalized eigenspace, then this value is the least such `k`. If not, this value is not
meaningful. -/
noncomputable def maximal_generalized_eigenspace_index (f : End R M) (μ : R) :=
monotonic_sequence_limit_index (f.generalized_eigenspace μ)
/-- For an endomorphism of a Noetherian module, the maximal eigenspace is always of the form kernel
`(f - μ • id) ^ k` for some `k`. -/
lemma maximal_generalized_eigenspace_eq [h : is_noetherian R M] (f : End R M) (μ : R) :
maximal_generalized_eigenspace f μ =
f.generalized_eigenspace μ (maximal_generalized_eigenspace_index f μ) :=
begin
rw is_noetherian_iff_well_founded at h,
exact (well_founded.supr_eq_monotonic_sequence_limit h (f.generalized_eigenspace μ) : _),
end
/-- A generalized eigenvalue for some exponent `k` is also
a generalized eigenvalue for exponents larger than `k`. -/
lemma has_generalized_eigenvalue_of_has_generalized_eigenvalue_of_le
{f : End R M} {μ : R} {k : ℕ} {m : ℕ} (hm : k ≤ m) (hk : f.has_generalized_eigenvalue μ k) :
f.has_generalized_eigenvalue μ m :=
begin
unfold has_generalized_eigenvalue at *,
contrapose! hk,
rw [←le_bot_iff, ←hk],
exact (f.generalized_eigenspace μ).monotone hm,
end
/-- The eigenspace is a subspace of the generalized eigenspace. -/
lemma eigenspace_le_generalized_eigenspace {f : End R M} {μ : R} {k : ℕ} (hk : 0 < k) :
f.eigenspace μ ≤ f.generalized_eigenspace μ k :=
(f.generalized_eigenspace μ).monotone (nat.succ_le_of_lt hk)
/-- All eigenvalues are generalized eigenvalues. -/
lemma has_generalized_eigenvalue_of_has_eigenvalue
{f : End R M} {μ : R} {k : ℕ} (hk : 0 < k) (hμ : f.has_eigenvalue μ) :
f.has_generalized_eigenvalue μ k :=
begin
apply has_generalized_eigenvalue_of_has_generalized_eigenvalue_of_le hk,
rw [has_generalized_eigenvalue, generalized_eigenspace, order_hom.coe_fun_mk, pow_one],
exact hμ,
end
/-- All generalized eigenvalues are eigenvalues. -/
lemma has_eigenvalue_of_has_generalized_eigenvalue
{f : End R M} {μ : R} {k : ℕ} (hμ : f.has_generalized_eigenvalue μ k) :
f.has_eigenvalue μ :=
begin
intros contra, apply hμ,
erw linear_map.ker_eq_bot at ⊢ contra, rw linear_map.coe_pow,
exact function.injective.iterate contra k,
end
/-- Generalized eigenvalues are actually just eigenvalues. -/
@[simp] lemma has_generalized_eigenvalue_iff_has_eigenvalue
{f : End R M} {μ : R} {k : ℕ} (hk : 0 < k) :
f.has_generalized_eigenvalue μ k ↔ f.has_eigenvalue μ :=
⟨has_eigenvalue_of_has_generalized_eigenvalue, has_generalized_eigenvalue_of_has_eigenvalue hk⟩
/-- Every generalized eigenvector is a generalized eigenvector for exponent `finrank K V`.
(Lemma 8.11 of [axler2015]) -/
lemma generalized_eigenspace_le_generalized_eigenspace_finrank
[finite_dimensional K V] (f : End K V) (μ : K) (k : ℕ) :
f.generalized_eigenspace μ k ≤ f.generalized_eigenspace μ (finrank K V) :=
ker_pow_le_ker_pow_finrank _ _
/-- Generalized eigenspaces for exponents at least `finrank K V` are equal to each other. -/
lemma generalized_eigenspace_eq_generalized_eigenspace_finrank_of_le [finite_dimensional K V]
(f : End K V) (μ : K) {k : ℕ} (hk : finrank K V ≤ k) :
f.generalized_eigenspace μ k = f.generalized_eigenspace μ (finrank K V) :=
ker_pow_eq_ker_pow_finrank_of_le hk
/-- If `f` maps a subspace `p` into itself, then the generalized eigenspace of the restriction
of `f` to `p` is the part of the generalized eigenspace of `f` that lies in `p`. -/
lemma generalized_eigenspace_restrict
(f : End R M) (p : submodule R M) (k : ℕ) (μ : R) (hfp : ∀ (x : M), x ∈ p → f x ∈ p) :
generalized_eigenspace (linear_map.restrict f hfp) μ k =
submodule.comap p.subtype (f.generalized_eigenspace μ k) :=
begin
simp only [generalized_eigenspace, order_hom.coe_fun_mk, ← linear_map.ker_comp],
induction k with k ih,
{ rw [pow_zero, pow_zero, linear_map.one_eq_id],
apply (submodule.ker_subtype _).symm },
{ erw [pow_succ', pow_succ', linear_map.ker_comp, linear_map.ker_comp, ih,
← linear_map.ker_comp, linear_map.comp_assoc] },
end
/-- If `p` is an invariant submodule of an endomorphism `f`, then the `μ`-eigenspace of the
restriction of `f` to `p` is a submodule of the `μ`-eigenspace of `f`. -/
lemma eigenspace_restrict_le_eigenspace (f : End R M) {p : submodule R M}
(hfp : ∀ x ∈ p, f x ∈ p) (μ : R) :
(eigenspace (f.restrict hfp) μ).map p.subtype ≤ f.eigenspace μ :=
begin
rintros a ⟨x, hx, rfl⟩,
simp only [set_like.mem_coe, mem_eigenspace_iff, linear_map.restrict_apply] at hx ⊢,
exact congr_arg coe hx
end
/-- Generalized eigenrange and generalized eigenspace for exponent `finrank K V` are disjoint. -/
lemma generalized_eigenvec_disjoint_range_ker [finite_dimensional K V] (f : End K V) (μ : K) :
disjoint (f.generalized_eigenrange μ (finrank K V)) (f.generalized_eigenspace μ (finrank K V)) :=
begin
have h := calc
submodule.comap ((f - algebra_map _ _ μ) ^ finrank K V)
(f.generalized_eigenspace μ (finrank K V))
= ((f - algebra_map _ _ μ) ^ finrank K V *
(f - algebra_map K (End K V) μ) ^ finrank K V).ker :
by { simpa only [generalized_eigenspace, order_hom.coe_fun_mk, ← linear_map.ker_comp] }
... = f.generalized_eigenspace μ (finrank K V + finrank K V) :
by { rw ←pow_add, refl }
... = f.generalized_eigenspace μ (finrank K V) :
by { rw generalized_eigenspace_eq_generalized_eigenspace_finrank_of_le, linarith },
rw [disjoint, generalized_eigenrange, linear_map.range_eq_map, submodule.map_inf_eq_map_inf_comap,
top_inf_eq, h],
apply submodule.map_comap_le
end
/-- If an invariant subspace `p` of an endomorphism `f` is disjoint from the `μ`-eigenspace of `f`,
then the restriction of `f` to `p` has trivial `μ`-eigenspace. -/
lemma eigenspace_restrict_eq_bot {f : End R M} {p : submodule R M}
(hfp : ∀ x ∈ p, f x ∈ p) {μ : R} (hμp : disjoint (f.eigenspace μ) p) :
eigenspace (f.restrict hfp) μ = ⊥ :=
begin
rw eq_bot_iff,
intros x hx,
simpa using hμp ⟨eigenspace_restrict_le_eigenspace f hfp μ ⟨x, hx, rfl⟩, x.prop⟩,
end
/-- The generalized eigenspace of an eigenvalue has positive dimension for positive exponents. -/
lemma pos_finrank_generalized_eigenspace_of_has_eigenvalue [finite_dimensional K V]
{f : End K V} {k : ℕ} {μ : K} (hx : f.has_eigenvalue μ) (hk : 0 < k):
0 < finrank K (f.generalized_eigenspace μ k) :=
calc
0 = finrank K (⊥ : submodule K V) : by rw finrank_bot
... < finrank K (f.eigenspace μ) : submodule.finrank_lt_finrank_of_lt (bot_lt_iff_ne_bot.2 hx)
... ≤ finrank K (f.generalized_eigenspace μ k) :
submodule.finrank_mono ((f.generalized_eigenspace μ).monotone (nat.succ_le_of_lt hk))
/-- A linear map maps a generalized eigenrange into itself. -/
lemma map_generalized_eigenrange_le {f : End K V} {μ : K} {n : ℕ} :
submodule.map f (f.generalized_eigenrange μ n) ≤ f.generalized_eigenrange μ n :=
calc submodule.map f (f.generalized_eigenrange μ n)
= (f * ((f - algebra_map _ _ μ) ^ n)).range : (linear_map.range_comp _ _).symm
... = (((f - algebra_map _ _ μ) ^ n) * f).range : by rw algebra.mul_sub_algebra_map_pow_commutes
... = submodule.map ((f - algebra_map _ _ μ) ^ n) f.range : linear_map.range_comp _ _
... ≤ f.generalized_eigenrange μ n : linear_map.map_le_range
/-- The generalized eigenvectors span the entire vector space (Lemma 8.21 of [axler2015]). -/
lemma supr_generalized_eigenspace_eq_top [is_alg_closed K] [finite_dimensional K V] (f : End K V) :
(⨆ (μ : K) (k : ℕ), f.generalized_eigenspace μ k) = ⊤ :=
begin
-- We prove the claim by strong induction on the dimension of the vector space.
unfreezingI { induction h_dim : finrank K V using nat.strong_induction_on
with n ih generalizing V },
cases n,
-- If the vector space is 0-dimensional, the result is trivial.
{ rw ←top_le_iff,
simp only [finrank_eq_zero.1 (eq.trans finrank_top h_dim), bot_le] },
-- Otherwise the vector space is nontrivial.
{ haveI : nontrivial V := finrank_pos_iff.1 (by { rw h_dim, apply nat.zero_lt_succ }),
-- Hence, `f` has an eigenvalue `μ₀`.
obtain ⟨μ₀, hμ₀⟩ : ∃ μ₀, f.has_eigenvalue μ₀ := exists_eigenvalue f,
-- We define `ES` to be the generalized eigenspace
let ES := f.generalized_eigenspace μ₀ (finrank K V),
-- and `ER` to be the generalized eigenrange.
let ER := f.generalized_eigenrange μ₀ (finrank K V),
-- `f` maps `ER` into itself.
have h_f_ER : ∀ (x : V), x ∈ ER → f x ∈ ER,
from λ x hx, map_generalized_eigenrange_le (submodule.mem_map_of_mem hx),
-- Therefore, we can define the restriction `f'` of `f` to `ER`.
let f' : End K ER := f.restrict h_f_ER,
-- The dimension of `ES` is positive
have h_dim_ES_pos : 0 < finrank K ES,
{ dsimp only [ES],
rw h_dim,
apply pos_finrank_generalized_eigenspace_of_has_eigenvalue hμ₀ (nat.zero_lt_succ n) },
-- and the dimensions of `ES` and `ER` add up to `finrank K V`.
have h_dim_add : finrank K ER + finrank K ES = finrank K V,
{ apply linear_map.finrank_range_add_finrank_ker },
-- Therefore the dimension `ER` mus be smaller than `finrank K V`.
have h_dim_ER : finrank K ER < n.succ, by linarith,
-- This allows us to apply the induction hypothesis on `ER`:
have ih_ER : (⨆ (μ : K) (k : ℕ), f'.generalized_eigenspace μ k) = ⊤,
from ih (finrank K ER) h_dim_ER f' rfl,
-- The induction hypothesis gives us a statement about subspaces of `ER`. We can transfer this
-- to a statement about subspaces of `V` via `submodule.subtype`:
have ih_ER' : (⨆ (μ : K) (k : ℕ), (f'.generalized_eigenspace μ k).map ER.subtype) = ER,
by simp only [(submodule.map_supr _ _).symm, ih_ER, submodule.map_subtype_top ER],
-- Moreover, every generalized eigenspace of `f'` is contained in the corresponding generalized
-- eigenspace of `f`.
have hff' : ∀ μ k,
(f'.generalized_eigenspace μ k).map ER.subtype ≤ f.generalized_eigenspace μ k,
{ intros,
rw generalized_eigenspace_restrict,
apply submodule.map_comap_le },
-- It follows that `ER` is contained in the span of all generalized eigenvectors.
have hER : ER ≤ ⨆ (μ : K) (k : ℕ), f.generalized_eigenspace μ k,
{ rw ← ih_ER',
exact supr₂_mono hff' },
-- `ES` is contained in this span by definition.
have hES : ES ≤ ⨆ (μ : K) (k : ℕ), f.generalized_eigenspace μ k,
from le_trans
(le_supr (λ k, f.generalized_eigenspace μ₀ k) (finrank K V))
(le_supr (λ (μ : K), ⨆ (k : ℕ), f.generalized_eigenspace μ k) μ₀),
-- Moreover, we know that `ER` and `ES` are disjoint.
have h_disjoint : disjoint ER ES,
from generalized_eigenvec_disjoint_range_ker f μ₀,
-- Since the dimensions of `ER` and `ES` add up to the dimension of `V`, it follows that the
-- span of all generalized eigenvectors is all of `V`.
show (⨆ (μ : K) (k : ℕ), f.generalized_eigenspace μ k) = ⊤,
{ rw [←top_le_iff, ←submodule.eq_top_of_disjoint ER ES h_dim_add h_disjoint],
apply sup_le hER hES } }
end
end End
end module