Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Patrick Massot, Casper Putz, Anne Baanen | |
-/ | |
import data.matrix.basic | |
/-! | |
# Trace of a matrix | |
This file defines the trace of a matrix, the map sending a matrix to the sum of its diagonal | |
entries. | |
See also `linear_algebra.trace` for the trace of an endomorphism. | |
## Tags | |
matrix, trace, diagonal | |
-/ | |
open_locale big_operators matrix | |
namespace matrix | |
variables {ι m n p : Type*} {α R S : Type*} | |
variables [fintype m] [fintype n] [fintype p] | |
section add_comm_monoid | |
variables [add_comm_monoid R] | |
/-- The trace of a square matrix. For more bundled versions, see: | |
* `matrix.trace_add_monoid_hom` | |
* `matrix.trace_linear_map` | |
-/ | |
def trace (A : matrix n n R) : R := ∑ i, diag A i | |
variables (n R) | |
@[simp] lemma trace_zero : trace (0 : matrix n n R) = 0 := | |
(finset.sum_const (0 : R)).trans $ smul_zero _ | |
variables {n R} | |
@[simp] lemma trace_add (A B : matrix n n R) : trace (A + B) = trace A + trace B := | |
finset.sum_add_distrib | |
@[simp] lemma trace_smul [monoid α] [distrib_mul_action α R] (r : α) (A : matrix n n R) : | |
trace (r • A) = r • trace A := | |
finset.smul_sum.symm | |
@[simp] lemma trace_transpose (A : matrix n n R) : trace Aᵀ = trace A := rfl | |
@[simp] lemma trace_conj_transpose [star_add_monoid R] (A : matrix n n R) : | |
trace Aᴴ = star (trace A) := | |
(star_sum _ _).symm | |
variables (n α R) | |
/-- `matrix.trace` as an `add_monoid_hom` -/ | |
@[simps] | |
def trace_add_monoid_hom : matrix n n R →+ R := | |
{ to_fun := trace, map_zero' := trace_zero n R, map_add' := trace_add } | |
/-- `matrix.trace` as a `linear_map` -/ | |
@[simps] | |
def trace_linear_map [semiring α] [module α R] : matrix n n R →ₗ[α] R := | |
{ to_fun := trace, map_add' := trace_add, map_smul' := trace_smul } | |
variables {n α R} | |
@[simp] lemma trace_list_sum (l : list (matrix n n R)) : trace l.sum = (l.map trace).sum := | |
map_list_sum (trace_add_monoid_hom n R) l | |
@[simp] lemma trace_multiset_sum (s : multiset (matrix n n R)) : trace s.sum = (s.map trace).sum := | |
map_multiset_sum (trace_add_monoid_hom n R) s | |
@[simp] lemma trace_sum (s : finset ι) (f : ι → matrix n n R) : | |
trace (∑ i in s, f i) = ∑ i in s, trace (f i) := | |
map_sum (trace_add_monoid_hom n R) f s | |
end add_comm_monoid | |
section add_comm_group | |
variables [add_comm_group R] | |
@[simp] lemma trace_sub (A B : matrix n n R) : trace (A - B) = trace A - trace B := | |
finset.sum_sub_distrib | |
@[simp] lemma trace_neg (A : matrix n n R) : trace (-A) = -trace A := | |
finset.sum_neg_distrib | |
end add_comm_group | |
section one | |
variables [decidable_eq n] [add_comm_monoid_with_one R] | |
@[simp] lemma trace_one : trace (1 : matrix n n R) = fintype.card n := | |
by simp_rw [trace, diag_one, pi.one_def, finset.sum_const, nsmul_one, finset.card_univ] | |
end one | |
section mul | |
@[simp] lemma trace_transpose_mul [add_comm_monoid R] [has_mul R] | |
(A : matrix m n R) (B : matrix n m R) : trace (Aᵀ ⬝ Bᵀ) = trace (A ⬝ B) := finset.sum_comm | |
lemma trace_mul_comm [add_comm_monoid R] [comm_semigroup R] (A : matrix m n R) (B : matrix n m R) : | |
trace (A ⬝ B) = trace (B ⬝ A) := | |
by rw [←trace_transpose, ←trace_transpose_mul, transpose_mul] | |
lemma trace_mul_cycle [non_unital_comm_semiring R] | |
(A : matrix m n R) (B : matrix n p R) (C : matrix p m R) : | |
trace (A ⬝ B ⬝ C) = trace (C ⬝ A ⬝ B) := | |
by rw [trace_mul_comm, matrix.mul_assoc] | |
lemma trace_mul_cycle' [non_unital_comm_semiring R] | |
(A : matrix m n R) (B : matrix n p R) (C : matrix p m R) : | |
trace (A ⬝ (B ⬝ C)) = trace (C ⬝ (A ⬝ B)) := | |
by rw [←matrix.mul_assoc, trace_mul_comm] | |
@[simp] lemma trace_col_mul_row [non_unital_non_assoc_semiring R] (a b : n → R) : | |
trace (col a ⬝ row b) = dot_product a b := | |
by simp [dot_product, trace] | |
end mul | |
section fin | |
variables [add_comm_monoid R] | |
/-! ### Special cases for `fin n` | |
While `simp [fin.sum_univ_succ]` can prove these, we include them for convenience and consistency | |
with `matrix.det_fin_two` etc. | |
-/ | |
@[simp] lemma trace_fin_zero (A : matrix (fin 0) (fin 0) R) : trace A = 0 := | |
rfl | |
lemma trace_fin_one (A : matrix (fin 1) (fin 1) R) : trace A = A 0 0 := | |
add_zero _ | |
lemma trace_fin_two (A : matrix (fin 2) (fin 2) R) : trace A = A 0 0 + A 1 1 := | |
congr_arg ((+) _) (add_zero (A 1 1)) | |
lemma trace_fin_three (A : matrix (fin 3) (fin 3) R) : trace A = A 0 0 + A 1 1 + A 2 2 := | |
by { rw [← add_zero (A 2 2), add_assoc], refl } | |
end fin | |
end matrix | |