Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Junyan Xu. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Junyan Xu | |
-/ | |
import data.multiset.basic | |
import order.well_founded | |
/-! | |
# Termination of a hydra game | |
This file deals with the following version of the hydra game: each head of the hydra is | |
labelled by an element in a type `α`, and when you cut off one head with label `a`, it | |
grows back an arbitrary but finite number of heads, all labelled by elements smaller than | |
`a` with respect to a well-founded relation `r` on `α`. We show that no matter how (in | |
what order) you choose cut off the heads, the game always terminates, i.e. all heads will | |
eventually be cut off (but of course it can last arbitrarily long, i.e. takes an | |
arbitrary finite number of steps). | |
This result is stated as the well-foundedness of the `cut_expand` relation defined in | |
this file: we model the heads of the hydra as a multiset of elements of `α`, and the | |
valid "moves" of the game are modelled by the relation `cut_expand r` on `multiset α`: | |
`cut_expand r s' s` is true iff `s'` is obtained by removing one head `a ∈ s` and | |
adding back an arbitrary multiset `t` of heads such that all `a' ∈ t` satisfy `r a' a`. | |
To prove this theorem, we follow the proof by Peter LeFanu Lumsdaine at | |
https://mathoverflow.net/a/229084/3332, and along the way we introduce the notion of `fibration` | |
of relations, and a new operation `game_add` that combines to relations to form a relation on the | |
product type, which is used to define addition of games in combinatorial game theory. | |
TODO: formalize the relations corresponding to more powerful (e.g. Kirby–Paris and Buchholz) | |
hydras, and prove their well-foundedness. | |
-/ | |
namespace relation | |
variables {α β : Type*} | |
section two_rels | |
variables (rα : α → α → Prop) (rβ : β → β → Prop) (f : α → β) | |
/-- A function `f : α → β` is a fibration between the relation `rα` and `rβ` if for all | |
`a : α` and `b : β`, whenever `b : β` and `f a` are related by `rβ`, `b` is the image | |
of some `a' : α` under `f`, and `a'` and `a` are related by `rα`. -/ | |
def fibration := ∀ ⦃a b⦄, rβ b (f a) → ∃ a', rα a' a ∧ f a' = b | |
variables {rα rβ} | |
/-- If `f : α → β` is a fibration between relations `rα` and `rβ`, and `a : α` is | |
accessible under `rα`, then `f a` is accessible under `rβ`. -/ | |
lemma _root_.acc.of_fibration (fib : fibration rα rβ f) {a} (ha : acc rα a) : acc rβ (f a) := | |
begin | |
induction ha with a ha ih, | |
refine acc.intro (f a) (λ b hr, _), | |
obtain ⟨a', hr', rfl⟩ := fib hr, | |
exact ih a' hr', | |
end | |
lemma _root_.acc.of_downward_closed (dc : ∀ {a b}, rβ b (f a) → b ∈ set.range f) | |
(a : α) (ha : acc (inv_image rβ f) a) : acc rβ (f a) := | |
ha.of_fibration f (λ a b h, let ⟨a', he⟩ := dc h in ⟨a', he.substr h, he⟩) | |
variables (rα rβ) | |
/-- The "addition of games" relation in combinatorial game theory, on the product type: if | |
`rα a' a` means that `a ⟶ a'` is a valid move in game `α`, and `rβ b' b` means that `b ⟶ b'` | |
is a valid move in game `β`, then `game_add rα rβ` specifies the valid moves in the juxtaposition | |
of `α` and `β`: the player is free to choose one of the games and make a move in it, | |
while leaving the other game unchanged. -/ | |
inductive game_add : α × β → α × β → Prop | |
| fst {a' a b} : rα a' a → game_add (a',b) (a,b) | |
| snd {a b' b} : rβ b' b → game_add (a,b') (a,b) | |
/-- `game_add` is a `subrelation` of `prod.lex`. -/ | |
lemma game_add_le_lex : game_add rα rβ ≤ prod.lex rα rβ := | |
λ _ _ h, h.rec (λ _ _ b, prod.lex.left b b) (λ a _ _, prod.lex.right a) | |
/-- `prod.rprod` is a subrelation of the transitive closure of `game_add`. -/ | |
lemma rprod_le_trans_gen_game_add : prod.rprod rα rβ ≤ trans_gen (game_add rα rβ) := | |
λ _ _ h, h.rec begin | |
intros _ _ _ _ hα hβ, | |
exact trans_gen.tail (trans_gen.single $ game_add.fst hα) (game_add.snd hβ), | |
end | |
variables {rα rβ} | |
/-- If `a` is accessible under `rα` and `b` is accessible under `rβ`, then `(a, b)` is | |
accessible under `relation.game_add rα rβ`. Notice that `prod.lex_accessible` requires the | |
stronger condition `∀ b, acc rβ b`. -/ | |
lemma _root_.acc.game_add {a b} (ha : acc rα a) (hb : acc rβ b) : acc (game_add rα rβ) (a, b) := | |
begin | |
induction ha with a ha iha generalizing b, | |
induction hb with b hb ihb, | |
refine acc.intro _ (λ h, _), | |
rintro (⟨_,_,_,ra⟩|⟨_,_,_,rb⟩), | |
exacts [iha _ ra (acc.intro b hb), ihb _ rb], | |
end | |
/-- The sum of two well-founded games is well-founded. -/ | |
lemma _root_.well_founded.game_add (hα : well_founded rα) (hβ : well_founded rβ) : | |
well_founded (game_add rα rβ) := ⟨λ ⟨a,b⟩, (hα.apply a).game_add (hβ.apply b)⟩ | |
end two_rels | |
section hydra | |
open game_add multiset | |
/-- The relation that specifies valid moves in our hydra game. `cut_expand r s' s` | |
means that `s'` is obtained by removing one head `a ∈ s` and adding back an arbitrary | |
multiset `t` of heads such that all `a' ∈ t` satisfy `r a' a`. | |
This is most directly translated into `s' = s.erase a + t`, but `multiset.erase` requires | |
`decidable_eq α`, so we use the equivalent condition `s' + {a} = s + t` instead, which | |
is also easier to verify for explicit multisets `s'`, `s` and `t`. | |
We also don't include the condition `a ∈ s` because `s' + {a} = s + t` already | |
guarantees `a ∈ s + t`, and if `r` is irreflexive then `a ∉ t`, which is the | |
case when `r` is well-founded, the case we are primarily interested in. | |
The lemma `relation.cut_expand_iff` below converts between this convenient definition | |
and the direct translation when `r` is irreflexive. -/ | |
def cut_expand (r : α → α → Prop) (s' s : multiset α) : Prop := | |
∃ (t : multiset α) (a : α), (∀ a' ∈ t, r a' a) ∧ s' + {a} = s + t | |
variable {r : α → α → Prop} | |
theorem cut_expand_singleton {s x} (h : ∀ x' ∈ s, r x' x) : cut_expand r s {x} := | |
⟨s, x, h, add_comm s _⟩ | |
theorem cut_expand_singleton_singleton {x' x} (h : r x' x) : cut_expand r {x'} {x} := | |
cut_expand_singleton (λ a h, by rwa mem_singleton.1 h) | |
theorem cut_expand_add_left {t u} (s) : cut_expand r (s + t) (s + u) ↔ cut_expand r t u := | |
exists₂_congr $ λ _ _, and_congr iff.rfl $ by rw [add_assoc, add_assoc, add_left_cancel_iff] | |
lemma cut_expand_iff [decidable_eq α] [is_irrefl α r] {s' s : multiset α} : | |
cut_expand r s' s ↔ ∃ (t : multiset α) a, (∀ a' ∈ t, r a' a) ∧ a ∈ s ∧ s' = s.erase a + t := | |
begin | |
simp_rw [cut_expand, add_singleton_eq_iff], | |
refine exists₂_congr (λ t a, ⟨_, _⟩), | |
{ rintro ⟨ht, ha, rfl⟩, | |
obtain (h|h) := mem_add.1 ha, | |
exacts [⟨ht, h, t.erase_add_left_pos h⟩, (@irrefl α r _ a (ht a h)).elim] }, | |
{ rintro ⟨ht, h, rfl⟩, | |
exact ⟨ht, mem_add.2 (or.inl h), (t.erase_add_left_pos h).symm⟩ }, | |
end | |
theorem not_cut_expand_zero [is_irrefl α r] (s) : ¬ cut_expand r s 0 := | |
by { classical, rw cut_expand_iff, rintro ⟨_, _, _, ⟨⟩, _⟩ } | |
/-- For any relation `r` on `α`, multiset addition `multiset α × multiset α → multiset α` is a | |
fibration between the game sum of `cut_expand r` with itself and `cut_expand r` itself. -/ | |
lemma cut_expand_fibration (r : α → α → Prop) : | |
fibration (game_add (cut_expand r) (cut_expand r)) (cut_expand r) (λ s, s.1 + s.2) := | |
begin | |
rintro ⟨s₁, s₂⟩ s ⟨t, a, hr, he⟩, dsimp at he ⊢, | |
classical, obtain ⟨ha, rfl⟩ := add_singleton_eq_iff.1 he, | |
rw [add_assoc, mem_add] at ha, obtain (h|h) := ha, | |
{ refine ⟨(s₁.erase a + t, s₂), fst ⟨t, a, hr, _⟩, _⟩, | |
{ rw [add_comm, ← add_assoc, singleton_add, cons_erase h] }, | |
{ rw [add_assoc s₁, erase_add_left_pos _ h, add_right_comm, add_assoc] } }, | |
{ refine ⟨(s₁, (s₂ + t).erase a), snd ⟨t, a, hr, _⟩, _⟩, | |
{ rw [add_comm, singleton_add, cons_erase h] }, | |
{ rw [add_assoc, erase_add_right_pos _ h] } }, | |
end | |
/-- A multiset is accessible under `cut_expand` if all its singleton subsets are, | |
assuming `r` is irreflexive. -/ | |
lemma acc_of_singleton [is_irrefl α r] {s : multiset α} : | |
(∀ a ∈ s, acc (cut_expand r) {a}) → acc (cut_expand r) s := | |
begin | |
refine multiset.induction _ _ s, | |
{ exact λ _, acc.intro 0 $ λ s h, (not_cut_expand_zero s h).elim }, | |
{ intros a s ih hacc, rw ← s.singleton_add a, | |
exact ((hacc a $ s.mem_cons_self a).game_add $ ih $ λ a ha, | |
hacc a $ mem_cons_of_mem ha).of_fibration _ (cut_expand_fibration r) }, | |
end | |
/-- A singleton `{a}` is accessible under `cut_expand r` if `a` is accessible under `r`, | |
assuming `r` is irreflexive. -/ | |
lemma _root_.acc.cut_expand [is_irrefl α r] {a : α} (hacc : acc r a) : acc (cut_expand r) {a} := | |
begin | |
induction hacc with a h ih, | |
refine acc.intro _ (λ s, _), | |
classical, rw cut_expand_iff, | |
rintro ⟨t, a, hr, rfl|⟨⟨⟩⟩, rfl⟩, | |
refine acc_of_singleton (λ a', _), | |
rw [erase_singleton, zero_add], | |
exact ih a' ∘ hr a', | |
end | |
/-- `cut_expand r` is well-founded when `r` is. -/ | |
theorem _root_.well_founded.cut_expand (hr : well_founded r) : well_founded (cut_expand r) := | |
⟨by { letI h := hr.is_irrefl, exact λ s, acc_of_singleton $ λ a _, (hr.apply a).cut_expand }⟩ | |
end hydra | |
end relation | |