Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.46 kB
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
Relator for functions, pairs, sums, and lists.
-/
import logic.basic
namespace relator
universes u₁ u₂ v₁ v₂
/- TODO(johoelzl):
* should we introduce relators of datatypes as recursive function or as inductive
predicate? For now we stick to the recursor approach.
* relation lift for datatypes, Π, Σ, set, and subtype types
* proof composition and identity laws
* implement method to derive relators from datatype
-/
section
variables {α : Sort u₁} {β : Sort u₂} {γ : Sort v₁} {δ : Sort v₂}
variables (R : α → β → Prop) (S : γ → δ → Prop)
def lift_fun (f : α → γ) (g : β → δ) : Prop :=
∀⦃a b⦄, R a b → S (f a) (g b)
infixr ⇒ := lift_fun
end
section
variables {α : Type u₁} {β : Type u₂} (R : α → β → Prop)
def right_total : Prop := ∀ b, ∃ a, R a b
def left_total : Prop := ∀ a, ∃ b, R a b
def bi_total : Prop := left_total R ∧ right_total R
def left_unique : Prop := ∀ ⦃a b c⦄, R a c → R b c → a = b
def right_unique : Prop := ∀ ⦃a b c⦄, R a b → R a c → b = c
def bi_unique : Prop := left_unique R ∧ right_unique R
variable {R}
lemma right_total.rel_forall (h : right_total R) :
((R ⇒ implies) ⇒ implies) (λp, ∀i, p i) (λq, ∀i, q i) :=
assume p q Hrel H b, exists.elim (h b) (assume a Rab, Hrel Rab (H _))
lemma left_total.rel_exists (h : left_total R) :
((R ⇒ implies) ⇒ implies) (λp, ∃i, p i) (λq, ∃i, q i) :=
assume p q Hrel ⟨a, pa⟩, (h a).imp $ λ b Rab, Hrel Rab pa
lemma bi_total.rel_forall (h : bi_total R) :
((R ⇒ iff) ⇒ iff) (λp, ∀i, p i) (λq, ∀i, q i) :=
assume p q Hrel,
⟨assume H b, exists.elim (h.right b) (assume a Rab, (Hrel Rab).mp (H _)),
assume H a, exists.elim (h.left a) (assume b Rab, (Hrel Rab).mpr (H _))⟩
lemma bi_total.rel_exists (h : bi_total R) : ((R ⇒ iff) ⇒ iff) (λp, ∃i, p i) (λq, ∃i, q i) :=
assume p q Hrel,
⟨assume ⟨a, pa⟩, (h.left a).imp $ λ b Rab, (Hrel Rab).1 pa,
assume ⟨b, qb⟩, (h.right b).imp $ λ a Rab, (Hrel Rab).2 qb⟩
lemma left_unique_of_rel_eq {eq' : β → β → Prop} (he : (R ⇒ (R ⇒ iff)) eq eq') : left_unique R :=
λ a b c (ac : R a c) (bc : R b c), (he ac bc).mpr ((he bc bc).mp rfl)
end
lemma rel_imp : (iff ⇒ (iff ⇒ iff)) implies implies :=
assume p q h r s l, imp_congr h l
lemma rel_not : (iff ⇒ iff) not not :=
assume p q h, not_congr h
lemma bi_total_eq {α : Type u₁} : relator.bi_total (@eq α) :=
{ left := λ a, ⟨a, rfl⟩, right := λ a, ⟨a, rfl⟩ }
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
variables {r : α → β → Prop} {p : β → γ → Prop} {q : γ → δ → Prop}
lemma left_unique.flip (h : left_unique r) : right_unique (flip r) :=
λ a b c h₁ h₂, h h₁ h₂
lemma rel_and : ((↔) ⇒ (↔) ⇒ (↔)) (∧) (∧) :=
assume a b h₁ c d h₂, and_congr h₁ h₂
lemma rel_or : ((↔) ⇒ (↔) ⇒ (↔)) (∨) (∨) :=
assume a b h₁ c d h₂, or_congr h₁ h₂
lemma rel_iff : ((↔) ⇒ (↔) ⇒ (↔)) (↔) (↔) :=
assume a b h₁ c d h₂, iff_congr h₁ h₂
lemma rel_eq {r : α → β → Prop} (hr : bi_unique r) : (r ⇒ r ⇒ (↔)) (=) (=) :=
λ a b h₁ c d h₂, ⟨λ h, hr.right h₁ $ h.symm ▸ h₂, λ h, hr.left h₁ $ h.symm ▸ h₂⟩
end relator