Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Sébastien Gouëzel | |
-/ | |
import measure_theory.covering.besicovitch_vector_space | |
import measure_theory.measure.haar_lebesgue | |
import analysis.normed_space.pointwise | |
import measure_theory.covering.differentiation | |
import measure_theory.constructions.polish | |
/-! | |
# Change of variables in higher-dimensional integrals | |
Let `μ` be a Lebesgue measure on a finite-dimensional real vector space `E`. | |
Let `f : E → E` be a function which is injective and differentiable on a measurable set `s`, | |
with derivative `f'`. Then we prove that `f '' s` is measurable, and | |
its measure is given by the formula `μ (f '' s) = ∫⁻ x in s, |(f' x).det| ∂μ` (where `(f' x).det` | |
is almost everywhere measurable, but not Borel-measurable in general). This formula is proved in | |
`lintegral_abs_det_fderiv_eq_add_haar_image`. We deduce the change of variables | |
formula for the Lebesgue and Bochner integrals, in `lintegral_image_eq_lintegral_abs_det_fderiv_mul` | |
and `integral_image_eq_integral_abs_det_fderiv_smul` respectively. | |
## Main results | |
* `add_haar_image_eq_zero_of_differentiable_on_of_add_haar_eq_zero`: if `f` is differentiable on a | |
set `s` with zero measure, then `f '' s` also has zero measure. | |
* `add_haar_image_eq_zero_of_det_fderiv_within_eq_zero`: if `f` is differentiable on a set `s`, and | |
its derivative is never invertible, then `f '' s` has zero measure (a version of Sard's lemma). | |
* `ae_measurable_fderiv_within`: if `f` is differentiable on a measurable set `s`, then `f'` | |
is almost everywhere measurable on `s`. | |
For the next statements, `s` is a measurable set and `f` is differentiable on `s` | |
(with a derivative `f'`) and injective on `s`. | |
* `measurable_image_of_fderiv_within`: the image `f '' s` is measurable. | |
* `measurable_embedding_of_fderiv_within`: the function `s.restrict f` is a measurable embedding. | |
* `lintegral_abs_det_fderiv_eq_add_haar_image`: the image measure is given by | |
`μ (f '' s) = ∫⁻ x in s, |(f' x).det| ∂μ`. | |
* `lintegral_image_eq_lintegral_abs_det_fderiv_mul`: for `g : E → ℝ≥0∞`, one has | |
`∫⁻ x in f '' s, g x ∂μ = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) * g (f x) ∂μ`. | |
* `integral_image_eq_integral_abs_det_fderiv_smul`: for `g : E → F`, one has | |
`∫ x in f '' s, g x ∂μ = ∫ x in s, |(f' x).det| • g (f x) ∂μ`. | |
* `integrable_on_image_iff_integrable_on_abs_det_fderiv_smul`: for `g : E → F`, the function `g` is | |
integrable on `f '' s` if and only if `|(f' x).det| • g (f x))` is integrable on `s`. | |
## Implementation | |
Typical versions of these results in the literature have much stronger assumptions: `s` would | |
typically be open, and the derivative `f' x` would depend continuously on `x` and be invertible | |
everywhere, to have the local inverse theorem at our disposal. The proof strategy under our weaker | |
assumptions is more involved. We follow [Fremlin, *Measure Theory* (volume 2)][fremlin_vol2]. | |
The first remark is that, if `f` is sufficiently well approximated by a linear map `A` on a set | |
`s`, then `f` expands the volume of `s` by at least `A.det - ε` and at most `A.det + ε`, where | |
the closeness condition depends on `A` in a non-explicit way (see `add_haar_image_le_mul_of_det_lt` | |
and `mul_le_add_haar_image_of_lt_det`). This fact holds for balls by a simple inclusion argument, | |
and follows for general sets using the Besicovitch covering theorem to cover the set by balls with | |
measures adding up essentially to `μ s`. | |
When `f` is differentiable on `s`, one may partition `s` into countably many subsets `s ∩ t n` | |
(where `t n` is measurable), on each of which `f` is well approximated by a linear map, so that the | |
above results apply. See `exists_partition_approximates_linear_on_of_has_fderiv_within_at`, which | |
follows from the pointwise differentiability (in a non-completely trivial way, as one should ensure | |
a form of uniformity on the sets of the partition). | |
Combining the above two results would give the conclusion, except for two difficulties: it is not | |
obvious why `f '' s` and `f'` should be measurable, which prevents us from using countable | |
additivity for the measure and the integral. It turns out that `f '' s` is indeed measurable, | |
and that `f'` is almost everywhere measurable, which is enough to recover countable additivity. | |
The measurability of `f '' s` follows from the deep Lusin-Souslin theorem ensuring that, in a | |
Polish space, a continuous injective image of a measurable set is measurable. | |
The key point to check the almost everywhere measurability of `f'` is that, if `f` is approximated | |
up to `δ` by a linear map on a set `s`, then `f'` is within `δ` of `A` on a full measure subset | |
of `s` (namely, its density points). With the above approximation argument, it follows that `f'` | |
is the almost everywhere limit of a sequence of measurable functions (which are constant on the | |
pieces of the good discretization), and is therefore almost everywhere measurable. | |
## Tags | |
Change of variables in integrals | |
## References | |
[Fremlin, *Measure Theory* (volume 2)][fremlin_vol2] | |
-/ | |
open measure_theory measure_theory.measure metric filter set finite_dimensional asymptotics | |
topological_space | |
open_locale nnreal ennreal topological_space pointwise | |
variables {E F : Type*} [normed_add_comm_group E] [normed_space ℝ E] [finite_dimensional ℝ E] | |
[normed_add_comm_group F] [normed_space ℝ F] {s : set E} {f : E → E} {f' : E → E →L[ℝ] E} | |
/-! | |
### Decomposition lemmas | |
We state lemmas ensuring that a differentiable function can be approximated, on countably many | |
measurable pieces, by linear maps (with a prescribed precision depending on the linear map). | |
-/ | |
/-- Assume that a function `f` has a derivative at every point of a set `s`. Then one may cover `s` | |
with countably many closed sets `t n` on which `f` is well approximated by linear maps `A n`. -/ | |
lemma exists_closed_cover_approximates_linear_on_of_has_fderiv_within_at | |
[second_countable_topology F] | |
(f : E → F) (s : set E) (f' : E → E →L[ℝ] F) (hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) | |
(r : (E →L[ℝ] F) → ℝ≥0) (rpos : ∀ A, r A ≠ 0) : | |
∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] F)), (∀ n, is_closed (t n)) ∧ (s ⊆ ⋃ n, t n) | |
∧ (∀ n, approximates_linear_on f (A n) (s ∩ t n) (r (A n))) | |
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) := | |
begin | |
/- Choose countably many linear maps `f' z`. For every such map, if `f` has a derivative at `x` | |
close enough to `f' z`, then `f y - f x` is well approximated by `f' z (y - x)` for `y` close | |
enough to `x`, say on a ball of radius `r` (or even `u n` for some `n`, where `u` is a fixed | |
sequence tending to `0`). | |
Let `M n z` be the points where this happens. Then this set is relatively closed inside `s`, | |
and moreover in every closed ball of radius `u n / 3` inside it the map is well approximated by | |
`f' z`. Using countably many closed balls to split `M n z` into small diameter subsets `K n z p`, | |
one obtains the desired sets `t q` after reindexing. | |
-/ | |
-- exclude the trivial case where `s` is empty | |
rcases eq_empty_or_nonempty s with rfl|hs, | |
{ refine ⟨λ n, ∅, λ n, 0, _, _, _, _⟩; | |
simp }, | |
-- we will use countably many linear maps. Select these from all the derivatives since the | |
-- space of linear maps is second-countable | |
obtain ⟨T, T_count, hT⟩ : ∃ T : set s, T.countable ∧ | |
(⋃ x ∈ T, ball (f' (x : E)) (r (f' x))) = ⋃ (x : s), ball (f' x) (r (f' x)) := | |
topological_space.is_open_Union_countable _ (λ x, is_open_ball), | |
-- fix a sequence `u` of positive reals tending to zero. | |
obtain ⟨u, u_anti, u_pos, u_lim⟩ : | |
∃ (u : ℕ → ℝ), strict_anti u ∧ (∀ (n : ℕ), 0 < u n) ∧ tendsto u at_top (𝓝 0) := | |
exists_seq_strict_anti_tendsto (0 : ℝ), | |
-- `M n z` is the set of points `x` such that `f y - f x` is close to `f' z (y - x)` for `y` | |
-- in the ball of radius `u n` around `x`. | |
let M : ℕ → T → set E := λ n z, {x | x ∈ s ∧ | |
∀ y ∈ s ∩ ball x (u n), ∥f y - f x - f' z (y - x)∥ ≤ r (f' z) * ∥y - x∥}, | |
-- As `f` is differentiable everywhere on `s`, the sets `M n z` cover `s` by design. | |
have s_subset : ∀ x ∈ s, ∃ (n : ℕ) (z : T), x ∈ M n z, | |
{ assume x xs, | |
obtain ⟨z, zT, hz⟩ : ∃ z ∈ T, f' x ∈ ball (f' (z : E)) (r (f' z)), | |
{ have : f' x ∈ ⋃ (z ∈ T), ball (f' (z : E)) (r (f' z)), | |
{ rw hT, | |
refine mem_Union.2 ⟨⟨x, xs⟩, _⟩, | |
simpa only [mem_ball, subtype.coe_mk, dist_self] using (rpos (f' x)).bot_lt }, | |
rwa mem_Union₂ at this }, | |
obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ), 0 < ε ∧ ∥f' x - f' z∥ + ε ≤ r (f' z), | |
{ refine ⟨r (f' z) - ∥f' x - f' z∥, _, le_of_eq (by abel)⟩, | |
simpa only [sub_pos] using mem_ball_iff_norm.mp hz }, | |
obtain ⟨δ, δpos, hδ⟩ : ∃ (δ : ℝ) (H : 0 < δ), | |
ball x δ ∩ s ⊆ {y | ∥f y - f x - (f' x) (y - x)∥ ≤ ε * ∥y - x∥} := | |
metric.mem_nhds_within_iff.1 (is_o.def (hf' x xs) εpos), | |
obtain ⟨n, hn⟩ : ∃ n, u n < δ := ((tendsto_order.1 u_lim).2 _ δpos).exists, | |
refine ⟨n, ⟨z, zT⟩, ⟨xs, _⟩⟩, | |
assume y hy, | |
calc ∥f y - f x - (f' z) (y - x)∥ | |
= ∥(f y - f x - (f' x) (y - x)) + (f' x - f' z) (y - x)∥ : | |
begin | |
congr' 1, | |
simp only [continuous_linear_map.coe_sub', map_sub, pi.sub_apply], | |
abel, | |
end | |
... ≤ ∥f y - f x - (f' x) (y - x)∥ + ∥(f' x - f' z) (y - x)∥ : norm_add_le _ _ | |
... ≤ ε * ∥y - x∥ + ∥f' x - f' z∥ * ∥y - x∥ : | |
begin | |
refine add_le_add (hδ _) (continuous_linear_map.le_op_norm _ _), | |
rw inter_comm, | |
exact inter_subset_inter_right _ (ball_subset_ball hn.le) hy, | |
end | |
... ≤ r (f' z) * ∥y - x∥ : | |
begin | |
rw [← add_mul, add_comm], | |
exact mul_le_mul_of_nonneg_right hε (norm_nonneg _), | |
end }, | |
-- the sets `M n z` are relatively closed in `s`, as all the conditions defining it are clearly | |
-- closed | |
have closure_M_subset : ∀ n z, s ∩ closure (M n z) ⊆ M n z, | |
{ rintros n z x ⟨xs, hx⟩, | |
refine ⟨xs, λ y hy, _⟩, | |
obtain ⟨a, aM, a_lim⟩ : ∃ (a : ℕ → E), (∀ k, a k ∈ M n z) ∧ tendsto a at_top (𝓝 x) := | |
mem_closure_iff_seq_limit.1 hx, | |
have L1 : tendsto (λ (k : ℕ), ∥f y - f (a k) - (f' z) (y - a k)∥) at_top | |
(𝓝 ∥f y - f x - (f' z) (y - x)∥), | |
{ apply tendsto.norm, | |
have L : tendsto (λ k, f (a k)) at_top (𝓝 (f x)), | |
{ apply (hf' x xs).continuous_within_at.tendsto.comp, | |
apply tendsto_nhds_within_of_tendsto_nhds_of_eventually_within _ a_lim, | |
exact eventually_of_forall (λ k, (aM k).1) }, | |
apply tendsto.sub (tendsto_const_nhds.sub L), | |
exact ((f' z).continuous.tendsto _).comp (tendsto_const_nhds.sub a_lim) }, | |
have L2 : tendsto (λ (k : ℕ), (r (f' z) : ℝ) * ∥y - a k∥) at_top (𝓝 (r (f' z) * ∥y - x∥)) := | |
(tendsto_const_nhds.sub a_lim).norm.const_mul _, | |
have I : ∀ᶠ k in at_top, ∥f y - f (a k) - (f' z) (y - a k)∥ ≤ r (f' z) * ∥y - a k∥, | |
{ have L : tendsto (λ k, dist y (a k)) at_top (𝓝 (dist y x)) := tendsto_const_nhds.dist a_lim, | |
filter_upwards [(tendsto_order.1 L).2 _ hy.2], | |
assume k hk, | |
exact (aM k).2 y ⟨hy.1, hk⟩ }, | |
exact le_of_tendsto_of_tendsto L1 L2 I }, | |
-- choose a dense sequence `d p` | |
rcases topological_space.exists_dense_seq E with ⟨d, hd⟩, | |
-- split `M n z` into subsets `K n z p` of small diameters by intersecting with the ball | |
-- `closed_ball (d p) (u n / 3)`. | |
let K : ℕ → T → ℕ → set E := λ n z p, closure (M n z) ∩ closed_ball (d p) (u n / 3), | |
-- on the sets `K n z p`, the map `f` is well approximated by `f' z` by design. | |
have K_approx : ∀ n (z : T) p, approximates_linear_on f (f' z) (s ∩ K n z p) (r (f' z)), | |
{ assume n z p x hx y hy, | |
have yM : y ∈ M n z := closure_M_subset _ _ ⟨hy.1, hy.2.1⟩, | |
refine yM.2 _ ⟨hx.1, _⟩, | |
calc dist x y ≤ dist x (d p) + dist y (d p) : dist_triangle_right _ _ _ | |
... ≤ u n / 3 + u n / 3 : add_le_add hx.2.2 hy.2.2 | |
... < u n : by linarith [u_pos n] }, | |
-- the sets `K n z p` are also closed, again by design. | |
have K_closed : ∀ n (z : T) p, is_closed (K n z p) := | |
λ n z p, is_closed_closure.inter is_closed_ball, | |
-- reindex the sets `K n z p`, to let them only depend on an integer parameter `q`. | |
obtain ⟨F, hF⟩ : ∃ F : ℕ → ℕ × T × ℕ, function.surjective F, | |
{ haveI : encodable T := T_count.to_encodable, | |
haveI : nonempty T, | |
{ unfreezingI { rcases eq_empty_or_nonempty T with rfl|hT }, | |
{ rcases hs with ⟨x, xs⟩, | |
rcases s_subset x xs with ⟨n, z, hnz⟩, | |
exact false.elim z.2 }, | |
{ exact nonempty_coe_sort.2 hT } }, | |
inhabit (ℕ × T × ℕ), | |
exact ⟨_, encodable.surjective_decode_iget _⟩ }, | |
-- these sets `t q = K n z p` will do | |
refine ⟨λ q, K (F q).1 (F q).2.1 (F q).2.2, λ q, f' (F q).2.1, λ n, K_closed _ _ _, λ x xs, _, | |
λ q, K_approx _ _ _, λ h's q, ⟨(F q).2.1, (F q).2.1.1.2, rfl⟩⟩, | |
-- the only fact that needs further checking is that they cover `s`. | |
-- we already know that any point `x ∈ s` belongs to a set `M n z`. | |
obtain ⟨n, z, hnz⟩ : ∃ (n : ℕ) (z : T), x ∈ M n z := s_subset x xs, | |
-- by density, it also belongs to a ball `closed_ball (d p) (u n / 3)`. | |
obtain ⟨p, hp⟩ : ∃ (p : ℕ), x ∈ closed_ball (d p) (u n / 3), | |
{ have : set.nonempty (ball x (u n / 3)), | |
{ simp only [nonempty_ball], linarith [u_pos n] }, | |
obtain ⟨p, hp⟩ : ∃ (p : ℕ), d p ∈ ball x (u n / 3) := hd.exists_mem_open is_open_ball this, | |
exact ⟨p, (mem_ball'.1 hp).le⟩ }, | |
-- choose `q` for which `t q = K n z p`. | |
obtain ⟨q, hq⟩ : ∃ q, F q = (n, z, p) := hF _, | |
-- then `x` belongs to `t q`. | |
apply mem_Union.2 ⟨q, _⟩, | |
simp only [hq, subset_closure hnz, hp, mem_inter_eq, and_self], | |
end | |
variables [measurable_space E] [borel_space E] (μ : measure E) [is_add_haar_measure μ] | |
/-- Assume that a function `f` has a derivative at every point of a set `s`. Then one may | |
partition `s` into countably many disjoint relatively measurable sets (i.e., intersections | |
of `s` with measurable sets `t n`) on which `f` is well approximated by linear maps `A n`. -/ | |
lemma exists_partition_approximates_linear_on_of_has_fderiv_within_at | |
[second_countable_topology F] | |
(f : E → F) (s : set E) (f' : E → E →L[ℝ] F) (hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) | |
(r : (E →L[ℝ] F) → ℝ≥0) (rpos : ∀ A, r A ≠ 0) : | |
∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] F)), pairwise (disjoint on t) | |
∧ (∀ n, measurable_set (t n)) ∧ (s ⊆ ⋃ n, t n) | |
∧ (∀ n, approximates_linear_on f (A n) (s ∩ t n) (r (A n))) | |
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) := | |
begin | |
rcases exists_closed_cover_approximates_linear_on_of_has_fderiv_within_at f s f' hf' r rpos | |
with ⟨t, A, t_closed, st, t_approx, ht⟩, | |
refine ⟨disjointed t, A, disjoint_disjointed _, | |
measurable_set.disjointed (λ n, (t_closed n).measurable_set), _, _, ht⟩, | |
{ rw Union_disjointed, exact st }, | |
{ assume n, exact (t_approx n).mono_set (inter_subset_inter_right _ (disjointed_subset _ _)) }, | |
end | |
namespace measure_theory | |
/-! | |
### Local lemmas | |
We check that a function which is well enough approximated by a linear map expands the volume | |
essentially like this linear map, and that its derivative (if it exists) is almost everywhere close | |
to the approximating linear map. | |
-/ | |
/-- Let `f` be a function which is sufficiently close (in the Lipschitz sense) to a given linear | |
map `A`. Then it expands the volume of any set by at most `m` for any `m > det A`. -/ | |
lemma add_haar_image_le_mul_of_det_lt | |
(A : E →L[ℝ] E) {m : ℝ≥0} (hm : ennreal.of_real (|A.det|) < m) : | |
∀ᶠ δ in 𝓝[>] (0 : ℝ≥0), ∀ (s : set E) (f : E → E) (hf : approximates_linear_on f A s δ), | |
μ (f '' s) ≤ m * μ s := | |
begin | |
apply nhds_within_le_nhds, | |
let d := ennreal.of_real (|A.det|), | |
-- construct a small neighborhood of `A '' (closed_ball 0 1)` with measure comparable to | |
-- the determinant of `A`. | |
obtain ⟨ε, hε, εpos⟩ : ∃ (ε : ℝ), | |
μ (closed_ball 0 ε + A '' (closed_ball 0 1)) < m * μ (closed_ball 0 1) ∧ 0 < ε, | |
{ have HC : is_compact (A '' closed_ball 0 1) := | |
(proper_space.is_compact_closed_ball _ _).image A.continuous, | |
have L0 : tendsto (λ ε, μ (cthickening ε (A '' (closed_ball 0 1)))) | |
(𝓝[>] 0) (𝓝 (μ (A '' (closed_ball 0 1)))), | |
{ apply tendsto.mono_left _ nhds_within_le_nhds, | |
exact tendsto_measure_cthickening_of_is_compact HC }, | |
have L1 : tendsto (λ ε, μ (closed_ball 0 ε + A '' (closed_ball 0 1))) | |
(𝓝[>] 0) (𝓝 (μ (A '' (closed_ball 0 1)))), | |
{ apply L0.congr' _, | |
filter_upwards [self_mem_nhds_within] with r hr, | |
rw [←HC.add_closed_ball_zero (le_of_lt hr), add_comm] }, | |
have L2 : tendsto (λ ε, μ (closed_ball 0 ε + A '' (closed_ball 0 1))) | |
(𝓝[>] 0) (𝓝 (d * μ (closed_ball 0 1))), | |
{ convert L1, | |
exact (add_haar_image_continuous_linear_map _ _ _).symm }, | |
have I : d * μ (closed_ball 0 1) < m * μ (closed_ball 0 1) := | |
(ennreal.mul_lt_mul_right ((measure_closed_ball_pos μ _ zero_lt_one).ne') | |
measure_closed_ball_lt_top.ne).2 hm, | |
have H : ∀ᶠ (b : ℝ) in 𝓝[>] 0, | |
μ (closed_ball 0 b + A '' closed_ball 0 1) < m * μ (closed_ball 0 1) := | |
(tendsto_order.1 L2).2 _ I, | |
exact (H.and self_mem_nhds_within).exists }, | |
have : Iio (⟨ε, εpos.le⟩ : ℝ≥0) ∈ 𝓝 (0 : ℝ≥0), { apply Iio_mem_nhds, exact εpos }, | |
filter_upwards [this], | |
-- fix a function `f` which is close enough to `A`. | |
assume δ hδ s f hf, | |
-- This function expands the volume of any ball by at most `m` | |
have I : ∀ x r, x ∈ s → 0 ≤ r → μ (f '' (s ∩ closed_ball x r)) ≤ m * μ (closed_ball x r), | |
{ assume x r xs r0, | |
have K : f '' (s ∩ closed_ball x r) ⊆ A '' (closed_ball 0 r) + closed_ball (f x) (ε * r), | |
{ rintros y ⟨z, ⟨zs, zr⟩, rfl⟩, | |
apply set.mem_add.2 ⟨A (z - x), f z - f x - A (z - x) + f x, _, _, _⟩, | |
{ apply mem_image_of_mem, | |
simpa only [dist_eq_norm, mem_closed_ball, mem_closed_ball_zero_iff] using zr }, | |
{ rw [mem_closed_ball_iff_norm, add_sub_cancel], | |
calc ∥f z - f x - A (z - x)∥ | |
≤ δ * ∥z - x∥ : hf _ zs _ xs | |
... ≤ ε * r : | |
mul_le_mul (le_of_lt hδ) (mem_closed_ball_iff_norm.1 zr) (norm_nonneg _) εpos.le }, | |
{ simp only [map_sub, pi.sub_apply], | |
abel } }, | |
have : A '' (closed_ball 0 r) + closed_ball (f x) (ε * r) | |
= {f x} + r • (A '' (closed_ball 0 1) + closed_ball 0 ε), | |
by rw [smul_add, ← add_assoc, add_comm ({f x}), add_assoc, smul_closed_ball _ _ εpos.le, | |
smul_zero, singleton_add_closed_ball_zero, ← image_smul_set ℝ E E A, | |
smul_closed_ball _ _ zero_le_one, smul_zero, real.norm_eq_abs, abs_of_nonneg r0, mul_one, | |
mul_comm], | |
rw this at K, | |
calc μ (f '' (s ∩ closed_ball x r)) | |
≤ μ ({f x} + r • (A '' (closed_ball 0 1) + closed_ball 0 ε)) : measure_mono K | |
... = ennreal.of_real (r ^ finrank ℝ E) * μ (A '' closed_ball 0 1 + closed_ball 0 ε) : | |
by simp only [abs_of_nonneg r0, add_haar_smul, image_add_left, abs_pow, singleton_add, | |
measure_preimage_add] | |
... ≤ ennreal.of_real (r ^ finrank ℝ E) * (m * μ (closed_ball 0 1)) : | |
by { rw add_comm, exact ennreal.mul_le_mul le_rfl hε.le } | |
... = m * μ (closed_ball x r) : | |
by { simp only [add_haar_closed_ball' _ _ r0], ring } }, | |
-- covering `s` by closed balls with total measure very close to `μ s`, one deduces that the | |
-- measure of `f '' s` is at most `m * (μ s + a)` for any positive `a`. | |
have J : ∀ᶠ a in 𝓝[>] (0 : ℝ≥0∞), μ (f '' s) ≤ m * (μ s + a), | |
{ filter_upwards [self_mem_nhds_within] with a ha, | |
change 0 < a at ha, | |
obtain ⟨t, r, t_count, ts, rpos, st, μt⟩ : ∃ (t : set E) (r : E → ℝ), t.countable ∧ t ⊆ s | |
∧ (∀ (x : E), x ∈ t → 0 < r x) ∧ (s ⊆ ⋃ (x ∈ t), closed_ball x (r x)) | |
∧ ∑' (x : ↥t), μ (closed_ball ↑x (r ↑x)) ≤ μ s + a := | |
besicovitch.exists_closed_ball_covering_tsum_measure_le μ ha.ne' (λ x, Ioi 0) s | |
(λ x xs δ δpos, ⟨δ/2, by simp [half_pos δpos, half_lt_self δpos]⟩), | |
haveI : encodable t := t_count.to_encodable, | |
calc μ (f '' s) | |
≤ μ (⋃ (x : t), f '' (s ∩ closed_ball x (r x))) : | |
begin | |
rw bUnion_eq_Union at st, | |
apply measure_mono, | |
rw [← image_Union, ← inter_Union], | |
exact image_subset _ (subset_inter (subset.refl _) st) | |
end | |
... ≤ ∑' (x : t), μ (f '' (s ∩ closed_ball x (r x))) : measure_Union_le _ | |
... ≤ ∑' (x : t), m * μ (closed_ball x (r x)) : | |
ennreal.tsum_le_tsum (λ x, I x (r x) (ts x.2) (rpos x x.2).le) | |
... ≤ m * (μ s + a) : | |
by { rw ennreal.tsum_mul_left, exact ennreal.mul_le_mul le_rfl μt } }, | |
-- taking the limit in `a`, one obtains the conclusion | |
have L : tendsto (λ a, (m : ℝ≥0∞) * (μ s + a)) (𝓝[>] 0) (𝓝 (m * (μ s + 0))), | |
{ apply tendsto.mono_left _ nhds_within_le_nhds, | |
apply ennreal.tendsto.const_mul (tendsto_const_nhds.add tendsto_id), | |
simp only [ennreal.coe_ne_top, ne.def, or_true, not_false_iff] }, | |
rw add_zero at L, | |
exact ge_of_tendsto L J, | |
end | |
/-- Let `f` be a function which is sufficiently close (in the Lipschitz sense) to a given linear | |
map `A`. Then it expands the volume of any set by at least `m` for any `m < det A`. -/ | |
lemma mul_le_add_haar_image_of_lt_det | |
(A : E →L[ℝ] E) {m : ℝ≥0} (hm : (m : ℝ≥0∞) < ennreal.of_real (|A.det|)) : | |
∀ᶠ δ in 𝓝[>] (0 : ℝ≥0), ∀ (s : set E) (f : E → E) (hf : approximates_linear_on f A s δ), | |
(m : ℝ≥0∞) * μ s ≤ μ (f '' s) := | |
begin | |
apply nhds_within_le_nhds, | |
-- The assumption `hm` implies that `A` is invertible. If `f` is close enough to `A`, it is also | |
-- invertible. One can then pass to the inverses, and deduce the estimate from | |
-- `add_haar_image_le_mul_of_det_lt` applied to `f⁻¹` and `A⁻¹`. | |
-- exclude first the trivial case where `m = 0`. | |
rcases eq_or_lt_of_le (zero_le m) with rfl|mpos, | |
{ apply eventually_of_forall, | |
simp only [forall_const, zero_mul, implies_true_iff, zero_le, ennreal.coe_zero] }, | |
have hA : A.det ≠ 0, | |
{ assume h, simpa only [h, ennreal.not_lt_zero, ennreal.of_real_zero, abs_zero] using hm }, | |
-- let `B` be the continuous linear equiv version of `A`. | |
let B := A.to_continuous_linear_equiv_of_det_ne_zero hA, | |
-- the determinant of `B.symm` is bounded by `m⁻¹` | |
have I : ennreal.of_real (|(B.symm : E →L[ℝ] E).det|) < (m⁻¹ : ℝ≥0), | |
{ simp only [ennreal.of_real, abs_inv, real.to_nnreal_inv, continuous_linear_equiv.det_coe_symm, | |
continuous_linear_map.coe_to_continuous_linear_equiv_of_det_ne_zero, ennreal.coe_lt_coe] | |
at ⊢ hm, | |
exact nnreal.inv_lt_inv mpos.ne' hm }, | |
-- therefore, we may apply `add_haar_image_le_mul_of_det_lt` to `B.symm` and `m⁻¹`. | |
obtain ⟨δ₀, δ₀pos, hδ₀⟩ : ∃ (δ : ℝ≥0), 0 < δ ∧ ∀ (t : set E) (g : E → E), | |
approximates_linear_on g (B.symm : E →L[ℝ] E) t δ → μ (g '' t) ≤ ↑m⁻¹ * μ t, | |
{ have : ∀ᶠ (δ : ℝ≥0) in 𝓝[>] 0, ∀ (t : set E) (g : E → E), | |
approximates_linear_on g (B.symm : E →L[ℝ] E) t δ → μ (g '' t) ≤ ↑m⁻¹ * μ t := | |
add_haar_image_le_mul_of_det_lt μ B.symm I, | |
rcases (this.and self_mem_nhds_within).exists with ⟨δ₀, h, h'⟩, | |
exact ⟨δ₀, h', h⟩, }, | |
-- record smallness conditions for `δ` that will be needed to apply `hδ₀` below. | |
have L1 : ∀ᶠ δ in 𝓝 (0 : ℝ≥0), subsingleton E ∨ δ < ∥(B.symm : E →L[ℝ] E)∥₊⁻¹, | |
{ by_cases (subsingleton E), | |
{ simp only [h, true_or, eventually_const] }, | |
simp only [h, false_or], | |
apply Iio_mem_nhds, | |
simpa only [h, false_or, nnreal.inv_pos] using B.subsingleton_or_nnnorm_symm_pos }, | |
have L2 : ∀ᶠ δ in 𝓝 (0 : ℝ≥0), | |
∥(B.symm : E →L[ℝ] E)∥₊ * (∥(B.symm : E →L[ℝ] E)∥₊⁻¹ - δ)⁻¹ * δ < δ₀, | |
{ have : tendsto (λ δ, ∥(B.symm : E →L[ℝ] E)∥₊ * (∥(B.symm : E →L[ℝ] E)∥₊⁻¹ - δ)⁻¹ * δ) | |
(𝓝 0) (𝓝 (∥(B.symm : E →L[ℝ] E)∥₊ * (∥(B.symm : E →L[ℝ] E)∥₊⁻¹ - 0)⁻¹ * 0)), | |
{ rcases eq_or_ne (∥(B.symm : E →L[ℝ] E)∥₊) 0 with H|H, | |
{ simpa only [H, zero_mul] using tendsto_const_nhds }, | |
refine tendsto.mul (tendsto_const_nhds.mul _) tendsto_id, | |
refine (tendsto.sub tendsto_const_nhds tendsto_id).inv₀ _, | |
simpa only [tsub_zero, inv_eq_zero, ne.def] using H }, | |
simp only [mul_zero] at this, | |
exact (tendsto_order.1 this).2 δ₀ δ₀pos }, | |
-- let `δ` be small enough, and `f` approximated by `B` up to `δ`. | |
filter_upwards [L1, L2], | |
assume δ h1δ h2δ s f hf, | |
have hf' : approximates_linear_on f (B : E →L[ℝ] E) s δ, | |
by { convert hf, exact A.coe_to_continuous_linear_equiv_of_det_ne_zero _ }, | |
let F := hf'.to_local_equiv h1δ, | |
-- the condition to be checked can be reformulated in terms of the inverse maps | |
suffices H : μ ((F.symm) '' F.target) ≤ (m⁻¹ : ℝ≥0) * μ F.target, | |
{ change (m : ℝ≥0∞) * μ (F.source) ≤ μ (F.target), | |
rwa [← F.symm_image_target_eq_source, mul_comm, ← ennreal.le_div_iff_mul_le, div_eq_mul_inv, | |
mul_comm, ← ennreal.coe_inv (mpos.ne')], | |
{ apply or.inl, | |
simpa only [ennreal.coe_eq_zero, ne.def] using mpos.ne'}, | |
{ simp only [ennreal.coe_ne_top, true_or, ne.def, not_false_iff] } }, | |
-- as `f⁻¹` is well approximated by `B⁻¹`, the conclusion follows from `hδ₀` | |
-- and our choice of `δ`. | |
exact hδ₀ _ _ ((hf'.to_inv h1δ).mono_num h2δ.le), | |
end | |
/-- If a differentiable function `f` is approximated by a linear map `A` on a set `s`, up to `δ`, | |
then at almost every `x` in `s` one has `∥f' x - A∥ ≤ δ`. -/ | |
lemma _root_.approximates_linear_on.norm_fderiv_sub_le | |
{A : E →L[ℝ] E} {δ : ℝ≥0} | |
(hf : approximates_linear_on f A s δ) (hs : measurable_set s) | |
(f' : E → E →L[ℝ] E) (hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) : | |
∀ᵐ x ∂(μ.restrict s), ∥f' x - A∥₊ ≤ δ := | |
begin | |
/- The conclusion will hold at the Lebesgue density points of `s` (which have full measure). | |
At such a point `x`, for any `z` and any `ε > 0` one has for small `r` | |
that `{x} + r • closed_ball z ε` intersects `s`. At a point `y` in the intersection, | |
`f y - f x` is close both to `f' x (r z)` (by differentiability) and to `A (r z)` | |
(by linear approximation), so these two quantities are close, i.e., `(f' x - A) z` is small. -/ | |
filter_upwards [besicovitch.ae_tendsto_measure_inter_div μ s, ae_restrict_mem hs], | |
-- start from a Lebesgue density point `x`, belonging to `s`. | |
assume x hx xs, | |
-- consider an arbitrary vector `z`. | |
apply continuous_linear_map.op_norm_le_bound _ δ.2 (λ z, _), | |
-- to show that `∥(f' x - A) z∥ ≤ δ ∥z∥`, it suffices to do it up to some error that vanishes | |
-- asymptotically in terms of `ε > 0`. | |
suffices H : ∀ ε, 0 < ε → ∥(f' x - A) z∥ ≤ (δ + ε) * (∥z∥ + ε) + ∥(f' x - A)∥ * ε, | |
{ have : tendsto (λ (ε : ℝ), ((δ : ℝ) + ε) * (∥z∥ + ε) + ∥(f' x - A)∥ * ε) (𝓝[>] 0) | |
(𝓝 ((δ + 0) * (∥z∥ + 0) + ∥(f' x - A)∥ * 0)) := | |
tendsto.mono_left (continuous.tendsto (by continuity) 0) nhds_within_le_nhds, | |
simp only [add_zero, mul_zero] at this, | |
apply le_of_tendsto_of_tendsto tendsto_const_nhds this, | |
filter_upwards [self_mem_nhds_within], | |
exact H }, | |
-- fix a positive `ε`. | |
assume ε εpos, | |
-- for small enough `r`, the rescaled ball `r • closed_ball z ε` intersects `s`, as `x` is a | |
-- density point | |
have B₁ : ∀ᶠ r in 𝓝[>] (0 : ℝ), (s ∩ ({x} + r • closed_ball z ε)).nonempty := | |
eventually_nonempty_inter_smul_of_density_one μ s x hx | |
_ measurable_set_closed_ball (measure_closed_ball_pos μ z εpos).ne', | |
obtain ⟨ρ, ρpos, hρ⟩ : | |
∃ ρ > 0, ball x ρ ∩ s ⊆ {y : E | ∥f y - f x - (f' x) (y - x)∥ ≤ ε * ∥y - x∥} := | |
mem_nhds_within_iff.1 (is_o.def (hf' x xs) εpos), | |
-- for small enough `r`, the rescaled ball `r • closed_ball z ε` is included in the set where | |
-- `f y - f x` is well approximated by `f' x (y - x)`. | |
have B₂ : ∀ᶠ r in 𝓝[>] (0 : ℝ), {x} + r • closed_ball z ε ⊆ ball x ρ := nhds_within_le_nhds | |
(eventually_singleton_add_smul_subset bounded_closed_ball (ball_mem_nhds x ρpos)), | |
-- fix a small positive `r` satisfying the above properties, as well as a corresponding `y`. | |
obtain ⟨r, ⟨y, ⟨ys, hy⟩⟩, rρ, rpos⟩ : ∃ (r : ℝ), (s ∩ ({x} + r • closed_ball z ε)).nonempty ∧ | |
{x} + r • closed_ball z ε ⊆ ball x ρ ∧ 0 < r := (B₁.and (B₂.and self_mem_nhds_within)).exists, | |
-- write `y = x + r a` with `a ∈ closed_ball z ε`. | |
obtain ⟨a, az, ya⟩ : ∃ a, a ∈ closed_ball z ε ∧ y = x + r • a, | |
{ simp only [mem_smul_set, image_add_left, mem_preimage, singleton_add] at hy, | |
rcases hy with ⟨a, az, ha⟩, | |
exact ⟨a, az, by simp only [ha, add_neg_cancel_left]⟩ }, | |
have norm_a : ∥a∥ ≤ ∥z∥ + ε := calc | |
∥a∥ = ∥z + (a - z)∥ : by simp only [add_sub_cancel'_right] | |
... ≤ ∥z∥ + ∥a - z∥ : norm_add_le _ _ | |
... ≤ ∥z∥ + ε : add_le_add_left (mem_closed_ball_iff_norm.1 az) _, | |
-- use the approximation properties to control `(f' x - A) a`, and then `(f' x - A) z` as `z` is | |
-- close to `a`. | |
have I : r * ∥(f' x - A) a∥ ≤ r * (δ + ε) * (∥z∥ + ε) := calc | |
r * ∥(f' x - A) a∥ = ∥(f' x - A) (r • a)∥ : | |
by simp only [continuous_linear_map.map_smul, norm_smul, real.norm_eq_abs, | |
abs_of_nonneg rpos.le] | |
... = ∥(f y - f x - A (y - x)) - | |
(f y - f x - (f' x) (y - x))∥ : | |
begin | |
congr' 1, | |
simp only [ya, add_sub_cancel', sub_sub_sub_cancel_left, continuous_linear_map.coe_sub', | |
eq_self_iff_true, sub_left_inj, pi.sub_apply, continuous_linear_map.map_smul, smul_sub], | |
end | |
... ≤ ∥f y - f x - A (y - x)∥ + | |
∥f y - f x - (f' x) (y - x)∥ : norm_sub_le _ _ | |
... ≤ δ * ∥y - x∥ + ε * ∥y - x∥ : | |
add_le_add (hf _ ys _ xs) (hρ ⟨rρ hy, ys⟩) | |
... = r * (δ + ε) * ∥a∥ : | |
by { simp only [ya, add_sub_cancel', norm_smul, real.norm_eq_abs, abs_of_nonneg rpos.le], | |
ring } | |
... ≤ r * (δ + ε) * (∥z∥ + ε) : | |
mul_le_mul_of_nonneg_left norm_a (mul_nonneg rpos.le (add_nonneg δ.2 εpos.le)), | |
show ∥(f' x - A) z∥ ≤ (δ + ε) * (∥z∥ + ε) + ∥(f' x - A)∥ * ε, from calc | |
∥(f' x - A) z∥ = ∥(f' x - A) a + (f' x - A) (z - a)∥ : | |
begin | |
congr' 1, | |
simp only [continuous_linear_map.coe_sub', map_sub, pi.sub_apply], | |
abel | |
end | |
... ≤ ∥(f' x - A) a∥ + ∥(f' x - A) (z - a)∥ : norm_add_le _ _ | |
... ≤ (δ + ε) * (∥z∥ + ε) + ∥f' x - A∥ * ∥z - a∥ : | |
begin | |
apply add_le_add, | |
{ rw mul_assoc at I, exact (mul_le_mul_left rpos).1 I }, | |
{ apply continuous_linear_map.le_op_norm } | |
end | |
... ≤ (δ + ε) * (∥z∥ + ε) + ∥f' x - A∥ * ε : add_le_add le_rfl | |
(mul_le_mul_of_nonneg_left (mem_closed_ball_iff_norm'.1 az) (norm_nonneg _)), | |
end | |
/-! | |
### Measure zero of the image, over non-measurable sets | |
If a set has measure `0`, then its image under a differentiable map has measure zero. This doesn't | |
require the set to be measurable. In the same way, if `f` is differentiable on a set `s` with | |
non-invertible derivative everywhere, then `f '' s` has measure `0`, again without measurability | |
assumptions. | |
-/ | |
/-- A differentiable function maps sets of measure zero to sets of measure zero. -/ | |
lemma add_haar_image_eq_zero_of_differentiable_on_of_add_haar_eq_zero | |
(hf : differentiable_on ℝ f s) (hs : μ s = 0) : | |
μ (f '' s) = 0 := | |
begin | |
refine le_antisymm _ (zero_le _), | |
have : ∀ (A : E →L[ℝ] E), ∃ (δ : ℝ≥0), 0 < δ ∧ ∀ (t : set E) | |
(hf : approximates_linear_on f A t δ), μ (f '' t) ≤ (real.to_nnreal (|A.det|) + 1 : ℝ≥0) * μ t, | |
{ assume A, | |
let m : ℝ≥0 := real.to_nnreal ((|A.det|)) + 1, | |
have I : ennreal.of_real (|A.det|) < m, | |
by simp only [ennreal.of_real, m, lt_add_iff_pos_right, zero_lt_one, ennreal.coe_lt_coe], | |
rcases ((add_haar_image_le_mul_of_det_lt μ A I).and self_mem_nhds_within).exists | |
with ⟨δ, h, h'⟩, | |
exact ⟨δ, h', λ t ht, h t f ht⟩ }, | |
choose δ hδ using this, | |
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, -⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)), | |
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n) | |
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) (δ (A n))) | |
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = fderiv_within ℝ f s y) := | |
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s | |
(fderiv_within ℝ f s) (λ x xs, (hf x xs).has_fderiv_within_at) δ (λ A, (hδ A).1.ne'), | |
calc μ (f '' s) | |
≤ μ (⋃ n, f '' (s ∩ t n)) : | |
begin | |
apply measure_mono, | |
rw [← image_Union, ← inter_Union], | |
exact image_subset f (subset_inter subset.rfl t_cover) | |
end | |
... ≤ ∑' n, μ (f '' (s ∩ t n)) : measure_Union_le _ | |
... ≤ ∑' n, (real.to_nnreal (|(A n).det|) + 1 : ℝ≥0) * μ (s ∩ t n) : | |
begin | |
apply ennreal.tsum_le_tsum (λ n, _), | |
apply (hδ (A n)).2, | |
exact ht n, | |
end | |
... ≤ ∑' n, (real.to_nnreal (|(A n).det|) + 1 : ℝ≥0) * 0 : | |
begin | |
refine ennreal.tsum_le_tsum (λ n, ennreal.mul_le_mul le_rfl _), | |
exact le_trans (measure_mono (inter_subset_left _ _)) (le_of_eq hs), | |
end | |
... = 0 : by simp only [tsum_zero, mul_zero] | |
end | |
/-- A version of Sard lemma in fixed dimension: given a differentiable function from `E` to `E` and | |
a set where the differential is not invertible, then the image of this set has zero measure. | |
Here, we give an auxiliary statement towards this result. -/ | |
lemma add_haar_image_eq_zero_of_det_fderiv_within_eq_zero_aux | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) | |
(R : ℝ) (hs : s ⊆ closed_ball 0 R) (ε : ℝ≥0) (εpos : 0 < ε) | |
(h'f' : ∀ x ∈ s, (f' x).det = 0) : | |
μ (f '' s) ≤ ε * μ (closed_ball 0 R) := | |
begin | |
rcases eq_empty_or_nonempty s with rfl|h's, { simp only [measure_empty, zero_le, image_empty] }, | |
have : ∀ (A : E →L[ℝ] E), ∃ (δ : ℝ≥0), 0 < δ ∧ ∀ (t : set E) | |
(hf : approximates_linear_on f A t δ), μ (f '' t) ≤ (real.to_nnreal (|A.det|) + ε : ℝ≥0) * μ t, | |
{ assume A, | |
let m : ℝ≥0 := real.to_nnreal (|A.det|) + ε, | |
have I : ennreal.of_real (|A.det|) < m, | |
by simp only [ennreal.of_real, m, lt_add_iff_pos_right, εpos, ennreal.coe_lt_coe], | |
rcases ((add_haar_image_le_mul_of_det_lt μ A I).and self_mem_nhds_within).exists | |
with ⟨δ, h, h'⟩, | |
exact ⟨δ, h', λ t ht, h t f ht⟩ }, | |
choose δ hδ using this, | |
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, Af'⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)), | |
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n) | |
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) (δ (A n))) | |
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) := | |
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s | |
f' hf' δ (λ A, (hδ A).1.ne'), | |
calc μ (f '' s) | |
≤ μ (⋃ n, f '' (s ∩ t n)) : | |
begin | |
apply measure_mono, | |
rw [← image_Union, ← inter_Union], | |
exact image_subset f (subset_inter subset.rfl t_cover) | |
end | |
... ≤ ∑' n, μ (f '' (s ∩ t n)) : measure_Union_le _ | |
... ≤ ∑' n, (real.to_nnreal (|(A n).det|) + ε : ℝ≥0) * μ (s ∩ t n) : | |
begin | |
apply ennreal.tsum_le_tsum (λ n, _), | |
apply (hδ (A n)).2, | |
exact ht n, | |
end | |
... = ∑' n, ε * μ (s ∩ t n) : | |
begin | |
congr' with n, | |
rcases Af' h's n with ⟨y, ys, hy⟩, | |
simp only [hy, h'f' y ys, real.to_nnreal_zero, abs_zero, zero_add] | |
end | |
... ≤ ε * ∑' n, μ (closed_ball 0 R ∩ t n) : | |
begin | |
rw ennreal.tsum_mul_left, | |
refine ennreal.mul_le_mul le_rfl (ennreal.tsum_le_tsum (λ n, measure_mono _)), | |
exact inter_subset_inter_left _ hs, | |
end | |
... = ε * μ (⋃ n, closed_ball 0 R ∩ t n) : | |
begin | |
rw measure_Union, | |
{ exact pairwise_disjoint.mono t_disj (λ n, inter_subset_right _ _) }, | |
{ assume n, | |
exact measurable_set_closed_ball.inter (t_meas n) } | |
end | |
... ≤ ε * μ (closed_ball 0 R) : | |
begin | |
rw ← inter_Union, | |
exact ennreal.mul_le_mul le_rfl (measure_mono (inter_subset_left _ _)), | |
end | |
end | |
/-- A version of Sard lemma in fixed dimension: given a differentiable function from `E` to `E` and | |
a set where the differential is not invertible, then the image of this set has zero measure. -/ | |
lemma add_haar_image_eq_zero_of_det_fderiv_within_eq_zero | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) | |
(h'f' : ∀ x ∈ s, (f' x).det = 0) : | |
μ (f '' s) = 0 := | |
begin | |
suffices H : ∀ R, μ (f '' (s ∩ closed_ball 0 R)) = 0, | |
{ apply le_antisymm _ (zero_le _), | |
rw ← Union_inter_closed_ball_nat s 0, | |
calc μ (f '' ⋃ (n : ℕ), s ∩ closed_ball 0 n) ≤ ∑' (n : ℕ), μ (f '' (s ∩ closed_ball 0 n)) : | |
by { rw image_Union, exact measure_Union_le _ } | |
... ≤ 0 : by simp only [H, tsum_zero, nonpos_iff_eq_zero] }, | |
assume R, | |
have A : ∀ (ε : ℝ≥0) (εpos : 0 < ε), μ (f '' (s ∩ closed_ball 0 R)) ≤ ε * μ (closed_ball 0 R) := | |
λ ε εpos, add_haar_image_eq_zero_of_det_fderiv_within_eq_zero_aux μ | |
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _)) R (inter_subset_right _ _) ε εpos | |
(λ x hx, h'f' x hx.1), | |
have B : tendsto (λ (ε : ℝ≥0), (ε : ℝ≥0∞) * μ (closed_ball 0 R)) (𝓝[>] 0) (𝓝 0), | |
{ have : tendsto (λ (ε : ℝ≥0), (ε : ℝ≥0∞) * μ (closed_ball 0 R)) | |
(𝓝 0) (𝓝 (((0 : ℝ≥0) : ℝ≥0∞) * μ (closed_ball 0 R))) := | |
ennreal.tendsto.mul_const (ennreal.tendsto_coe.2 tendsto_id) | |
(or.inr ((measure_closed_ball_lt_top).ne)), | |
simp only [zero_mul, ennreal.coe_zero] at this, | |
exact tendsto.mono_left this nhds_within_le_nhds }, | |
apply le_antisymm _ (zero_le _), | |
apply ge_of_tendsto B, | |
filter_upwards [self_mem_nhds_within], | |
exact A, | |
end | |
/-! | |
### Weak measurability statements | |
We show that the derivative of a function on a set is almost everywhere measurable, and that the | |
image `f '' s` is measurable if `f` is injective on `s`. The latter statement follows from the | |
Lusin-Souslin theorem. | |
-/ | |
/-- The derivative of a function on a measurable set is almost everywhere measurable on this set | |
with respect to Lebesgue measure. Note that, in general, it is not genuinely measurable there, | |
as `f'` is not unique (but only on a set of measure `0`, as the argument shows). -/ | |
lemma ae_measurable_fderiv_within (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) : | |
ae_measurable f' (μ.restrict s) := | |
begin | |
/- It suffices to show that `f'` can be uniformly approximated by a measurable function. | |
Fix `ε > 0`. Thanks to `exists_partition_approximates_linear_on_of_has_fderiv_within_at`, one | |
can find a countable measurable partition of `s` into sets `s ∩ t n` on which `f` is well | |
approximated by linear maps `A n`. On almost all of `s ∩ t n`, it follows from | |
`approximates_linear_on.norm_fderiv_sub_le` that `f'` is uniformly approximated by `A n`, which | |
gives the conclusion. -/ | |
-- fix a precision `ε` | |
refine ae_measurable_of_unif_approx (λ ε εpos, _), | |
let δ : ℝ≥0 := ⟨ε, le_of_lt εpos⟩, | |
have δpos : 0 < δ := εpos, | |
-- partition `s` into sets `s ∩ t n` on which `f` is approximated by linear maps `A n`. | |
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, Af'⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)), | |
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n) | |
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) δ) | |
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) := | |
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s | |
f' hf' (λ A, δ) (λ A, δpos.ne'), | |
-- define a measurable function `g` which coincides with `A n` on `t n`. | |
obtain ⟨g, g_meas, hg⟩ : ∃ g : E → (E →L[ℝ] E), measurable g ∧ | |
∀ (n : ℕ) (x : E), x ∈ t n → g x = A n := | |
exists_measurable_piecewise_nat t t_meas t_disj (λ n x, A n) (λ n, measurable_const), | |
refine ⟨g, g_meas.ae_measurable, _⟩, | |
-- reduce to checking that `f'` and `g` are close on almost all of `s ∩ t n`, for all `n`. | |
suffices H : ∀ᵐ (x : E) ∂(sum (λ n, μ.restrict (s ∩ t n))), dist (g x) (f' x) ≤ ε, | |
{ have : μ.restrict s ≤ sum (λ n, μ.restrict (s ∩ t n)), | |
{ have : s = ⋃ n, s ∩ t n, | |
{ rw ← inter_Union, | |
exact subset.antisymm (subset_inter subset.rfl t_cover) (inter_subset_left _ _) }, | |
conv_lhs { rw this }, | |
exact restrict_Union_le }, | |
exact ae_mono this H }, | |
-- fix such an `n`. | |
refine ae_sum_iff.2 (λ n, _), | |
-- on almost all `s ∩ t n`, `f' x` is close to `A n` thanks to | |
-- `approximates_linear_on.norm_fderiv_sub_le`. | |
have E₁ : ∀ᵐ (x : E) ∂μ.restrict (s ∩ t n), ∥f' x - A n∥₊ ≤ δ := | |
(ht n).norm_fderiv_sub_le μ (hs.inter (t_meas n)) f' | |
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _)), | |
-- moreover, `g x` is equal to `A n` there. | |
have E₂ : ∀ᵐ (x : E) ∂μ.restrict (s ∩ t n), g x = A n, | |
{ suffices H : ∀ᵐ (x : E) ∂μ.restrict (t n), g x = A n, | |
from ae_mono (restrict_mono (inter_subset_right _ _) le_rfl) H, | |
filter_upwards [ae_restrict_mem (t_meas n)], | |
exact hg n }, | |
-- putting these two properties together gives the conclusion. | |
filter_upwards [E₁, E₂] with x hx1 hx2, | |
rw ← nndist_eq_nnnorm at hx1, | |
rw [hx2, dist_comm], | |
exact hx1, | |
end | |
lemma ae_measurable_of_real_abs_det_fderiv_within (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) : | |
ae_measurable (λ x, ennreal.of_real (|(f' x).det|)) (μ.restrict s) := | |
begin | |
apply ennreal.measurable_of_real.comp_ae_measurable, | |
refine continuous_abs.measurable.comp_ae_measurable _, | |
refine continuous_linear_map.continuous_det.measurable.comp_ae_measurable _, | |
exact ae_measurable_fderiv_within μ hs hf' | |
end | |
lemma ae_measurable_to_nnreal_abs_det_fderiv_within (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) : | |
ae_measurable (λ x, |(f' x).det|.to_nnreal) (μ.restrict s) := | |
begin | |
apply measurable_real_to_nnreal.comp_ae_measurable, | |
refine continuous_abs.measurable.comp_ae_measurable _, | |
refine continuous_linear_map.continuous_det.measurable.comp_ae_measurable _, | |
exact ae_measurable_fderiv_within μ hs hf' | |
end | |
/-- If a function is differentiable and injective on a measurable set, | |
then the image is measurable.-/ | |
lemma measurable_image_of_fderiv_within (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) : | |
measurable_set (f '' s) := | |
begin | |
have : differentiable_on ℝ f s := λ x hx, (hf' x hx).differentiable_within_at, | |
exact hs.image_of_continuous_on_inj_on (differentiable_on.continuous_on this) hf, | |
end | |
/-- If a function is differentiable and injective on a measurable set `s`, then its restriction | |
to `s` is a measurable embedding. -/ | |
lemma measurable_embedding_of_fderiv_within (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) : | |
measurable_embedding (s.restrict f) := | |
begin | |
have : differentiable_on ℝ f s := λ x hx, (hf' x hx).differentiable_within_at, | |
exact this.continuous_on.measurable_embedding hs hf | |
end | |
/-! | |
### Proving the estimate for the measure of the image | |
We show the formula `∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ = μ (f '' s)`, | |
in `lintegral_abs_det_fderiv_eq_add_haar_image`. For this, we show both inequalities in both | |
directions, first up to controlled errors and then letting these errors tend to `0`. | |
-/ | |
lemma add_haar_image_le_lintegral_abs_det_fderiv_aux1 (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) {ε : ℝ≥0} (εpos : 0 < ε) : | |
μ (f '' s) ≤ ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ + 2 * ε * μ s := | |
begin | |
/- To bound `μ (f '' s)`, we cover `s` by sets where `f` is well-approximated by linear maps | |
`A n` (and where `f'` is almost everywhere close to `A n`), and then use that `f` expands the | |
measure of such a set by at most `(A n).det + ε`. -/ | |
have : ∀ (A : E →L[ℝ] E), ∃ (δ : ℝ≥0), 0 < δ ∧ | |
(∀ (B : E →L[ℝ] E), ∥B - A∥ ≤ δ → |B.det - A.det| ≤ ε) ∧ | |
∀ (t : set E) (g : E → E) (hf : approximates_linear_on g A t δ), | |
μ (g '' t) ≤ (ennreal.of_real (|A.det|) + ε) * μ t, | |
{ assume A, | |
let m : ℝ≥0 := real.to_nnreal (|A.det|) + ε, | |
have I : ennreal.of_real (|A.det|) < m, | |
by simp only [ennreal.of_real, m, lt_add_iff_pos_right, εpos, ennreal.coe_lt_coe], | |
rcases ((add_haar_image_le_mul_of_det_lt μ A I).and self_mem_nhds_within).exists | |
with ⟨δ, h, δpos⟩, | |
obtain ⟨δ', δ'pos, hδ'⟩ : | |
∃ (δ' : ℝ) (H : 0 < δ'), ∀ B, dist B A < δ' → dist B.det A.det < ↑ε := | |
continuous_at_iff.1 continuous_linear_map.continuous_det.continuous_at ε εpos, | |
let δ'' : ℝ≥0 := ⟨δ' / 2, (half_pos δ'pos).le⟩, | |
refine ⟨min δ δ'', lt_min δpos (half_pos δ'pos), _, _⟩, | |
{ assume B hB, | |
rw ← real.dist_eq, | |
apply (hδ' B _).le, | |
rw dist_eq_norm, | |
calc ∥B - A∥ ≤ (min δ δ'' : ℝ≥0) : hB | |
... ≤ δ'' : by simp only [le_refl, nnreal.coe_min, min_le_iff, or_true] | |
... < δ' : half_lt_self δ'pos }, | |
{ assume t g htg, | |
exact h t g (htg.mono_num (min_le_left _ _)) } }, | |
choose δ hδ using this, | |
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, -⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)), | |
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n) | |
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) (δ (A n))) | |
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) := | |
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s | |
f' hf' δ (λ A, (hδ A).1.ne'), | |
calc μ (f '' s) | |
≤ μ (⋃ n, f '' (s ∩ t n)) : | |
begin | |
apply measure_mono, | |
rw [← image_Union, ← inter_Union], | |
exact image_subset f (subset_inter subset.rfl t_cover) | |
end | |
... ≤ ∑' n, μ (f '' (s ∩ t n)) : measure_Union_le _ | |
... ≤ ∑' n, (ennreal.of_real (|(A n).det|) + ε) * μ (s ∩ t n) : | |
begin | |
apply ennreal.tsum_le_tsum (λ n, _), | |
apply (hδ (A n)).2.2, | |
exact ht n, | |
end | |
... = ∑' n, ∫⁻ x in s ∩ t n, ennreal.of_real (|(A n).det|) + ε ∂μ : | |
by simp only [lintegral_const, measurable_set.univ, measure.restrict_apply, univ_inter] | |
... ≤ ∑' n, ∫⁻ x in s ∩ t n, ennreal.of_real (|(f' x).det|) + 2 * ε ∂μ : | |
begin | |
apply ennreal.tsum_le_tsum (λ n, _), | |
apply lintegral_mono_ae, | |
filter_upwards [(ht n).norm_fderiv_sub_le μ (hs.inter (t_meas n)) f' | |
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _))], | |
assume x hx, | |
have I : |(A n).det| ≤ |(f' x).det| + ε := calc | |
|(A n).det| = |(f' x).det - ((f' x).det - (A n).det)| : by { congr' 1, abel } | |
... ≤ |(f' x).det| + |(f' x).det - (A n).det| : abs_sub _ _ | |
... ≤ |(f' x).det| + ε : add_le_add le_rfl ((hδ (A n)).2.1 _ hx), | |
calc ennreal.of_real (|(A n).det|) + ε | |
≤ ennreal.of_real (|(f' x).det| + ε) + ε : | |
add_le_add (ennreal.of_real_le_of_real I) le_rfl | |
... = ennreal.of_real (|(f' x).det|) + 2 * ε : | |
by simp only [ennreal.of_real_add, abs_nonneg, two_mul, add_assoc, nnreal.zero_le_coe, | |
ennreal.of_real_coe_nnreal], | |
end | |
... = ∫⁻ x in ⋃ n, s ∩ t n, ennreal.of_real (|(f' x).det|) + 2 * ε ∂μ : | |
begin | |
have M : ∀ (n : ℕ), measurable_set (s ∩ t n) := λ n, hs.inter (t_meas n), | |
rw lintegral_Union M, | |
exact pairwise_disjoint.mono t_disj (λ n, inter_subset_right _ _), | |
end | |
... = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) + 2 * ε ∂μ : | |
begin | |
have : s = ⋃ n, s ∩ t n, | |
{ rw ← inter_Union, | |
exact subset.antisymm (subset_inter subset.rfl t_cover) (inter_subset_left _ _) }, | |
rw ← this, | |
end | |
... = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ + 2 * ε * μ s : | |
by simp only [lintegral_add_right' _ ae_measurable_const, set_lintegral_const] | |
end | |
lemma add_haar_image_le_lintegral_abs_det_fderiv_aux2 (hs : measurable_set s) (h's : μ s ≠ ∞) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) : | |
μ (f '' s) ≤ ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ := | |
begin | |
/- We just need to let the error tend to `0` in the previous lemma. -/ | |
have : tendsto (λ (ε : ℝ≥0), ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ + 2 * ε * μ s) | |
(𝓝[>] 0) (𝓝 (∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ + 2 * (0 : ℝ≥0) * μ s)), | |
{ apply tendsto.mono_left _ nhds_within_le_nhds, | |
refine tendsto_const_nhds.add _, | |
refine ennreal.tendsto.mul_const _ (or.inr h's), | |
exact ennreal.tendsto.const_mul (ennreal.tendsto_coe.2 tendsto_id) | |
(or.inr ennreal.coe_ne_top) }, | |
simp only [add_zero, zero_mul, mul_zero, ennreal.coe_zero] at this, | |
apply ge_of_tendsto this, | |
filter_upwards [self_mem_nhds_within], | |
rintros ε (εpos : 0 < ε), | |
exact add_haar_image_le_lintegral_abs_det_fderiv_aux1 μ hs hf' εpos, | |
end | |
lemma add_haar_image_le_lintegral_abs_det_fderiv (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) : | |
μ (f '' s) ≤ ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ := | |
begin | |
/- We already know the result for finite-measure sets. We cover `s` by finite-measure sets using | |
`spanning_sets μ`, and apply the previous result to each of these parts. -/ | |
let u := λ n, disjointed (spanning_sets μ) n, | |
have u_meas : ∀ n, measurable_set (u n), | |
{ assume n, | |
apply measurable_set.disjointed (λ i, _), | |
exact measurable_spanning_sets μ i }, | |
have A : s = ⋃ n, s ∩ u n, | |
by rw [← inter_Union, Union_disjointed, Union_spanning_sets, inter_univ], | |
calc μ (f '' s) ≤ ∑' n, μ (f '' (s ∩ u n)) : | |
begin | |
conv_lhs { rw [A, image_Union] }, | |
exact measure_Union_le _, | |
end | |
... ≤ ∑' n, ∫⁻ x in s ∩ u n, ennreal.of_real (|(f' x).det|) ∂μ : | |
begin | |
apply ennreal.tsum_le_tsum (λ n, _), | |
apply add_haar_image_le_lintegral_abs_det_fderiv_aux2 μ (hs.inter (u_meas n)) _ | |
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _)), | |
have : μ (u n) < ∞ := | |
lt_of_le_of_lt (measure_mono (disjointed_subset _ _)) (measure_spanning_sets_lt_top μ n), | |
exact ne_of_lt (lt_of_le_of_lt (measure_mono (inter_subset_right _ _)) this), | |
end | |
... = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ : | |
begin | |
conv_rhs { rw A }, | |
rw lintegral_Union, | |
{ assume n, exact hs.inter (u_meas n) }, | |
{ exact pairwise_disjoint.mono (disjoint_disjointed _) (λ n, inter_subset_right _ _) } | |
end | |
end | |
lemma lintegral_abs_det_fderiv_le_add_haar_image_aux1 (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) | |
{ε : ℝ≥0} (εpos : 0 < ε) : | |
∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ ≤ μ (f '' s) + 2 * ε * μ s := | |
begin | |
/- To bound `∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ`, we cover `s` by sets where `f` is | |
well-approximated by linear maps `A n` (and where `f'` is almost everywhere close to `A n`), | |
and then use that `f` expands the measure of such a set by at least `(A n).det - ε`. -/ | |
have : ∀ (A : E →L[ℝ] E), ∃ (δ : ℝ≥0), 0 < δ ∧ | |
(∀ (B : E →L[ℝ] E), ∥B - A∥ ≤ δ → |B.det - A.det| ≤ ε) ∧ | |
∀ (t : set E) (g : E → E) (hf : approximates_linear_on g A t δ), | |
ennreal.of_real (|A.det|) * μ t ≤ μ (g '' t) + ε * μ t, | |
{ assume A, | |
obtain ⟨δ', δ'pos, hδ'⟩ : | |
∃ (δ' : ℝ) (H : 0 < δ'), ∀ B, dist B A < δ' → dist B.det A.det < ↑ε := | |
continuous_at_iff.1 continuous_linear_map.continuous_det.continuous_at ε εpos, | |
let δ'' : ℝ≥0 := ⟨δ' / 2, (half_pos δ'pos).le⟩, | |
have I'' : ∀ (B : E →L[ℝ] E), ∥B - A∥ ≤ ↑δ'' → |B.det - A.det| ≤ ↑ε, | |
{ assume B hB, | |
rw ← real.dist_eq, | |
apply (hδ' B _).le, | |
rw dist_eq_norm, | |
exact hB.trans_lt (half_lt_self δ'pos) }, | |
rcases eq_or_ne A.det 0 with hA|hA, | |
{ refine ⟨δ'', half_pos δ'pos, I'', _⟩, | |
simp only [hA, forall_const, zero_mul, ennreal.of_real_zero, implies_true_iff, zero_le, | |
abs_zero] }, | |
let m : ℝ≥0 := real.to_nnreal (|A.det|) - ε, | |
have I : (m : ℝ≥0∞) < ennreal.of_real (|A.det|), | |
{ simp only [ennreal.of_real, with_top.coe_sub], | |
apply ennreal.sub_lt_self ennreal.coe_ne_top, | |
{ simpa only [abs_nonpos_iff, real.to_nnreal_eq_zero, ennreal.coe_eq_zero, ne.def] using hA }, | |
{ simp only [εpos.ne', ennreal.coe_eq_zero, ne.def, not_false_iff] } }, | |
rcases ((mul_le_add_haar_image_of_lt_det μ A I).and self_mem_nhds_within).exists | |
with ⟨δ, h, δpos⟩, | |
refine ⟨min δ δ'', lt_min δpos (half_pos δ'pos), _, _⟩, | |
{ assume B hB, | |
apply I'' _ (hB.trans _), | |
simp only [le_refl, nnreal.coe_min, min_le_iff, or_true] }, | |
{ assume t g htg, | |
rcases eq_or_ne (μ t) ∞ with ht|ht, | |
{ simp only [ht, εpos.ne', with_top.mul_top, ennreal.coe_eq_zero, le_top, ne.def, | |
not_false_iff, ennreal.add_top] }, | |
have := h t g (htg.mono_num (min_le_left _ _)), | |
rwa [with_top.coe_sub, ennreal.sub_mul, tsub_le_iff_right] at this, | |
simp only [ht, implies_true_iff, ne.def, not_false_iff] } }, | |
choose δ hδ using this, | |
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, -⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)), | |
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n) | |
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) (δ (A n))) | |
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) := | |
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s | |
f' hf' δ (λ A, (hδ A).1.ne'), | |
have s_eq : s = ⋃ n, s ∩ t n, | |
{ rw ← inter_Union, | |
exact subset.antisymm (subset_inter subset.rfl t_cover) (inter_subset_left _ _) }, | |
calc ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ | |
= ∑' n, ∫⁻ x in s ∩ t n, ennreal.of_real (|(f' x).det|) ∂μ : | |
begin | |
conv_lhs { rw s_eq }, | |
rw lintegral_Union, | |
{ exact λ n, hs.inter (t_meas n) }, | |
{ exact pairwise_disjoint.mono t_disj (λ n, inter_subset_right _ _) } | |
end | |
... ≤ ∑' n, ∫⁻ x in s ∩ t n, ennreal.of_real (|(A n).det|) + ε ∂μ : | |
begin | |
apply ennreal.tsum_le_tsum (λ n, _), | |
apply lintegral_mono_ae, | |
filter_upwards [(ht n).norm_fderiv_sub_le μ (hs.inter (t_meas n)) f' | |
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _))], | |
assume x hx, | |
have I : |(f' x).det| ≤ |(A n).det| + ε := calc | |
|(f' x).det| = |(A n).det + ((f' x).det - (A n).det)| : by { congr' 1, abel } | |
... ≤ |(A n).det| + |(f' x).det - (A n).det| : abs_add _ _ | |
... ≤ |(A n).det| + ε : add_le_add le_rfl ((hδ (A n)).2.1 _ hx), | |
calc ennreal.of_real (|(f' x).det|) ≤ ennreal.of_real (|(A n).det| + ε) : | |
ennreal.of_real_le_of_real I | |
... = ennreal.of_real (|(A n).det|) + ε : | |
by simp only [ennreal.of_real_add, abs_nonneg, nnreal.zero_le_coe, | |
ennreal.of_real_coe_nnreal] | |
end | |
... = ∑' n, (ennreal.of_real (|(A n).det|) * μ (s ∩ t n) + ε * μ (s ∩ t n)) : | |
by simp only [set_lintegral_const, lintegral_add_right _ measurable_const] | |
... ≤ ∑' n, ((μ (f '' (s ∩ t n)) + ε * μ (s ∩ t n)) + ε * μ (s ∩ t n)) : | |
begin | |
refine ennreal.tsum_le_tsum (λ n, add_le_add_right _ _), | |
exact (hδ (A n)).2.2 _ _ (ht n), | |
end | |
... = μ (f '' s) + 2 * ε * μ s : | |
begin | |
conv_rhs { rw s_eq }, | |
rw [image_Union, measure_Union], rotate, | |
{ assume i j hij, | |
apply (disjoint.image _ hf (inter_subset_left _ _) (inter_subset_left _ _)), | |
exact disjoint.mono (inter_subset_right _ _) (inter_subset_right _ _) (t_disj i j hij) }, | |
{ assume i, | |
exact measurable_image_of_fderiv_within (hs.inter (t_meas i)) (λ x hx, | |
(hf' x hx.1).mono (inter_subset_left _ _)) (hf.mono (inter_subset_left _ _)) }, | |
rw measure_Union, rotate, | |
{ exact pairwise_disjoint.mono t_disj (λ i, inter_subset_right _ _) }, | |
{ exact λ i, hs.inter (t_meas i) }, | |
rw [← ennreal.tsum_mul_left, ← ennreal.tsum_add], | |
congr' 1, | |
ext1 i, | |
rw [mul_assoc, two_mul, add_assoc], | |
end | |
end | |
lemma lintegral_abs_det_fderiv_le_add_haar_image_aux2 (hs : measurable_set s) (h's : μ s ≠ ∞) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) : | |
∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ ≤ μ (f '' s) := | |
begin | |
/- We just need to let the error tend to `0` in the previous lemma. -/ | |
have : tendsto (λ (ε : ℝ≥0), μ (f '' s) + 2 * ε * μ s) | |
(𝓝[>] 0) (𝓝 (μ (f '' s) + 2 * (0 : ℝ≥0) * μ s)), | |
{ apply tendsto.mono_left _ nhds_within_le_nhds, | |
refine tendsto_const_nhds.add _, | |
refine ennreal.tendsto.mul_const _ (or.inr h's), | |
exact ennreal.tendsto.const_mul (ennreal.tendsto_coe.2 tendsto_id) | |
(or.inr ennreal.coe_ne_top) }, | |
simp only [add_zero, zero_mul, mul_zero, ennreal.coe_zero] at this, | |
apply ge_of_tendsto this, | |
filter_upwards [self_mem_nhds_within], | |
rintros ε (εpos : 0 < ε), | |
exact lintegral_abs_det_fderiv_le_add_haar_image_aux1 μ hs hf' hf εpos | |
end | |
lemma lintegral_abs_det_fderiv_le_add_haar_image (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) : | |
∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ ≤ μ (f '' s) := | |
begin | |
/- We already know the result for finite-measure sets. We cover `s` by finite-measure sets using | |
`spanning_sets μ`, and apply the previous result to each of these parts. -/ | |
let u := λ n, disjointed (spanning_sets μ) n, | |
have u_meas : ∀ n, measurable_set (u n), | |
{ assume n, | |
apply measurable_set.disjointed (λ i, _), | |
exact measurable_spanning_sets μ i }, | |
have A : s = ⋃ n, s ∩ u n, | |
by rw [← inter_Union, Union_disjointed, Union_spanning_sets, inter_univ], | |
calc ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ | |
= ∑' n, ∫⁻ x in s ∩ u n, ennreal.of_real (|(f' x).det|) ∂μ : | |
begin | |
conv_lhs { rw A }, | |
rw lintegral_Union, | |
{ assume n, exact hs.inter (u_meas n) }, | |
{ exact pairwise_disjoint.mono (disjoint_disjointed _) (λ n, inter_subset_right _ _) } | |
end | |
... ≤ ∑' n, μ (f '' (s ∩ u n)) : | |
begin | |
apply ennreal.tsum_le_tsum (λ n, _), | |
apply lintegral_abs_det_fderiv_le_add_haar_image_aux2 μ (hs.inter (u_meas n)) _ | |
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _)) (hf.mono (inter_subset_left _ _)), | |
have : μ (u n) < ∞ := | |
lt_of_le_of_lt (measure_mono (disjointed_subset _ _)) (measure_spanning_sets_lt_top μ n), | |
exact ne_of_lt (lt_of_le_of_lt (measure_mono (inter_subset_right _ _)) this), | |
end | |
... = μ (f '' s) : | |
begin | |
conv_rhs { rw [A, image_Union] }, | |
rw measure_Union, | |
{ assume i j hij, | |
apply disjoint.image _ hf (inter_subset_left _ _) (inter_subset_left _ _), | |
exact disjoint.mono (inter_subset_right _ _) (inter_subset_right _ _) | |
(disjoint_disjointed _ i j hij) }, | |
{ assume i, | |
exact measurable_image_of_fderiv_within (hs.inter (u_meas i)) (λ x hx, | |
(hf' x hx.1).mono (inter_subset_left _ _)) (hf.mono (inter_subset_left _ _)) }, | |
end | |
end | |
/-- Change of variable formula for differentiable functions, set version: if a function `f` is | |
injective and differentiable on a measurable set `s`, then the measure of `f '' s` is given by the | |
integral of `|(f' x).det|` on `s`. | |
Note that the measurability of `f '' s` is given by `measurable_image_of_fderiv_within`. -/ | |
theorem lintegral_abs_det_fderiv_eq_add_haar_image (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) : | |
∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ = μ (f '' s) := | |
le_antisymm (lintegral_abs_det_fderiv_le_add_haar_image μ hs hf' hf) | |
(add_haar_image_le_lintegral_abs_det_fderiv μ hs hf') | |
/-- Change of variable formula for differentiable functions, set version: if a function `f` is | |
injective and differentiable on a measurable set `s`, then the pushforward of the measure with | |
density `|(f' x).det|` on `s` is the Lebesgue measure on the image set. This version requires | |
that `f` is measurable, as otherwise `measure.map f` is zero per our definitions. | |
For a version without measurability assumption but dealing with the restricted | |
function `s.restrict f`, see `restrict_map_with_density_abs_det_fderiv_eq_add_haar`. | |
-/ | |
theorem map_with_density_abs_det_fderiv_eq_add_haar (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) | |
(h'f : measurable f) : | |
measure.map f ((μ.restrict s).with_density (λ x, ennreal.of_real (|(f' x).det|))) | |
= μ.restrict (f '' s) := | |
begin | |
apply measure.ext (λ t ht, _), | |
rw [map_apply h'f ht, with_density_apply _ (h'f ht), measure.restrict_apply ht, | |
restrict_restrict (h'f ht), | |
lintegral_abs_det_fderiv_eq_add_haar_image μ ((h'f ht).inter hs) | |
(λ x hx, (hf' x hx.2).mono (inter_subset_right _ _)) (hf.mono (inter_subset_right _ _)), | |
image_preimage_inter] | |
end | |
/-- Change of variable formula for differentiable functions, set version: if a function `f` is | |
injective and differentiable on a measurable set `s`, then the pushforward of the measure with | |
density `|(f' x).det|` on `s` is the Lebesgue measure on the image set. This version is expressed | |
in terms of the restricted function `s.restrict f`. | |
For a version for the original function, but with a measurability assumption, | |
see `map_with_density_abs_det_fderiv_eq_add_haar`. | |
-/ | |
theorem restrict_map_with_density_abs_det_fderiv_eq_add_haar (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) : | |
measure.map (s.restrict f) | |
(comap coe (μ.with_density (λ x, ennreal.of_real (|(f' x).det|)))) = μ.restrict (f '' s) := | |
begin | |
obtain ⟨u, u_meas, uf⟩ : ∃ u, measurable u ∧ eq_on u f s, | |
{ classical, | |
refine ⟨piecewise s f 0, _, piecewise_eq_on _ _ _⟩, | |
refine continuous_on.measurable_piecewise _ continuous_zero.continuous_on hs, | |
have : differentiable_on ℝ f s := λ x hx, (hf' x hx).differentiable_within_at, | |
exact this.continuous_on }, | |
have u' : ∀ x ∈ s, has_fderiv_within_at u (f' x) s x := | |
λ x hx, (hf' x hx).congr (λ y hy, uf hy) (uf hx), | |
set F : s → E := u ∘ coe with hF, | |
have A : measure.map F | |
(comap coe (μ.with_density (λ x, ennreal.of_real (|(f' x).det|)))) = μ.restrict (u '' s), | |
{ rw [hF, ← measure.map_map u_meas measurable_subtype_coe, map_comap_subtype_coe hs, | |
restrict_with_density hs], | |
exact map_with_density_abs_det_fderiv_eq_add_haar μ hs u' (hf.congr uf.symm) u_meas }, | |
rw uf.image_eq at A, | |
have : F = s.restrict f, | |
{ ext x, | |
exact uf x.2 }, | |
rwa this at A, | |
end | |
/-! ### Change of variable formulas in integrals -/ | |
/- Change of variable formula for differentiable functions: if a function `f` is | |
injective and differentiable on a measurable set `s`, then the Lebesgue integral of a function | |
`g : E → ℝ≥0∞` on `f '' s` coincides with the integral of `|(f' x).det| * g ∘ f` on `s`. | |
Note that the measurability of `f '' s` is given by `measurable_image_of_fderiv_within`. -/ | |
theorem lintegral_image_eq_lintegral_abs_det_fderiv_mul (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) (g : E → ℝ≥0∞) : | |
∫⁻ x in f '' s, g x ∂μ = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) * g (f x) ∂μ := | |
begin | |
rw [← restrict_map_with_density_abs_det_fderiv_eq_add_haar μ hs hf' hf, | |
(measurable_embedding_of_fderiv_within hs hf' hf).lintegral_map], | |
have : ∀ (x : s), g (s.restrict f x) = (g ∘ f) x := λ x, rfl, | |
simp only [this], | |
rw [← (measurable_embedding.subtype_coe hs).lintegral_map, map_comap_subtype_coe hs, | |
set_lintegral_with_density_eq_set_lintegral_mul_non_measurable₀ _ _ _ hs], | |
{ refl }, | |
{ simp only [eventually_true, ennreal.of_real_lt_top] }, | |
{ exact ae_measurable_of_real_abs_det_fderiv_within μ hs hf' } | |
end | |
/-- Integrability in the change of variable formula for differentiable functions: if a | |
function `f` is injective and differentiable on a measurable set `s`, then a function | |
`g : E → F` is integrable on `f '' s` if and only if `|(f' x).det| • g ∘ f` is | |
integrable on `s`. -/ | |
theorem integrable_on_image_iff_integrable_on_abs_det_fderiv_smul (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) (g : E → F) : | |
integrable_on g (f '' s) μ ↔ integrable_on (λ x, |(f' x).det| • g (f x)) s μ := | |
begin | |
rw [integrable_on, ← restrict_map_with_density_abs_det_fderiv_eq_add_haar μ hs hf' hf, | |
(measurable_embedding_of_fderiv_within hs hf' hf).integrable_map_iff], | |
change (integrable ((g ∘ f) ∘ (coe : s → E)) _) ↔ _, | |
rw [← (measurable_embedding.subtype_coe hs).integrable_map_iff, map_comap_subtype_coe hs], | |
simp only [ennreal.of_real], | |
rw [restrict_with_density hs, integrable_with_density_iff_integrable_coe_smul₀, integrable_on], | |
{ congr' 2 with x, | |
rw real.coe_to_nnreal, | |
exact abs_nonneg _ }, | |
{ exact ae_measurable_to_nnreal_abs_det_fderiv_within μ hs hf' } | |
end | |
/-- Change of variable formula for differentiable functions: if a function `f` is | |
injective and differentiable on a measurable set `s`, then the Bochner integral of a function | |
`g : E → F` on `f '' s` coincides with the integral of `|(f' x).det| • g ∘ f` on `s`. -/ | |
theorem integral_image_eq_integral_abs_det_fderiv_smul [complete_space F] (hs : measurable_set s) | |
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) (g : E → F) : | |
∫ x in f '' s, g x ∂μ = ∫ x in s, |(f' x).det| • g (f x) ∂μ := | |
begin | |
rw [← restrict_map_with_density_abs_det_fderiv_eq_add_haar μ hs hf' hf, | |
(measurable_embedding_of_fderiv_within hs hf' hf).integral_map], | |
have : ∀ (x : s), g (s.restrict f x) = (g ∘ f) x := λ x, rfl, | |
simp only [this, ennreal.of_real], | |
rw [← (measurable_embedding.subtype_coe hs).integral_map, map_comap_subtype_coe hs, | |
set_integral_with_density_eq_set_integral_smul₀ | |
(ae_measurable_to_nnreal_abs_det_fderiv_within μ hs hf') _ hs], | |
congr' with x, | |
conv_rhs { rw ← real.coe_to_nnreal _ (abs_nonneg (f' x).det) }, | |
refl | |
end | |
theorem integral_target_eq_integral_abs_det_fderiv_smul [complete_space F] | |
{f : local_homeomorph E E} (hf' : ∀ x ∈ f.source, has_fderiv_at f (f' x) x) (g : E → F) : | |
∫ x in f.target, g x ∂μ = ∫ x in f.source, |(f' x).det| • g (f x) ∂μ := | |
begin | |
have : f '' f.source = f.target := local_equiv.image_source_eq_target f.to_local_equiv, | |
rw ← this, | |
apply integral_image_eq_integral_abs_det_fderiv_smul μ f.open_source.measurable_set _ f.inj_on, | |
assume x hx, | |
exact (hf' x hx).has_fderiv_within_at | |
end | |
end measure_theory | |