Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Mario Carneiro, Scott Morrison, Ainsley Pahljina | |
-/ | |
import data.nat.parity | |
import data.pnat.interval | |
import data.zmod.basic | |
import group_theory.order_of_element | |
import ring_theory.fintype | |
import tactic.interval_cases | |
import tactic.ring_exp | |
/-! | |
# The Lucas-Lehmer test for Mersenne primes. | |
We define `lucas_lehmer_residue : Ξ p : β, zmod (2^p - 1)`, and | |
prove `lucas_lehmer_residue p = 0 β prime (mersenne p)`. | |
We construct a tactic `lucas_lehmer.run_test`, which iteratively certifies the arithmetic | |
required to calculate the residue, and enables us to prove | |
``` | |
example : prime (mersenne 127) := | |
lucas_lehmer_sufficiency _ (by norm_num) (by lucas_lehmer.run_test) | |
``` | |
## TODO | |
- Show reverse implication. | |
- Speed up the calculations using `n β‘ (n % 2^p) + (n / 2^p) [MOD 2^p - 1]`. | |
- Find some bigger primes! | |
## History | |
This development began as a student project by Ainsley Pahljina, | |
and was then cleaned up for mathlib by Scott Morrison. | |
The tactic for certified computation of Lucas-Lehmer residues was provided by Mario Carneiro. | |
-/ | |
/-- The Mersenne numbers, 2^p - 1. -/ | |
def mersenne (p : β) : β := 2^p - 1 | |
lemma mersenne_pos {p : β} (h : 0 < p) : 0 < mersenne p := | |
begin | |
dsimp [mersenne], | |
calc 0 < 2^1 - 1 : by norm_num | |
... β€ 2^p - 1 : nat.pred_le_pred (nat.pow_le_pow_of_le_right (nat.succ_pos 1) h) | |
end | |
@[simp] | |
lemma succ_mersenne (k : β) : mersenne k + 1 = 2 ^ k := | |
begin | |
rw [mersenne, tsub_add_cancel_of_le], | |
exact one_le_pow_of_one_le (by norm_num) k | |
end | |
namespace lucas_lehmer | |
open nat | |
/-! | |
We now define three(!) different versions of the recurrence | |
`s (i+1) = (s i)^2 - 2`. | |
These versions take values either in `β€`, in `zmod (2^p - 1)`, or | |
in `β€` but applying `% (2^p - 1)` at each step. | |
They are each useful at different points in the proof, | |
so we take a moment setting up the lemmas relating them. | |
-/ | |
/-- The recurrence `s (i+1) = (s i)^2 - 2` in `β€`. -/ | |
def s : β β β€ | |
| 0 := 4 | |
| (i+1) := (s i)^2 - 2 | |
/-- The recurrence `s (i+1) = (s i)^2 - 2` in `zmod (2^p - 1)`. -/ | |
def s_zmod (p : β) : β β zmod (2^p - 1) | |
| 0 := 4 | |
| (i+1) := (s_zmod i)^2 - 2 | |
/-- The recurrence `s (i+1) = ((s i)^2 - 2) % (2^p - 1)` in `β€`. -/ | |
def s_mod (p : β) : β β β€ | |
| 0 := 4 % (2^p - 1) | |
| (i+1) := ((s_mod i)^2 - 2) % (2^p - 1) | |
lemma mersenne_int_ne_zero (p : β) (w : 0 < p) : (2^p - 1 : β€) β 0 := | |
begin | |
apply ne_of_gt, simp only [gt_iff_lt, sub_pos], | |
exact_mod_cast nat.one_lt_two_pow p w, | |
end | |
lemma s_mod_nonneg (p : β) (w : 0 < p) (i : β) : 0 β€ s_mod p i := | |
begin | |
cases i; dsimp [s_mod], | |
{ exact sup_eq_left.mp rfl }, | |
{ apply int.mod_nonneg, exact mersenne_int_ne_zero p w }, | |
end | |
lemma s_mod_mod (p i : β) : s_mod p i % (2^p - 1) = s_mod p i := | |
by cases i; simp [s_mod] | |
lemma s_mod_lt (p : β) (w : 0 < p) (i : β) : s_mod p i < 2^p - 1 := | |
begin | |
rw βs_mod_mod, | |
convert int.mod_lt _ _, | |
{ refine (abs_of_nonneg _).symm, | |
simp only [sub_nonneg, ge_iff_le], | |
exact_mod_cast nat.one_le_two_pow p, }, | |
{ exact mersenne_int_ne_zero p w, }, | |
end | |
lemma s_zmod_eq_s (p' : β) (i : β) : s_zmod (p'+2) i = (s i : zmod (2^(p'+2) - 1)):= | |
begin | |
induction i with i ih, | |
{ dsimp [s, s_zmod], norm_num, }, | |
{ push_cast [s, s_zmod, ih] }, | |
end | |
-- These next two don't make good `norm_cast` lemmas. | |
lemma int.coe_nat_pow_pred (b p : β) (w : 0 < b) : ((b^p - 1 : β) : β€) = (b^p - 1 : β€) := | |
begin | |
have : 1 β€ b^p := nat.one_le_pow p b w, | |
norm_cast | |
end | |
lemma int.coe_nat_two_pow_pred (p : β) : ((2^p - 1 : β) : β€) = (2^p - 1 : β€) := | |
int.coe_nat_pow_pred 2 p dec_trivial | |
lemma s_zmod_eq_s_mod (p : β) (i : β) : s_zmod p i = (s_mod p i : zmod (2^p - 1)) := | |
by induction i; push_cast [βint.coe_nat_two_pow_pred p, s_mod, s_zmod, *] | |
/-- The Lucas-Lehmer residue is `s p (p-2)` in `zmod (2^p - 1)`. -/ | |
def lucas_lehmer_residue (p : β) : zmod (2^p - 1) := s_zmod p (p-2) | |
lemma residue_eq_zero_iff_s_mod_eq_zero (p : β) (w : 1 < p) : | |
lucas_lehmer_residue p = 0 β s_mod p (p-2) = 0 := | |
begin | |
dsimp [lucas_lehmer_residue], | |
rw s_zmod_eq_s_mod p, | |
split, | |
{ -- We want to use that fact that `0 β€ s_mod p (p-2) < 2^p - 1` | |
-- and `lucas_lehmer_residue p = 0 β 2^p - 1 β£ s_mod p (p-2)`. | |
intro h, | |
simp [zmod.int_coe_zmod_eq_zero_iff_dvd] at h, | |
apply int.eq_zero_of_dvd_of_nonneg_of_lt _ _ h; clear h, | |
apply s_mod_nonneg _ (nat.lt_of_succ_lt w), | |
exact s_mod_lt _ (nat.lt_of_succ_lt w) (p-2) }, | |
{ intro h, rw h, simp, }, | |
end | |
/-- | |
A Mersenne number `2^p-1` is prime if and only if | |
the Lucas-Lehmer residue `s p (p-2) % (2^p - 1)` is zero. | |
-/ | |
@[derive decidable_pred] | |
def lucas_lehmer_test (p : β) : Prop := lucas_lehmer_residue p = 0 | |
/-- `q` is defined as the minimum factor of `mersenne p`, bundled as an `β+`. -/ | |
def q (p : β) : β+ := β¨nat.min_fac (mersenne p), nat.min_fac_pos (mersenne p)β© | |
local attribute [instance] | |
lemma fact_pnat_pos (q : β+) : fact (0 < (q : β)) := β¨q.2β© | |
/-- We construct the ring `X q` as β€/qβ€ + β3 β€/qβ€. -/ | |
-- It would be nice to define this as (β€/qβ€)[x] / (x^2 - 3), | |
-- obtaining the ring structure for free, | |
-- but that seems to be more trouble than it's worth; | |
-- if it were easy to make the definition, | |
-- cardinality calculations would be somewhat more involved, too. | |
@[derive [add_comm_group, decidable_eq, fintype, inhabited]] | |
def X (q : β+) : Type := (zmod q) Γ (zmod q) | |
namespace X | |
variable {q : β+} | |
@[ext] | |
lemma ext {x y : X q} (hβ : x.1 = y.1) (hβ : x.2 = y.2) : x = y := | |
begin | |
cases x, cases y, | |
congr; assumption | |
end | |
@[simp] lemma add_fst (x y : X q) : (x + y).1 = x.1 + y.1 := rfl | |
@[simp] lemma add_snd (x y : X q) : (x + y).2 = x.2 + y.2 := rfl | |
@[simp] lemma neg_fst (x : X q) : (-x).1 = -x.1 := rfl | |
@[simp] lemma neg_snd (x : X q) : (-x).2 = -x.2 := rfl | |
instance : has_mul (X q) := | |
{ mul := Ξ» x y, (x.1*y.1 + 3*x.2*y.2, x.1*y.2 + x.2*y.1) } | |
@[simp] lemma mul_fst (x y : X q) : (x * y).1 = x.1 * y.1 + 3 * x.2 * y.2 := rfl | |
@[simp] lemma mul_snd (x y : X q) : (x * y).2 = x.1 * y.2 + x.2 * y.1 := rfl | |
instance : has_one (X q) := | |
{ one := β¨1,0β© } | |
@[simp] lemma one_fst : (1 : X q).1 = 1 := rfl | |
@[simp] lemma one_snd : (1 : X q).2 = 0 := rfl | |
@[simp] lemma bit0_fst (x : X q) : (bit0 x).1 = bit0 x.1 := rfl | |
@[simp] lemma bit0_snd (x : X q) : (bit0 x).2 = bit0 x.2 := rfl | |
@[simp] lemma bit1_fst (x : X q) : (bit1 x).1 = bit1 x.1 := rfl | |
@[simp] lemma bit1_snd (x : X q) : (bit1 x).2 = bit0 x.2 := by { dsimp [bit1], simp, } | |
instance : monoid (X q) := | |
{ mul_assoc := Ξ» x y z, by { ext; { dsimp, ring }, }, | |
one := β¨1,0β©, | |
one_mul := Ξ» x, by { ext; simp, }, | |
mul_one := Ξ» x, by { ext; simp, }, | |
..(infer_instance : has_mul (X q)) } | |
instance : add_group_with_one (X q) := | |
{ nat_cast := Ξ» n, β¨n, 0β©, | |
nat_cast_zero := by simp, | |
nat_cast_succ := by simp [nat.cast, monoid.one], | |
int_cast := Ξ» n, β¨n, 0β©, | |
int_cast_of_nat := Ξ» n, by simp; refl, | |
int_cast_neg_succ_of_nat := Ξ» n, by ext; simp; refl, | |
.. X.monoid, .. X.add_comm_group _ } | |
lemma left_distrib (x y z : X q) : x * (y + z) = x * y + x * z := | |
by { ext; { dsimp, ring }, } | |
lemma right_distrib (x y z : X q) : (x + y) * z = x * z + y * z := | |
by { ext; { dsimp, ring }, } | |
instance : ring (X q) := | |
{ left_distrib := left_distrib, | |
right_distrib := right_distrib, | |
.. X.add_group_with_one, | |
..(infer_instance : add_comm_group (X q)), | |
..(infer_instance : monoid (X q)) } | |
instance : comm_ring (X q) := | |
{ mul_comm := Ξ» x y, by { ext; { dsimp, ring }, }, | |
..(infer_instance : ring (X q))} | |
instance [fact (1 < (q : β))] : nontrivial (X q) := | |
β¨β¨0, 1, Ξ» h, by { injection h with h1 _, exact zero_ne_one h1 } β©β© | |
@[simp] lemma nat_coe_fst (n : β) : (n : X q).fst = (n : zmod q) := rfl | |
@[simp] lemma nat_coe_snd (n : β) : (n : X q).snd = (0 : zmod q) := rfl | |
@[simp] lemma int_coe_fst (n : β€) : (n : X q).fst = (n : zmod q) := rfl | |
@[simp] lemma int_coe_snd (n : β€) : (n : X q).snd = (0 : zmod q) := rfl | |
@[norm_cast] | |
lemma coe_mul (n m : β€) : ((n * m : β€) : X q) = (n : X q) * (m : X q) := | |
by { ext; simp; ring } | |
@[norm_cast] | |
lemma coe_nat (n : β) : ((n : β€) : X q) = (n : X q) := | |
by { ext; simp, } | |
/-- The cardinality of `X` is `q^2`. -/ | |
lemma X_card : fintype.card (X q) = q^2 := | |
begin | |
dsimp [X], | |
rw [fintype.card_prod, zmod.card q], | |
ring, | |
end | |
/-- There are strictly fewer than `q^2` units, since `0` is not a unit. -/ | |
lemma units_card (w : 1 < q) : fintype.card ((X q)Λ£) < q^2 := | |
begin | |
haveI : fact (1 < (q:β)) := β¨wβ©, | |
convert card_units_lt (X q), | |
rw X_card, | |
end | |
/-- We define `Ο = 2 + β3`. -/ | |
def Ο : X q := (2, 1) | |
/-- We define `Οb = 2 - β3`, which is the inverse of `Ο`. -/ | |
def Οb : X q := (2, -1) | |
lemma Ο_mul_Οb (q : β+) : (Ο : X q) * Οb = 1 := | |
begin | |
dsimp [Ο, Οb], | |
ext; simp; ring, | |
end | |
lemma Οb_mul_Ο (q : β+) : (Οb : X q) * Ο = 1 := | |
begin | |
dsimp [Ο, Οb], | |
ext; simp; ring, | |
end | |
/-- A closed form for the recurrence relation. -/ | |
lemma closed_form (i : β) : (s i : X q) = (Ο : X q)^(2^i) + (Οb : X q)^(2^i) := | |
begin | |
induction i with i ih, | |
{ dsimp [s, Ο, Οb], | |
ext; { simp; refl, }, }, | |
{ calc (s (i + 1) : X q) = ((s i)^2 - 2 : β€) : rfl | |
... = ((s i : X q)^2 - 2) : by push_cast | |
... = (Ο^(2^i) + Οb^(2^i))^2 - 2 : by rw ih | |
... = (Ο^(2^i))^2 + (Οb^(2^i))^2 + 2*(Οb^(2^i)*Ο^(2^i)) - 2 : by ring | |
... = (Ο^(2^i))^2 + (Οb^(2^i))^2 : | |
by rw [βmul_pow Οb Ο, Οb_mul_Ο, one_pow, mul_one, add_sub_cancel] | |
... = Ο^(2^(i+1)) + Οb^(2^(i+1)) : by rw [βpow_mul, βpow_mul, pow_succ'] } | |
end | |
end X | |
open X | |
/-! | |
Here and below, we introduce `p' = p - 2`, in order to avoid using subtraction in `β`. | |
-/ | |
/-- If `1 < p`, then `q p`, the smallest prime factor of `mersenne p`, is more than 2. -/ | |
lemma two_lt_q (p' : β) : 2 < q (p'+2) := begin | |
by_contradiction H, | |
simp at H, | |
interval_cases q (p'+2); clear H, | |
{ -- If q = 1, we get a contradiction from 2^p = 2 | |
dsimp [q] at h, injection h with h', clear h, | |
simp [mersenne] at h', | |
exact lt_irrefl 2 | |
(calc 2 β€ p'+2 : nat.le_add_left _ _ | |
... < 2^(p'+2) : nat.lt_two_pow _ | |
... = 2 : nat.pred_inj (nat.one_le_two_pow _) dec_trivial h'), }, | |
{ -- If q = 2, we get a contradiction from 2 β£ 2^p - 1 | |
dsimp [q] at h, injection h with h', clear h, | |
rw [mersenne, pnat.one_coe, nat.min_fac_eq_two_iff, pow_succ] at h', | |
exact nat.two_not_dvd_two_mul_sub_one (nat.one_le_two_pow _) h', } | |
end | |
theorem Ο_pow_formula (p' : β) (h : lucas_lehmer_residue (p'+2) = 0) : | |
β (k : β€), (Ο : X (q (p'+2)))^(2^(p'+1)) = | |
k * (mersenne (p'+2)) * ((Ο : X (q (p'+2)))^(2^p')) - 1 := | |
begin | |
dsimp [lucas_lehmer_residue] at h, | |
rw s_zmod_eq_s p' at h, | |
simp [zmod.int_coe_zmod_eq_zero_iff_dvd] at h, | |
cases h with k h, | |
use k, | |
replace h := congr_arg (Ξ» (n : β€), (n : X (q (p'+2)))) h, -- coercion from β€ to X q | |
dsimp at h, | |
rw closed_form at h, | |
replace h := congr_arg (Ξ» x, Ο^2^p' * x) h, | |
dsimp at h, | |
have t : 2^p' + 2^p' = 2^(p'+1) := by ring_exp, | |
rw [mul_add, βpow_add Ο, t, βmul_pow Ο Οb (2^p'), Ο_mul_Οb, one_pow] at h, | |
rw [mul_comm, coe_mul] at h, | |
rw [mul_comm _ (k : X (q (p'+2)))] at h, | |
replace h := eq_sub_of_add_eq h, | |
have : 1 β€ 2 ^ (p' + 2) := nat.one_le_pow _ _ dec_trivial, | |
exact_mod_cast h, | |
end | |
/-- `q` is the minimum factor of `mersenne p`, so `M p = 0` in `X q`. -/ | |
theorem mersenne_coe_X (p : β) : (mersenne p : X (q p)) = 0 := | |
begin | |
ext; simp [mersenne, q, zmod.nat_coe_zmod_eq_zero_iff_dvd, -pow_pos], | |
apply nat.min_fac_dvd, | |
end | |
theorem Ο_pow_eq_neg_one (p' : β) (h : lucas_lehmer_residue (p'+2) = 0) : | |
(Ο : X (q (p'+2)))^(2^(p'+1)) = -1 := | |
begin | |
cases Ο_pow_formula p' h with k w, | |
rw [mersenne_coe_X] at w, | |
simpa using w, | |
end | |
theorem Ο_pow_eq_one (p' : β) (h : lucas_lehmer_residue (p'+2) = 0) : | |
(Ο : X (q (p'+2)))^(2^(p'+2)) = 1 := | |
calc (Ο : X (q (p'+2)))^2^(p'+2) | |
= (Ο^(2^(p'+1)))^2 : by rw [βpow_mul, βpow_succ'] | |
... = (-1)^2 : by rw Ο_pow_eq_neg_one p' h | |
... = 1 : by simp | |
/-- `Ο` as an element of the group of units. -/ | |
def Ο_unit (p : β) : units (X (q p)) := | |
{ val := Ο, | |
inv := Οb, | |
val_inv := by simp [Ο_mul_Οb], | |
inv_val := by simp [Οb_mul_Ο], } | |
@[simp] lemma Ο_unit_coe (p : β) : (Ο_unit p : X (q p)) = Ο := rfl | |
/-- The order of `Ο` in the unit group is exactly `2^p`. -/ | |
theorem order_Ο (p' : β) (h : lucas_lehmer_residue (p'+2) = 0) : | |
order_of (Ο_unit (p'+2)) = 2^(p'+2) := | |
begin | |
apply nat.eq_prime_pow_of_dvd_least_prime_pow, -- the order of Ο divides 2^p | |
{ norm_num, }, | |
{ intro o, | |
have Ο_pow := order_of_dvd_iff_pow_eq_one.1 o, | |
replace Ο_pow := congr_arg (units.coe_hom (X (q (p'+2))) : | |
units (X (q (p'+2))) β X (q (p'+2))) Ο_pow, | |
simp at Ο_pow, | |
have h : (1 : zmod (q (p'+2))) = -1 := | |
congr_arg (prod.fst) ((Ο_pow.symm).trans (Ο_pow_eq_neg_one p' h)), | |
haveI : fact (2 < (q (p'+2) : β)) := β¨two_lt_q _β©, | |
apply zmod.neg_one_ne_one h.symm, }, | |
{ apply order_of_dvd_iff_pow_eq_one.2, | |
apply units.ext, | |
push_cast, | |
exact Ο_pow_eq_one p' h, } | |
end | |
lemma order_ineq (p' : β) (h : lucas_lehmer_residue (p'+2) = 0) : 2^(p'+2) < (q (p'+2) : β)^2 := | |
calc 2^(p'+2) = order_of (Ο_unit (p'+2)) : (order_Ο p' h).symm | |
... β€ fintype.card ((X _)Λ£) : order_of_le_card_univ | |
... < (q (p'+2) : β)^2 : units_card (nat.lt_of_succ_lt (two_lt_q _)) | |
end lucas_lehmer | |
export lucas_lehmer (lucas_lehmer_test lucas_lehmer_residue) | |
open lucas_lehmer | |
theorem lucas_lehmer_sufficiency (p : β) (w : 1 < p) : lucas_lehmer_test p β (mersenne p).prime := | |
begin | |
let p' := p - 2, | |
have z : p = p' + 2 := (tsub_eq_iff_eq_add_of_le w.nat_succ_le).mp rfl, | |
have w : 1 < p' + 2 := (nat.lt_of_sub_eq_succ rfl), | |
contrapose, | |
intros a t, | |
rw z at a, | |
rw z at t, | |
have hβ := order_ineq p' t, | |
have hβ := nat.min_fac_sq_le_self (mersenne_pos (nat.lt_of_succ_lt w)) a, | |
have h := lt_of_lt_of_le hβ hβ, | |
exact not_lt_of_ge (nat.sub_le _ _) h, | |
end | |
-- Here we calculate the residue, very inefficiently, using `dec_trivial`. We can do much better. | |
example : (mersenne 5).prime := lucas_lehmer_sufficiency 5 (by norm_num) dec_trivial | |
-- Next we use `norm_num` to calculate each `s p i`. | |
namespace lucas_lehmer | |
open tactic | |
lemma s_mod_succ {p a i b c} | |
(h1 : (2^p - 1 : β€) = a) | |
(h2 : s_mod p i = b) | |
(h3 : (b * b - 2) % a = c) : | |
s_mod p (i+1) = c := | |
by { dsimp [s_mod, mersenne], rw [h1, h2, sq, h3] } | |
/-- | |
Given a goal of the form `lucas_lehmer_test p`, | |
attempt to do the calculation using `norm_num` to certify each step. | |
-/ | |
meta def run_test : tactic unit := | |
do `(lucas_lehmer_test %%p) β target, | |
`[dsimp [lucas_lehmer_test]], | |
`[rw lucas_lehmer.residue_eq_zero_iff_s_mod_eq_zero, swap, norm_num], | |
p β eval_expr β p, | |
-- Calculate the candidate Mersenne prime | |
let M : β€ := 2^p - 1, | |
t β to_expr ``(2^%%`(p) - 1 = %%`(M)), | |
v β to_expr ``(by norm_num : 2^%%`(p) - 1 = %%`(M)), | |
w β assertv `w t v, | |
-- base case | |
t β to_expr ``(s_mod %%`(p) 0 = 4), | |
v β to_expr ``(by norm_num [lucas_lehmer.s_mod] : s_mod %%`(p) 0 = 4), | |
h β assertv `h t v, | |
-- step case, repeated p-2 times | |
iterate_exactly (p-2) `[replace h := lucas_lehmer.s_mod_succ w h (by { norm_num, refl })], | |
-- now close the goal | |
h β get_local `h, | |
exact h | |
end lucas_lehmer | |
/-- We verify that the tactic works to prove `127.prime`. -/ | |
example : (mersenne 7).prime := lucas_lehmer_sufficiency _ (by norm_num) (by lucas_lehmer.run_test). | |
/-! | |
This implementation works successfully to prove `(2^127 - 1).prime`, | |
and all the Mersenne primes up to this point appear in [archive/examples/mersenne_primes.lean]. | |
`(2^127 - 1).prime` takes about 5 minutes to run (depending on your CPU!), | |
and unfortunately the next Mersenne prime `(2^521 - 1)`, | |
which was the first "computer era" prime, | |
is out of reach with the current implementation. | |
There's still low hanging fruit available to do faster computations | |
based on the formula | |
``` | |
n β‘ (n % 2^p) + (n / 2^p) [MOD 2^p - 1] | |
``` | |
and the fact that `% 2^p` and `/ 2^p` can be very efficient on the binary representation. | |
Someone should do this, too! | |
-/ | |
lemma modeq_mersenne (n k : β) : k β‘ ((k / 2^n) + (k % 2^n)) [MOD 2^n - 1] := | |
-- See https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/help.20finding.20a.20lemma/near/177698446 | |
begin | |
conv in k { rw β nat.div_add_mod k (2^n) }, | |
refine nat.modeq.add_right _ _, | |
conv { congr, skip, skip, rw β one_mul (k/2^n) }, | |
exact (nat.modeq_sub $ nat.succ_le_of_lt $ pow_pos zero_lt_two _).mul_right _, | |
end | |
-- It's hard to know what the limiting factor for large Mersenne primes would be. | |
-- In the purely computational world, I think it's the squaring operation in `s`. | |