Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Kexing Ying. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kexing Ying | |
-/ | |
import probability.notation | |
import probability.independence | |
/-! | |
# Probabilistic properties of the conditional expectation | |
This file contains some properties about the conditional expectation which does not belong in | |
the main conditional expectation file. | |
## Main result | |
* `measure_theory.condexp_indep_eq`: If `m₁, m₂` are independent σ-algebras and `f` is a | |
`m₁`-measurable function, then `𝔼[f | m₂] = 𝔼[f]` almost everywhere. | |
-/ | |
open topological_space filter | |
open_locale nnreal ennreal measure_theory probability_theory big_operators | |
namespace measure_theory | |
open probability_theory | |
variables {Ω E : Type*} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E] | |
{m₁ m₂ m : measurable_space Ω} {μ : measure Ω} {f : Ω → E} | |
/-- If `m₁, m₂` are independent σ-algebras and `f` is `m₁`-measurable, then `𝔼[f | m₂] = 𝔼[f]` | |
almost everywhere. -/ | |
lemma condexp_indep_eq | |
(hle₁ : m₁ ≤ m) (hle₂ : m₂ ≤ m) [sigma_finite (μ.trim hle₂)] | |
(hf : strongly_measurable[m₁] f) (hindp : indep m₁ m₂ μ) : | |
μ[f | m₂] =ᵐ[μ] λ x, μ[f] := | |
begin | |
by_cases hfint : integrable f μ, | |
swap, { exact (integral_undef hfint).symm ▸ condexp_undef hfint }, | |
have hfint₁ := hfint.trim hle₁ hf, | |
refine (ae_eq_condexp_of_forall_set_integral_eq hle₂ hfint | |
(λ s _ hs, integrable_on_const.2 (or.inr hs)) (λ s hms hs, _) | |
strongly_measurable_const.ae_strongly_measurable').symm, | |
rw set_integral_const, | |
rw ← mem_ℒp_one_iff_integrable at hfint, | |
refine hfint.induction_strongly_measurable hle₁ ennreal.one_ne_top _ _ _ _ _ _, | |
{ intros c t hmt ht, | |
rw [integral_indicator (hle₁ _ hmt), set_integral_const, smul_smul, | |
← ennreal.to_real_mul, mul_comm, ← hindp _ _ hmt hms, set_integral_indicator (hle₁ _ hmt), | |
set_integral_const, set.inter_comm] }, | |
{ intros u v hdisj huint hvint hu hv hu_eq hv_eq, | |
rw mem_ℒp_one_iff_integrable at huint hvint, | |
rw [integral_add' huint hvint, smul_add, hu_eq, hv_eq, | |
integral_add' huint.integrable_on hvint.integrable_on], }, | |
{ have heq₁ : (λ f : Lp_meas E ℝ m₁ 1 μ, ∫ x, f x ∂μ) = | |
(λ f : Lp E 1 μ, ∫ x, f x ∂μ) ∘ (submodule.subtypeL _), | |
{ refine funext (λ f, integral_congr_ae _), | |
simp_rw [submodule.coe_subtypeL', submodule.coe_subtype, ← coe_fn_coe_base], }, | |
have heq₂ : (λ f : Lp_meas E ℝ m₁ 1 μ, ∫ x in s, f x ∂μ) = | |
(λ f : Lp E 1 μ, ∫ x in s, f x ∂μ) ∘ (submodule.subtypeL _), | |
{ refine funext (λ f, integral_congr_ae (ae_restrict_of_ae _)), | |
simp_rw [submodule.coe_subtypeL', submodule.coe_subtype, ← coe_fn_coe_base], | |
exact eventually_of_forall (λ _, rfl), }, | |
refine is_closed_eq (continuous.const_smul _ _) _, | |
{ rw heq₁, | |
exact continuous_integral.comp (continuous_linear_map.continuous _), }, | |
{ rw heq₂, | |
exact (continuous_set_integral _).comp (continuous_linear_map.continuous _), }, }, | |
{ intros u v huv huint hueq, | |
rwa [← integral_congr_ae huv, | |
← (set_integral_congr_ae (hle₂ _ hms) _ : ∫ x in s, u x ∂μ = ∫ x in s, v x ∂μ)], | |
filter_upwards [huv] with x hx _ using hx, }, | |
{ exact ⟨f, hf, eventually_eq.rfl⟩, }, | |
end | |
end measure_theory | |