Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Sébastien Gouëzel | |
-/ | |
import probability.variance | |
import measure_theory.function.uniform_integrable | |
/-! | |
# Identically distributed random variables | |
Two random variables defined on two (possibly different) probability spaces but taking value in | |
the same space are *identically distributed* if their distributions (i.e., the image probability | |
measures on the target space) coincide. We define this concept and establish its basic properties | |
in this file. | |
## Main definitions and results | |
* `ident_distrib f g μ ν` registers that the image of `μ` under `f` coincides with the image of `ν` | |
under `g` (and that `f` and `g` are almost everywhere measurable, as otherwise the image measures | |
don't make sense). The measures can be kept implicit as in `ident_distrib f g` if the spaces | |
are registered as measure spaces. | |
* `ident_distrib.comp`: being identically distributed is stable under composition with measurable | |
maps. | |
There are two main kind of lemmas, under the assumption that `f` and `g` are identically | |
distributed: lemmas saying that two quantities computed for `f` and `g` are the same, and lemmas | |
saying that if `f` has some property then `g` also has it. The first kind is registered as | |
`ident_distrib.foo_eq`, the second one as `ident_distrib.foo_snd` (in the latter case, to deduce | |
a property of `f` from one of `g`, use `h.symm.foo_snd` where `h : ident_distrib f g μ ν`). For | |
instance: | |
* `ident_distrib.measure_mem_eq`: if `f` and `g` are identically distributed, then the probabilities | |
that they belong to a given measurable set are the same. | |
* `ident_distrib.integral_eq`: if `f` and `g` are identically distributed, then their integrals | |
are the same. | |
* `ident_distrib.variance_eq`: if `f` and `g` are identically distributed, then their variances | |
are the same. | |
* `ident_distrib.ae_strongly_measurable_snd`: if `f` and `g` are identically distributed and `f` | |
is almost everywhere strongly measurable, then so is `g`. | |
* `ident_distrib.mem_ℒp_snd`: if `f` and `g` are identically distributed and `f` | |
belongs to `ℒp`, then so does `g`. | |
We also register several dot notation shortcuts for convenience. | |
For instance, if `h : ident_distrib f g μ ν`, then `h.sq` states that `f^2` and `g^2` are | |
identically distributed, and `h.norm` states that `∥f∥` and `∥g∥` are identically distributed, and | |
so on. | |
-/ | |
open measure_theory filter finset | |
noncomputable theory | |
open_locale topological_space big_operators measure_theory ennreal nnreal | |
variables {α β γ δ : Type*} [measurable_space α] [measurable_space β] | |
[measurable_space γ] [measurable_space δ] | |
namespace probability_theory | |
/-- Two functions defined on two (possibly different) measure spaces are identically distributed if | |
their image measures coincide. This only makes sense when the functions are ae measurable | |
(as otherwise the image measures are not defined), so we require this as well in the definition. -/ | |
structure ident_distrib | |
(f : α → γ) (g : β → γ) (μ : measure α . volume_tac) (ν : measure β . volume_tac) : Prop := | |
(ae_measurable_fst : ae_measurable f μ) | |
(ae_measurable_snd : ae_measurable g ν) | |
(map_eq : measure.map f μ = measure.map g ν) | |
namespace ident_distrib | |
open topological_space | |
variables {μ : measure α} {ν : measure β} {f : α → γ} {g : β → γ} | |
protected lemma refl (hf : ae_measurable f μ) : | |
ident_distrib f f μ μ := | |
{ ae_measurable_fst := hf, | |
ae_measurable_snd := hf, | |
map_eq := rfl } | |
protected lemma symm (h : ident_distrib f g μ ν) : ident_distrib g f ν μ := | |
{ ae_measurable_fst := h.ae_measurable_snd, | |
ae_measurable_snd := h.ae_measurable_fst, | |
map_eq := h.map_eq.symm } | |
protected lemma trans {ρ : measure δ} {h : δ → γ} | |
(h₁ : ident_distrib f g μ ν) (h₂ : ident_distrib g h ν ρ) : ident_distrib f h μ ρ := | |
{ ae_measurable_fst := h₁.ae_measurable_fst, | |
ae_measurable_snd := h₂.ae_measurable_snd, | |
map_eq := h₁.map_eq.trans h₂.map_eq } | |
protected lemma comp_of_ae_measurable {u : γ → δ} (h : ident_distrib f g μ ν) | |
(hu : ae_measurable u (measure.map f μ)) : | |
ident_distrib (u ∘ f) (u ∘ g) μ ν := | |
{ ae_measurable_fst := hu.comp_ae_measurable h.ae_measurable_fst, | |
ae_measurable_snd := | |
by { rw h.map_eq at hu, exact hu.comp_ae_measurable h.ae_measurable_snd }, | |
map_eq := | |
begin | |
rw [← ae_measurable.map_map_of_ae_measurable hu h.ae_measurable_fst, | |
← ae_measurable.map_map_of_ae_measurable _ h.ae_measurable_snd, h.map_eq], | |
rwa ← h.map_eq, | |
end } | |
protected lemma comp {u : γ → δ} (h : ident_distrib f g μ ν) (hu : measurable u) : | |
ident_distrib (u ∘ f) (u ∘ g) μ ν := | |
h.comp_of_ae_measurable hu.ae_measurable | |
protected lemma of_ae_eq {g : α → γ} (hf : ae_measurable f μ) (heq : f =ᵐ[μ] g) : | |
ident_distrib f g μ μ := | |
{ ae_measurable_fst := hf, | |
ae_measurable_snd := hf.congr heq, | |
map_eq := measure.map_congr heq } | |
lemma measure_mem_eq (h : ident_distrib f g μ ν) {s : set γ} (hs : measurable_set s) : | |
μ (f ⁻¹' s) = ν (g ⁻¹' s) := | |
by rw [← measure.map_apply_of_ae_measurable h.ae_measurable_fst hs, | |
← measure.map_apply_of_ae_measurable h.ae_measurable_snd hs, h.map_eq] | |
alias measure_mem_eq ← measure_preimage_eq | |
lemma ae_snd (h : ident_distrib f g μ ν) {p : γ → Prop} | |
(pmeas : measurable_set {x | p x}) (hp : ∀ᵐ x ∂μ, p (f x)) : | |
∀ᵐ x ∂ν, p (g x) := | |
begin | |
apply (ae_map_iff h.ae_measurable_snd pmeas).1, | |
rw ← h.map_eq, | |
exact (ae_map_iff h.ae_measurable_fst pmeas).2 hp, | |
end | |
lemma ae_mem_snd (h : ident_distrib f g μ ν) {t : set γ} | |
(tmeas : measurable_set t) (ht : ∀ᵐ x ∂μ, f x ∈ t) : | |
∀ᵐ x ∂ν, g x ∈ t := | |
h.ae_snd tmeas ht | |
/-- In a second countable topology, the first function in an identically distributed pair is a.e. | |
strongly measurable. So is the second function, but use `h.symm.ae_strongly_measurable_fst` as | |
`h.ae_strongly_measurable_snd` has a different meaning.-/ | |
lemma ae_strongly_measurable_fst [topological_space γ] | |
[metrizable_space γ] [opens_measurable_space γ] [second_countable_topology γ] | |
(h : ident_distrib f g μ ν) : | |
ae_strongly_measurable f μ := | |
h.ae_measurable_fst.ae_strongly_measurable | |
/-- If `f` and `g` are identically distributed and `f` is a.e. strongly measurable, so is `g`. -/ | |
lemma ae_strongly_measurable_snd [topological_space γ] [metrizable_space γ] [borel_space γ] | |
(h : ident_distrib f g μ ν) (hf : ae_strongly_measurable f μ) : | |
ae_strongly_measurable g ν := | |
begin | |
refine ae_strongly_measurable_iff_ae_measurable_separable.2 ⟨h.ae_measurable_snd, _⟩, | |
rcases (ae_strongly_measurable_iff_ae_measurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩, | |
refine ⟨closure t, t_sep.closure, _⟩, | |
apply h.ae_mem_snd is_closed_closure.measurable_set, | |
filter_upwards [ht] with x hx using subset_closure hx, | |
end | |
lemma ae_strongly_measurable_iff [topological_space γ] [metrizable_space γ] [borel_space γ] | |
(h : ident_distrib f g μ ν) : | |
ae_strongly_measurable f μ ↔ ae_strongly_measurable g ν := | |
⟨λ hf, h.ae_strongly_measurable_snd hf, λ hg, h.symm.ae_strongly_measurable_snd hg⟩ | |
lemma ess_sup_eq [conditionally_complete_linear_order γ] [topological_space γ] | |
[opens_measurable_space γ] [order_closed_topology γ] (h : ident_distrib f g μ ν) : | |
ess_sup f μ = ess_sup g ν := | |
begin | |
have I : ∀ a, μ {x : α | a < f x} = ν {x : β | a < g x} := | |
λ a, h.measure_mem_eq measurable_set_Ioi, | |
simp_rw [ess_sup_eq_Inf, I], | |
end | |
lemma lintegral_eq {f : α → ℝ≥0∞} {g : β → ℝ≥0∞} (h : ident_distrib f g μ ν) : | |
∫⁻ x, f x ∂μ = ∫⁻ x, g x ∂ν := | |
begin | |
change ∫⁻ x, id (f x) ∂μ = ∫⁻ x, id (g x) ∂ν, | |
rw [← lintegral_map' ae_measurable_id h.ae_measurable_fst, | |
← lintegral_map' ae_measurable_id h.ae_measurable_snd, h.map_eq], | |
end | |
lemma integral_eq [normed_add_comm_group γ] [normed_space ℝ γ] [complete_space γ] [borel_space γ] | |
(h : ident_distrib f g μ ν) : ∫ x, f x ∂μ = ∫ x, g x ∂ν := | |
begin | |
by_cases hf : ae_strongly_measurable f μ, | |
{ have A : ae_strongly_measurable id (measure.map f μ), | |
{ rw ae_strongly_measurable_iff_ae_measurable_separable, | |
rcases (ae_strongly_measurable_iff_ae_measurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩, | |
refine ⟨ae_measurable_id, ⟨closure t, t_sep.closure, _⟩⟩, | |
rw ae_map_iff h.ae_measurable_fst, | |
{ filter_upwards [ht] with x hx using subset_closure hx }, | |
{ exact is_closed_closure.measurable_set } }, | |
change ∫ x, id (f x) ∂μ = ∫ x, id (g x) ∂ν, | |
rw [← integral_map h.ae_measurable_fst A], | |
rw h.map_eq at A, | |
rw [← integral_map h.ae_measurable_snd A, h.map_eq] }, | |
{ rw integral_non_ae_strongly_measurable hf, | |
rw h.ae_strongly_measurable_iff at hf, | |
rw integral_non_ae_strongly_measurable hf } | |
end | |
lemma snorm_eq [normed_add_comm_group γ] [opens_measurable_space γ] (h : ident_distrib f g μ ν) | |
(p : ℝ≥0∞) : | |
snorm f p μ = snorm g p ν := | |
begin | |
by_cases h0 : p = 0, | |
{ simp [h0], }, | |
by_cases h_top : p = ∞, | |
{ simp only [h_top, snorm, snorm_ess_sup, ennreal.top_ne_zero, eq_self_iff_true, if_true, | |
if_false], | |
apply ess_sup_eq, | |
exact h.comp (measurable_coe_nnreal_ennreal.comp measurable_nnnorm) }, | |
simp only [snorm_eq_snorm' h0 h_top, snorm', one_div], | |
congr' 1, | |
apply lintegral_eq, | |
exact h.comp | |
(measurable.pow_const (measurable_coe_nnreal_ennreal.comp measurable_nnnorm) p.to_real), | |
end | |
lemma mem_ℒp_snd [normed_add_comm_group γ] [borel_space γ] | |
{p : ℝ≥0∞} (h : ident_distrib f g μ ν) (hf : mem_ℒp f p μ) : | |
mem_ℒp g p ν := | |
begin | |
refine ⟨h.ae_strongly_measurable_snd hf.ae_strongly_measurable, _⟩, | |
rw ← h.snorm_eq, | |
exact hf.2 | |
end | |
lemma mem_ℒp_iff [normed_add_comm_group γ] [borel_space γ] {p : ℝ≥0∞} (h : ident_distrib f g μ ν) : | |
mem_ℒp f p μ ↔ mem_ℒp g p ν := | |
⟨λ hf, h.mem_ℒp_snd hf, λ hg, h.symm.mem_ℒp_snd hg⟩ | |
lemma integrable_snd [normed_add_comm_group γ] [borel_space γ] (h : ident_distrib f g μ ν) | |
(hf : integrable f μ) : integrable g ν := | |
begin | |
rw ← mem_ℒp_one_iff_integrable at hf ⊢, | |
exact h.mem_ℒp_snd hf | |
end | |
lemma integrable_iff [normed_add_comm_group γ] [borel_space γ] (h : ident_distrib f g μ ν) : | |
integrable f μ ↔ integrable g ν := | |
⟨λ hf, h.integrable_snd hf, λ hg, h.symm.integrable_snd hg⟩ | |
protected lemma norm [normed_add_comm_group γ] [borel_space γ] (h : ident_distrib f g μ ν) : | |
ident_distrib (λ x, ∥f x∥) (λ x, ∥g x∥) μ ν := | |
h.comp measurable_norm | |
protected lemma nnnorm [normed_add_comm_group γ] [borel_space γ] (h : ident_distrib f g μ ν) : | |
ident_distrib (λ x, ∥f x∥₊) (λ x, ∥g x∥₊) μ ν := | |
h.comp measurable_nnnorm | |
protected lemma pow [has_pow γ ℕ] [has_measurable_pow γ ℕ] (h : ident_distrib f g μ ν) {n : ℕ} : | |
ident_distrib (λ x, (f x) ^ n) (λ x, (g x) ^ n) μ ν := | |
h.comp (measurable_id.pow_const n) | |
protected lemma sq [has_pow γ ℕ] [has_measurable_pow γ ℕ] (h : ident_distrib f g μ ν) : | |
ident_distrib (λ x, (f x) ^ 2) (λ x, (g x) ^ 2) μ ν := | |
h.comp (measurable_id.pow_const 2) | |
protected lemma coe_nnreal_ennreal {f : α → ℝ≥0} {g : β → ℝ≥0} (h : ident_distrib f g μ ν) : | |
ident_distrib (λ x, (f x : ℝ≥0∞)) (λ x, (g x : ℝ≥0∞)) μ ν := | |
h.comp measurable_coe_nnreal_ennreal | |
@[to_additive] | |
lemma mul_const [has_mul γ] [has_measurable_mul γ] (h : ident_distrib f g μ ν) (c : γ) : | |
ident_distrib (λ x, f x * c) (λ x, g x * c) μ ν := | |
h.comp (measurable_mul_const c) | |
@[to_additive] | |
lemma const_mul [has_mul γ] [has_measurable_mul γ] (h : ident_distrib f g μ ν) (c : γ) : | |
ident_distrib (λ x, c * f x) (λ x, c * g x) μ ν := | |
h.comp (measurable_const_mul c) | |
@[to_additive] | |
lemma div_const [has_div γ] [has_measurable_div γ] (h : ident_distrib f g μ ν) (c : γ) : | |
ident_distrib (λ x, f x / c) (λ x, g x / c) μ ν := | |
h.comp (has_measurable_div.measurable_div_const c) | |
@[to_additive] | |
lemma const_div [has_div γ] [has_measurable_div γ] (h : ident_distrib f g μ ν) (c : γ) : | |
ident_distrib (λ x, c / f x) (λ x, c / g x) μ ν := | |
h.comp (has_measurable_div.measurable_const_div c) | |
lemma variance_eq {f : α → ℝ} {g : β → ℝ} (h : ident_distrib f g μ ν) : | |
variance f μ = variance g ν := | |
begin | |
convert (h.sub_const (∫ x, f x ∂μ)).sq.integral_eq, | |
rw h.integral_eq, | |
refl | |
end | |
end ident_distrib | |
section uniform_integrable | |
open topological_space | |
variables {E : Type*} [measurable_space E] [normed_add_comm_group E] [borel_space E] | |
[second_countable_topology E] {μ : measure α} [is_finite_measure μ] | |
/-- This lemma is superceded by `mem_ℒp.uniform_integrable_of_ident_distrib` which only require | |
`ae_strongly_measurable`. -/ | |
lemma mem_ℒp.uniform_integrable_of_ident_distrib_aux {ι : Type*} {f : ι → α → E} | |
{j : ι} {p : ℝ≥0∞} (hp : 1 ≤ p) (hp' : p ≠ ∞) | |
(hℒp : mem_ℒp (f j) p μ) (hfmeas : ∀ i, strongly_measurable (f i)) | |
(hf : ∀ i, ident_distrib (f i) (f j) μ μ) : | |
uniform_integrable f p μ := | |
begin | |
refine uniform_integrable_of' hp hp' hfmeas (λ ε hε, _), | |
by_cases hι : nonempty ι, | |
swap, { exact ⟨0, λ i, false.elim (hι $ nonempty.intro i)⟩ }, | |
obtain ⟨C, hC₁, hC₂⟩ := hℒp.snorm_indicator_norm_ge_pos_le μ (hfmeas _) hε, | |
have hmeas : ∀ i, measurable_set {x | (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ∥f i x∥₊} := | |
λ i, measurable_set_le measurable_const (hfmeas _).measurable.nnnorm, | |
refine ⟨⟨C, hC₁.le⟩, λ i, le_trans (le_of_eq _) hC₂⟩, | |
have : {x : α | (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ∥f i x∥₊}.indicator (f i) = | |
(λ x : E, if (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ∥x∥₊ then x else 0) ∘ (f i), | |
{ ext x, | |
simp only [set.indicator, set.mem_set_of_eq] }, | |
simp_rw [coe_nnnorm, this], | |
rw [← snorm_map_measure _ (hf i).ae_measurable_fst, (hf i).map_eq, | |
snorm_map_measure _ (hf j).ae_measurable_fst], | |
{ refl }, | |
all_goals { exact ae_strongly_measurable_id.indicator | |
(measurable_set_le measurable_const measurable_nnnorm) }, | |
end | |
/-- A sequence of identically distributed Lᵖ functions is p-uniformly integrable. -/ | |
lemma mem_ℒp.uniform_integrable_of_ident_distrib {ι : Type*} {f : ι → α → E} | |
{j : ι} {p : ℝ≥0∞} (hp : 1 ≤ p) (hp' : p ≠ ∞) | |
(hℒp : mem_ℒp (f j) p μ) (hf : ∀ i, ident_distrib (f i) (f j) μ μ) : | |
uniform_integrable f p μ := | |
begin | |
have hfmeas : ∀ i, ae_strongly_measurable (f i) μ := | |
λ i, (hf i).ae_strongly_measurable_iff.2 hℒp.1, | |
set g : ι → α → E := λ i, (hfmeas i).some, | |
have hgmeas : ∀ i, strongly_measurable (g i) := λ i, (Exists.some_spec $ hfmeas i).1, | |
have hgeq : ∀ i, g i =ᵐ[μ] f i := λ i, (Exists.some_spec $ hfmeas i).2.symm, | |
have hgℒp : mem_ℒp (g j) p μ := hℒp.ae_eq (hgeq j).symm, | |
exact uniform_integrable.ae_eq (mem_ℒp.uniform_integrable_of_ident_distrib_aux hp hp' | |
hgℒp hgmeas $ | |
λ i, (ident_distrib.of_ae_eq (hgmeas i).ae_measurable (hgeq i)).trans ((hf i).trans | |
$ ident_distrib.of_ae_eq (hfmeas j).ae_measurable (hgeq j).symm)) hgeq, | |
end | |
end uniform_integrable | |
end probability_theory | |