Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
61.9 kB
/-
Copyright (c) 2021 Kexing Ying. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying
-/
import measure_theory.function.conditional_expectation.real
import topology.instances.discrete
/-!
# Filtration and stopping time
This file defines some standard definition from the theory of stochastic processes including
filtrations and stopping times. These definitions are used to model the amount of information
at a specific time and is the first step in formalizing stochastic processes.
## Main definitions
* `measure_theory.filtration`: a filtration on a measurable space
* `measure_theory.adapted`: a sequence of functions `u` is said to be adapted to a
filtration `f` if at each point in time `i`, `u i` is `f i`-strongly measurable
* `measure_theory.prog_measurable`: a sequence of functions `u` is said to be progressively
measurable with respect to a filtration `f` if at each point in time `i`, `u` restricted to
`set.Iic i × Ω` is strongly measurable with respect to the product `measurable_space` structure
where the σ-algebra used for `Ω` is `f i`.
* `measure_theory.filtration.natural`: the natural filtration with respect to a sequence of
measurable functions is the smallest filtration to which it is adapted to
* `measure_theory.is_stopping_time`: a stopping time with respect to some filtration `f` is a
function `τ` such that for all `i`, the preimage of `{j | ji}` along `τ` is
`f i`-measurable
* `measure_theory.is_stopping_time.measurable_space`: the σ-algebra associated with a stopping time
## Main results
* `adapted.prog_measurable_of_continuous`: a continuous adapted process is progressively measurable.
* `prog_measurable.stopped_process`: the stopped process of a progressively measurable process is
progressively measurable.
* `mem_ℒp_stopped_process`: if a process belongs to `ℒp` at every time in `ℕ`, then its stopped
process belongs to `ℒp` as well.
## Tags
filtration, stopping time, stochastic process
-/
open filter order topological_space
open_locale classical measure_theory nnreal ennreal topological_space big_operators
namespace measure_theory
/-! ### Filtrations -/
/-- A `filtration` on measurable space `Ω` with σ-algebra `m` is a monotone
sequence of sub-σ-algebras of `m`. -/
structure filtration {Ω : Type*} (ι : Type*) [preorder ι] (m : measurable_space Ω) :=
(seq : ι → measurable_space Ω)
(mono' : monotone seq)
(le' : ∀ i : ι, seq i ≤ m)
variables {Ω β ι : Type*} {m : measurable_space Ω}
instance [preorder ι] : has_coe_to_fun (filtration ι m) (λ _, ι → measurable_space Ω) :=
⟨λ f, f.seq⟩
namespace filtration
variables [preorder ι]
protected lemma mono {i j : ι} (f : filtration ι m) (hij : i ≤ j) : f i ≤ f j := f.mono' hij
protected lemma le (f : filtration ι m) (i : ι) : f i ≤ m := f.le' i
@[ext] protected lemma ext {f g : filtration ι m} (h : (f : ι → measurable_space Ω) = g) : f = g :=
by { cases f, cases g, simp only, exact h, }
variable (ι)
/-- The constant filtration which is equal to `m` for all `i : ι`. -/
def const (m' : measurable_space Ω) (hm' : m' ≤ m) : filtration ι m :=
⟨λ _, m', monotone_const, λ _, hm'⟩
variable {ι}
@[simp]
lemma const_apply {m' : measurable_space Ω} {hm' : m' ≤ m} (i : ι) : const ι m' hm' i = m' := rfl
instance : inhabited (filtration ι m) := ⟨const ι m le_rfl⟩
instance : has_le (filtration ι m) := ⟨λ f g, ∀ i, f i ≤ g i⟩
instance : has_bot (filtration ι m) := ⟨const ι ⊥ bot_le⟩
instance : has_top (filtration ι m) := ⟨const ι m le_rfl⟩
instance : has_sup (filtration ι m) := ⟨λ f g,
{ seq := λ i, f i ⊔ g i,
mono' := λ i j hij, sup_le ((f.mono hij).trans le_sup_left) ((g.mono hij).trans le_sup_right),
le' := λ i, sup_le (f.le i) (g.le i) }⟩
@[norm_cast] lemma coe_fn_sup {f g : filtration ι m} : ⇑(f ⊔ g) = f ⊔ g := rfl
instance : has_inf (filtration ι m) := ⟨λ f g,
{ seq := λ i, f i ⊓ g i,
mono' := λ i j hij, le_inf (inf_le_left.trans (f.mono hij)) (inf_le_right.trans (g.mono hij)),
le' := λ i, inf_le_left.trans (f.le i) }⟩
@[norm_cast] lemma coe_fn_inf {f g : filtration ι m} : ⇑(f ⊓ g) = f ⊓ g := rfl
instance : has_Sup (filtration ι m) := ⟨λ s,
{ seq := λ i, Sup ((λ f : filtration ι m, f i) '' s),
mono' := λ i j hij,
begin
refine Sup_le (λ m' hm', _),
rw [set.mem_image] at hm',
obtain ⟨f, hf_mem, hfm'⟩ := hm',
rw ← hfm',
refine (f.mono hij).trans _,
have hfj_mem : f j ∈ ((λ g : filtration ι m, g j) '' s), from ⟨f, hf_mem, rfl⟩,
exact le_Sup hfj_mem,
end,
le' := λ i,
begin
refine Sup_le (λ m' hm', _),
rw [set.mem_image] at hm',
obtain ⟨f, hf_mem, hfm'⟩ := hm',
rw ← hfm',
exact f.le i,
end, }⟩
lemma Sup_def (s : set (filtration ι m)) (i : ι) :
Sup s i = Sup ((λ f : filtration ι m, f i) '' s) :=
rfl
noncomputable
instance : has_Inf (filtration ι m) := ⟨λ s,
{ seq := λ i, if set.nonempty s then Inf ((λ f : filtration ι m, f i) '' s) else m,
mono' := λ i j hij,
begin
by_cases h_nonempty : set.nonempty s,
swap, { simp only [h_nonempty, set.nonempty_image_iff, if_false, le_refl], },
simp only [h_nonempty, if_true, le_Inf_iff, set.mem_image, forall_exists_index, and_imp,
forall_apply_eq_imp_iff₂],
refine λ f hf_mem, le_trans _ (f.mono hij),
have hfi_mem : f i ∈ ((λ g : filtration ι m, g i) '' s), from ⟨f, hf_mem, rfl⟩,
exact Inf_le hfi_mem,
end,
le' := λ i,
begin
by_cases h_nonempty : set.nonempty s,
swap, { simp only [h_nonempty, if_false, le_refl], },
simp only [h_nonempty, if_true],
obtain ⟨f, hf_mem⟩ := h_nonempty,
exact le_trans (Inf_le ⟨f, hf_mem, rfl⟩) (f.le i),
end, }⟩
lemma Inf_def (s : set (filtration ι m)) (i : ι) :
Inf s i = if set.nonempty s then Inf ((λ f : filtration ι m, f i) '' s) else m :=
rfl
noncomputable
instance : complete_lattice (filtration ι m) :=
{ le := (≤),
le_refl := λ f i, le_rfl,
le_trans := λ f g h h_fg h_gh i, (h_fg i).trans (h_gh i),
le_antisymm := λ f g h_fg h_gf, filtration.ext $ funext $ λ i, (h_fg i).antisymm (h_gf i),
sup := (⊔),
le_sup_left := λ f g i, le_sup_left,
le_sup_right := λ f g i, le_sup_right,
sup_le := λ f g h h_fh h_gh i, sup_le (h_fh i) (h_gh _),
inf := (⊓),
inf_le_left := λ f g i, inf_le_left,
inf_le_right := λ f g i, inf_le_right,
le_inf := λ f g h h_fg h_fh i, le_inf (h_fg i) (h_fh i),
Sup := Sup,
le_Sup := λ s f hf_mem i, le_Sup ⟨f, hf_mem, rfl⟩,
Sup_le := λ s f h_forall i, Sup_le $ λ m' hm',
begin
obtain ⟨g, hg_mem, hfm'⟩ := hm',
rw ← hfm',
exact h_forall g hg_mem i,
end,
Inf := Inf,
Inf_le := λ s f hf_mem i,
begin
have hs : s.nonempty := ⟨f, hf_mem⟩,
simp only [Inf_def, hs, if_true],
exact Inf_le ⟨f, hf_mem, rfl⟩,
end,
le_Inf := λ s f h_forall i,
begin
by_cases hs : s.nonempty,
swap, { simp only [Inf_def, hs, if_false], exact f.le i, },
simp only [Inf_def, hs, if_true, le_Inf_iff, set.mem_image, forall_exists_index, and_imp,
forall_apply_eq_imp_iff₂],
exact λ g hg_mem, h_forall g hg_mem i,
end,
top := ⊤,
bot := ⊥,
le_top := λ f i, f.le' i,
bot_le := λ f i, bot_le, }
end filtration
lemma measurable_set_of_filtration [preorder ι] {f : filtration ι m} {s : set Ω} {i : ι}
(hs : measurable_set[f i] s) : measurable_set[m] s :=
f.le i s hs
/-- A measure is σ-finite with respect to filtration if it is σ-finite with respect
to all the sub-σ-algebra of the filtration. -/
class sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m) : Prop :=
(sigma_finite : ∀ i : ι, sigma_finite (μ.trim (f.le i)))
instance sigma_finite_of_sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m)
[hf : sigma_finite_filtration μ f] (i : ι) :
sigma_finite (μ.trim (f.le i)) :=
by apply hf.sigma_finite -- can't exact here
@[priority 100]
instance is_finite_measure.sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m)
[is_finite_measure μ] :
sigma_finite_filtration μ f :=
⟨λ n, by apply_instance⟩
/-- Given a integrable function `g`, the conditional expectations of `g` with respect to a
filtration is uniformly integrable. -/
lemma integrable.uniform_integrable_condexp_filtration
[preorder ι] {μ : measure Ω} [is_finite_measure μ] {f : filtration ι m}
{g : Ω → ℝ} (hg : integrable g μ) :
uniform_integrable (λ i, μ[g | f i]) 1 μ :=
hg.uniform_integrable_condexp f.le
section adapted_process
variables [topological_space β] [preorder ι]
{u v : ι → Ω → β} {f : filtration ι m}
/-- A sequence of functions `u` is adapted to a filtration `f` if for all `i`,
`u i` is `f i`-measurable. -/
def adapted (f : filtration ι m) (u : ι → Ω → β) : Prop :=
∀ i : ι, strongly_measurable[f i] (u i)
namespace adapted
@[protected, to_additive] lemma mul [has_mul β] [has_continuous_mul β]
(hu : adapted f u) (hv : adapted f v) :
adapted f (u * v) :=
λ i, (hu i).mul (hv i)
@[protected, to_additive] lemma inv [group β] [topological_group β] (hu : adapted f u) :
adapted f u⁻¹ :=
λ i, (hu i).inv
@[protected] lemma smul [has_smul ℝ β] [has_continuous_smul ℝ β] (c : ℝ) (hu : adapted f u) :
adapted f (c • u) :=
λ i, (hu i).const_smul c
@[protected] lemma strongly_measurable {i : ι} (hf : adapted f u) :
strongly_measurable[m] (u i) :=
(hf i).mono (f.le i)
lemma strongly_measurable_le {i j : ι} (hf : adapted f u) (hij : i ≤ j) :
strongly_measurable[f j] (u i) :=
(hf i).mono (f.mono hij)
end adapted
lemma adapted_const (f : filtration ι m) (x : β) : adapted f (λ _ _, x) :=
λ i, strongly_measurable_const
variable (β)
lemma adapted_zero [has_zero β] (f : filtration ι m) : adapted f (0 : ι → Ω → β) :=
λ i, @strongly_measurable_zero Ω β (f i) _ _
variable {β}
/-- Progressively measurable process. A sequence of functions `u` is said to be progressively
measurable with respect to a filtration `f` if at each point in time `i`, `u` restricted to
`set.Iic i × Ω` is measurable with respect to the product `measurable_space` structure where the
σ-algebra used for `Ω` is `f i`.
The usual definition uses the interval `[0,i]`, which we replace by `set.Iic i`. We recover the
usual definition for index types `ℝ≥0` or `ℕ`. -/
def prog_measurable [measurable_space ι] (f : filtration ι m) (u : ι → Ω → β) : Prop :=
∀ i, strongly_measurable[subtype.measurable_space.prod (f i)] (λ p : set.Iic i × Ω, u p.1 p.2)
lemma prog_measurable_const [measurable_space ι] (f : filtration ι m) (b : β) :
prog_measurable f ((λ _ _, b) : ι → Ω → β) :=
λ i, @strongly_measurable_const _ _ (subtype.measurable_space.prod (f i)) _ _
namespace prog_measurable
variables [measurable_space ι]
protected lemma adapted (h : prog_measurable f u) : adapted f u :=
begin
intro i,
have : u i = (λ p : set.Iic i × Ω, u p.1 p.2) ∘ (λ x, (⟨i, set.mem_Iic.mpr le_rfl⟩, x)) := rfl,
rw this,
exact (h i).comp_measurable measurable_prod_mk_left,
end
protected lemma comp {t : ι → Ω → ι} [topological_space ι] [borel_space ι] [metrizable_space ι]
(h : prog_measurable f u) (ht : prog_measurable f t)
(ht_le : ∀ i ω, t i ω ≤ i) :
prog_measurable f (λ i ω, u (t i ω) ω) :=
begin
intro i,
have : (λ p : ↥(set.Iic i) × Ω, u (t (p.fst : ι) p.snd) p.snd)
= (λ p : ↥(set.Iic i) × Ω, u (p.fst : ι) p.snd) ∘ (λ p : ↥(set.Iic i) × Ω,
(⟨t (p.fst : ι) p.snd, set.mem_Iic.mpr ((ht_le _ _).trans p.fst.prop)⟩, p.snd)) := rfl,
rw this,
exact (h i).comp_measurable ((ht i).measurable.subtype_mk.prod_mk measurable_snd),
end
section arithmetic
@[to_additive] protected lemma mul [has_mul β] [has_continuous_mul β]
(hu : prog_measurable f u) (hv : prog_measurable f v) :
prog_measurable f (λ i ω, u i ω * v i ω) :=
λ i, (hu i).mul (hv i)
@[to_additive] protected lemma finset_prod' {γ} [comm_monoid β] [has_continuous_mul β]
{U : γ → ι → Ω → β} {s : finset γ} (h : ∀ c ∈ s, prog_measurable f (U c)) :
prog_measurable f (∏ c in s, U c) :=
finset.prod_induction U (prog_measurable f) (λ _ _, prog_measurable.mul)
(prog_measurable_const _ 1) h
@[to_additive] protected lemma finset_prod {γ} [comm_monoid β] [has_continuous_mul β]
{U : γ → ι → Ω → β} {s : finset γ} (h : ∀ c ∈ s, prog_measurable f (U c)) :
prog_measurable f (λ i a, ∏ c in s, U c i a) :=
by { convert prog_measurable.finset_prod' h, ext i a, simp only [finset.prod_apply], }
@[to_additive] protected lemma inv [group β] [topological_group β] (hu : prog_measurable f u) :
prog_measurable f (λ i ω, (u i ω)⁻¹) :=
λ i, (hu i).inv
@[to_additive] protected lemma div [group β] [topological_group β]
(hu : prog_measurable f u) (hv : prog_measurable f v) :
prog_measurable f (λ i ω, u i ω / v i ω) :=
λ i, (hu i).div (hv i)
end arithmetic
end prog_measurable
lemma prog_measurable_of_tendsto' {γ} [measurable_space ι] [metrizable_space β]
(fltr : filter γ) [fltr.ne_bot] [fltr.is_countably_generated] {U : γ → ι → Ω → β}
(h : ∀ l, prog_measurable f (U l)) (h_tendsto : tendsto U fltr (𝓝 u)) :
prog_measurable f u :=
begin
assume i,
apply @strongly_measurable_of_tendsto (set.Iic i × Ω) β γ (measurable_space.prod _ (f i))
_ _ fltr _ _ _ _ (λ l, h l i),
rw tendsto_pi_nhds at h_tendsto ⊢,
intro x,
specialize h_tendsto x.fst,
rw tendsto_nhds at h_tendsto ⊢,
exact λ s hs h_mem, h_tendsto {g | g x.snd ∈ s} (hs.preimage (continuous_apply x.snd)) h_mem,
end
lemma prog_measurable_of_tendsto [measurable_space ι] [metrizable_space β]
{U : ℕ → ι → Ω → β}
(h : ∀ l, prog_measurable f (U l)) (h_tendsto : tendsto U at_top (𝓝 u)) :
prog_measurable f u :=
prog_measurable_of_tendsto' at_top h h_tendsto
/-- A continuous and adapted process is progressively measurable. -/
theorem adapted.prog_measurable_of_continuous
[topological_space ι] [metrizable_space ι] [measurable_space ι]
[second_countable_topology ι] [opens_measurable_space ι] [metrizable_space β]
(h : adapted f u) (hu_cont : ∀ ω, continuous (λ i, u i ω)) :
prog_measurable f u :=
λ i, @strongly_measurable_uncurry_of_continuous_of_strongly_measurable _ _ (set.Iic i) _ _ _ _ _ _ _
(f i) _ (λ ω, (hu_cont ω).comp continuous_induced_dom) (λ j, (h j).mono (f.mono j.prop))
end adapted_process
namespace filtration
variables [topological_space β] [metrizable_space β] [mβ : measurable_space β] [borel_space β]
[preorder ι]
include
/-- Given a sequence of functions, the natural filtration is the smallest sequence
of σ-algebras such that that sequence of functions is measurable with respect to
the filtration. -/
def natural (u : ι → Ω → β) (hum : ∀ i, strongly_measurable (u i)) : filtration ι m :=
{ seq := λ i, ⨆ j ≤ i, measurable_space.comap (u j) mβ,
mono' := λ i j hij, bsupr_mono $ λ k, ge_trans hij,
le' := λ i,
begin
refine supr₂_le _,
rintros j hj s ⟨t, ht, rfl⟩,
exact (hum j).measurable ht,
end }
lemma adapted_natural {u : ι → Ω → β} (hum : ∀ i, strongly_measurable[m] (u i)) :
adapted (natural u hum) u :=
begin
assume i,
refine strongly_measurable.mono _ (le_supr₂_of_le i (le_refl i) le_rfl),
rw strongly_measurable_iff_measurable_separable,
exact ⟨measurable_iff_comap_le.2 le_rfl, (hum i).is_separable_range⟩
end
section limit
omit mβ
variables {E : Type*} [has_zero E] [topological_space E]
{ℱ : filtration ι m} {f : ι → Ω → E} {μ : measure Ω}
/-- Given a process `f` and a filtration `ℱ`, if `f` converges to some `g` almost everywhere and
`g` is `⨆ n, ℱ n`-measurable, then `limit_process f ℱ μ` chooses said `g`, else it returns 0.
This definition is used to phrase the a.e. martingale convergence theorem
`submartingale.ae_tendsto_limit_process` where an L¹-bounded submartingale `f` adapted to `ℱ`
converges to `limit_process f ℱ μ` `μ`-almost everywhere. -/
noncomputable
def limit_process (f : ι → Ω → E) (ℱ : filtration ι m) (μ : measure Ω . volume_tac) :=
if h : ∃ g : Ω → E, strongly_measurable[⨆ n, ℱ n] g ∧
∀ᵐ ω ∂μ, tendsto (λ n, f n ω) at_top (𝓝 (g ω)) then classical.some h else 0
lemma strongly_measurable_limit_process :
strongly_measurable[⨆ n, ℱ n] (limit_process f ℱ μ) :=
begin
rw limit_process,
split_ifs with h h,
exacts [(classical.some_spec h).1, strongly_measurable_zero]
end
lemma strongly_measurable_limit_process' :
strongly_measurable[m] (limit_process f ℱ μ) :=
strongly_measurable_limit_process.mono (Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _))
lemma mem_ℒp_limit_process_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞}
{F : Type*} [normed_add_comm_group F] {ℱ : filtration ℕ m} {f : ℕ → Ω → F}
(hfm : ∀ n, ae_strongly_measurable (f n) μ) (hbdd : ∀ n, snorm (f n) p μ ≤ R) :
mem_ℒp (limit_process f ℱ μ) p μ :=
begin
rw limit_process,
split_ifs with h,
{ refine ⟨strongly_measurable.ae_strongly_measurable
((classical.some_spec h).1.mono (Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _))),
lt_of_le_of_lt (Lp.snorm_lim_le_liminf_snorm hfm _ (classical.some_spec h).2)
(lt_of_le_of_lt _ (ennreal.coe_lt_top : ↑R < ∞))⟩,
simp_rw [liminf_eq, eventually_at_top],
exact Sup_le (λ b ⟨a, ha⟩, (ha a le_rfl).trans (hbdd _)) },
{ exact zero_mem_ℒp }
end
end limit
end filtration
/-! ### Stopping times -/
/-- A stopping time with respect to some filtration `f` is a function
`τ` such that for all `i`, the preimage of `{j | j ≤ i}` along `τ` is measurable
with respect to `f i`.
Intuitively, the stopping time `τ` describes some stopping rule such that at time
`i`, we may determine it with the information we have at time `i`. -/
def is_stopping_time [preorder ι] (f : filtration ι m) (τ : Ω → ι) :=
∀ i : ι, measurable_set[f i] $ {ω | τ ω ≤ i}
lemma is_stopping_time_const [preorder ι] (f : filtration ι m) (i : ι) :
is_stopping_time f (λ x, i) :=
λ j, by simp only [measurable_set.const]
section measurable_set
section preorder
variables [preorder ι] {f : filtration ι m} {τ : Ω → ι}
protected lemma is_stopping_time.measurable_set_le (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω ≤ i} :=
hτ i
lemma is_stopping_time.measurable_set_lt_of_pred [pred_order ι]
(hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω < i} :=
begin
by_cases hi_min : is_min i,
{ suffices : {ω : Ω | τ ω < i} = ∅, by { rw this, exact @measurable_set.empty _ (f i), },
ext1 ω,
simp only [set.mem_set_of_eq, set.mem_empty_eq, iff_false],
rw is_min_iff_forall_not_lt at hi_min,
exact hi_min (τ ω), },
have : {ω : Ω | τ ω < i} = τ ⁻¹' (set.Iio i) := rfl,
rw [this, ←Iic_pred_of_not_is_min hi_min],
exact f.mono (pred_le i) _ (hτ.measurable_set_le $ pred i),
end
end preorder
section countable_stopping_time
namespace is_stopping_time
variables [partial_order ι] {τ : Ω → ι} {f : filtration ι m}
protected lemma measurable_set_eq_of_countable
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[f i] {ω | τ ω = i} :=
begin
have : {ω | τ ω = i} = {ω | τ ω ≤ i} \ (⋃ (j ∈ set.range τ) (hj : j < i), {ω | τ ω ≤ j}),
{ ext1 a,
simp only [set.mem_set_of_eq, set.mem_range, set.Union_exists, set.Union_Union_eq',
set.mem_diff, set.mem_Union, exists_prop, not_exists, not_and, not_le],
split; intro h,
{ simp only [h, lt_iff_le_not_le, le_refl, and_imp, imp_self, implies_true_iff, and_self], },
{ have h_lt_or_eq : τ a < i ∨ τ a = i := lt_or_eq_of_le h.1,
rcases h_lt_or_eq with h_lt | rfl,
{ exfalso,
exact h.2 a h_lt (le_refl (τ a)), },
{ refl, }, }, },
rw this,
refine (hτ.measurable_set_le i).diff _,
refine measurable_set.bUnion h_countable (λ j hj, _),
by_cases hji : j < i,
{ simp only [hji, set.Union_true],
exact f.mono hji.le _ (hτ.measurable_set_le j), },
{ simp only [hji, set.Union_false],
exact @measurable_set.empty _ (f i), },
end
protected lemma measurable_set_eq_of_encodable [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω = i} :=
hτ.measurable_set_eq_of_countable (set.to_countable _) i
protected lemma measurable_set_lt_of_countable
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[f i] {ω | τ ω < i} :=
begin
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i},
{ ext1 ω, simp [lt_iff_le_and_ne], },
rw this,
exact (hτ.measurable_set_le i).diff (hτ.measurable_set_eq_of_countable h_countable i),
end
protected lemma measurable_set_lt_of_encodable [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω < i} :=
hτ.measurable_set_lt_of_countable (set.to_countable _) i
protected lemma measurable_set_ge_of_countable {ι} [linear_order ι] {τ : Ω → ι} {f : filtration ι m}
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[f i] {ω | i ≤ τ ω} :=
begin
have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ,
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_lt], },
rw this,
exact (hτ.measurable_set_lt_of_countable h_countable i).compl,
end
protected lemma measurable_set_ge_of_encodable {ι} [linear_order ι] {τ : Ω → ι} {f : filtration ι m}
[encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | i ≤ τ ω} :=
hτ.measurable_set_ge_of_countable (set.to_countable _) i
end is_stopping_time
end countable_stopping_time
section linear_order
variables [linear_order ι] {f : filtration ι m} {τ : Ω → ι}
lemma is_stopping_time.measurable_set_gt (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | i < τ ω} :=
begin
have : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ,
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_le], },
rw this,
exact (hτ.measurable_set_le i).compl,
end
section topological_space
variables [topological_space ι] [order_topology ι] [first_countable_topology ι]
/-- Auxiliary lemma for `is_stopping_time.measurable_set_lt`. -/
lemma is_stopping_time.measurable_set_lt_of_is_lub
(hτ : is_stopping_time f τ) (i : ι) (h_lub : is_lub (set.Iio i) i) :
measurable_set[f i] {ω | τ ω < i} :=
begin
by_cases hi_min : is_min i,
{ suffices : {ω | τ ω < i} = ∅, by { rw this, exact @measurable_set.empty _ (f i), },
ext1 ω,
simp only [set.mem_set_of_eq, set.mem_empty_eq, iff_false],
exact is_min_iff_forall_not_lt.mp hi_min (τ ω), },
obtain ⟨seq, -, -, h_tendsto, h_bound⟩ : ∃ seq : ℕ → ι,
monotone seq ∧ (∀ j, seq j ≤ i) ∧ tendsto seq at_top (𝓝 i) ∧ (∀ j, seq j < i),
from h_lub.exists_seq_monotone_tendsto (not_is_min_iff.mp hi_min),
have h_Ioi_eq_Union : set.Iio i = ⋃ j, {k | k ≤ seq j},
{ ext1 k,
simp only [set.mem_Iio, set.mem_Union, set.mem_set_of_eq],
refine ⟨λ hk_lt_i, _, λ h_exists_k_le_seq, _⟩,
{ rw tendsto_at_top' at h_tendsto,
have h_nhds : set.Ici k ∈ 𝓝 i,
from mem_nhds_iff.mpr ⟨set.Ioi k, set.Ioi_subset_Ici le_rfl, is_open_Ioi, hk_lt_i⟩,
obtain ⟨a, ha⟩ : ∃ (a : ℕ), ∀ (b : ℕ), b ≥ a → k ≤ seq b := h_tendsto (set.Ici k) h_nhds,
exact ⟨a, ha a le_rfl⟩, },
{ obtain ⟨j, hk_seq_j⟩ := h_exists_k_le_seq,
exact hk_seq_j.trans_lt (h_bound j), }, },
have h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' (set.Iio i),
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_preimage, set.mem_Iio], },
rw [h_lt_eq_preimage, h_Ioi_eq_Union],
simp only [set.preimage_Union, set.preimage_set_of_eq],
exact measurable_set.Union
(λ n, f.mono (h_bound n).le _ (hτ.measurable_set_le (seq n))),
end
lemma is_stopping_time.measurable_set_lt (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω < i} :=
begin
obtain ⟨i', hi'_lub⟩ : ∃ i', is_lub (set.Iio i) i', from exists_lub_Iio i,
cases lub_Iio_eq_self_or_Iio_eq_Iic i hi'_lub with hi'_eq_i h_Iio_eq_Iic,
{ rw ← hi'_eq_i at hi'_lub ⊢,
exact hτ.measurable_set_lt_of_is_lub i' hi'_lub, },
{ have h_lt_eq_preimage : {ω : Ω | τ ω < i} = τ ⁻¹' (set.Iio i) := rfl,
rw [h_lt_eq_preimage, h_Iio_eq_Iic],
exact f.mono (lub_Iio_le i hi'_lub) _ (hτ.measurable_set_le i'), },
end
lemma is_stopping_time.measurable_set_ge (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | i ≤ τ ω} :=
begin
have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ,
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_lt], },
rw this,
exact (hτ.measurable_set_lt i).compl,
end
lemma is_stopping_time.measurable_set_eq (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[f i] {ω | τ ω = i} :=
begin
have : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i},
{ ext1 ω, simp only [set.mem_set_of_eq, ge_iff_le, set.mem_inter_eq, le_antisymm_iff], },
rw this,
exact (hτ.measurable_set_le i).inter (hτ.measurable_set_ge i),
end
lemma is_stopping_time.measurable_set_eq_le (hτ : is_stopping_time f τ) {i j : ι} (hle : i ≤ j) :
measurable_set[f j] {ω | τ ω = i} :=
f.mono hle _ $ hτ.measurable_set_eq i
lemma is_stopping_time.measurable_set_lt_le (hτ : is_stopping_time f τ) {i j : ι} (hle : i ≤ j) :
measurable_set[f j] {ω | τ ω < i} :=
f.mono hle _ $ hτ.measurable_set_lt i
end topological_space
end linear_order
section encodable
lemma is_stopping_time_of_measurable_set_eq [preorder ι] [encodable ι]
{f : filtration ι m} {τ : Ω → ι} (hτ : ∀ i, measurable_set[f i] {ω | τ ω = i}) :
is_stopping_time f τ :=
begin
intro i,
rw show {ω | τ ω ≤ i} = ⋃ k ≤ i, {ω | τ ω = k}, by { ext, simp },
refine measurable_set.bUnion (set.to_countable _) (λ k hk, _),
exact f.mono hk _ (hτ k),
end
end encodable
end measurable_set
namespace is_stopping_time
protected lemma max [linear_order ι] {f : filtration ι m} {τ π : Ω → ι}
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
is_stopping_time f (λ ω, max (τ ω) (π ω)) :=
begin
intro i,
simp_rw [max_le_iff, set.set_of_and],
exact (hτ i).inter (hπ i),
end
protected lemma max_const [linear_order ι] {f : filtration ι m} {τ : Ω → ι}
(hτ : is_stopping_time f τ) (i : ι) :
is_stopping_time f (λ ω, max (τ ω) i) :=
hτ.max (is_stopping_time_const f i)
protected lemma min [linear_order ι] {f : filtration ι m} {τ π : Ω → ι}
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
is_stopping_time f (λ ω, min (τ ω) (π ω)) :=
begin
intro i,
simp_rw [min_le_iff, set.set_of_or],
exact (hτ i).union (hπ i),
end
protected lemma min_const [linear_order ι] {f : filtration ι m} {τ : Ω → ι}
(hτ : is_stopping_time f τ) (i : ι) :
is_stopping_time f (λ ω, min (τ ω) i) :=
hτ.min (is_stopping_time_const f i)
lemma add_const [add_group ι] [preorder ι] [covariant_class ι ι (function.swap (+)) (≤)]
[covariant_class ι ι (+) (≤)]
{f : filtration ι m} {τ : Ω → ι} (hτ : is_stopping_time f τ) {i : ι} (hi : 0 ≤ i) :
is_stopping_time f (λ ω, τ ω + i) :=
begin
intro j,
simp_rw [← le_sub_iff_add_le],
exact f.mono (sub_le_self j hi) _ (hτ (j - i)),
end
lemma add_const_nat
{f : filtration ℕ m} {τ : Ω → ℕ} (hτ : is_stopping_time f τ) {i : ℕ} :
is_stopping_time f (λ ω, τ ω + i) :=
begin
refine is_stopping_time_of_measurable_set_eq (λ j, _),
by_cases hij : i ≤ j,
{ simp_rw [eq_comm, ← nat.sub_eq_iff_eq_add hij, eq_comm],
exact f.mono (j.sub_le i) _ (hτ.measurable_set_eq (j - i)) },
{ rw not_le at hij,
convert measurable_set.empty,
ext ω,
simp only [set.mem_empty_eq, iff_false],
rintro (hx : τ ω + i = j),
linarith },
end
-- generalize to certain encodable type?
lemma add
{f : filtration ℕ m} {τ π : Ω → ℕ} (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
is_stopping_time f (τ + π) :=
begin
intro i,
rw (_ : {ω | (τ + π) ω ≤ i} = ⋃ k ≤ i, {ω | π ω = k} ∩ {ω | τ ω + k ≤ i}),
{ exact measurable_set.Union (λ k, measurable_set.Union_Prop
(λ hk, (hπ.measurable_set_eq_le hk).inter (hτ.add_const_nat i))) },
ext ω,
simp only [pi.add_apply, set.mem_set_of_eq, set.mem_Union, set.mem_inter_eq, exists_prop],
refine ⟨λ h, ⟨π ω, by linarith, rfl, h⟩, _⟩,
rintro ⟨j, hj, rfl, h⟩,
assumption
end
section preorder
variables [preorder ι] {f : filtration ι m} {τ π : Ω → ι}
/-- The associated σ-algebra with a stopping time. -/
protected def measurable_space (hτ : is_stopping_time f τ) : measurable_space Ω :=
{ measurable_set' := λ s, ∀ i : ι, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}),
measurable_set_empty :=
λ i, (set.empty_inter {ω | τ ω ≤ i}).symm ▸ @measurable_set.empty _ (f i),
measurable_set_compl := λ s hs i,
begin
rw (_ : sᶜ ∩ {ω | τ ω ≤ i} = (sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i}),
{ refine measurable_set.inter _ _,
{ rw ← set.compl_inter,
exact (hs i).compl },
{ exact hτ i} },
{ rw set.union_inter_distrib_right,
simp only [set.compl_inter_self, set.union_empty] }
end,
measurable_set_Union := λ s hs i,
begin
rw forall_swap at hs,
rw set.Union_inter,
exact measurable_set.Union (hs i),
end }
protected lemma measurable_set (hτ : is_stopping_time f τ) (s : set Ω) :
measurable_set[hτ.measurable_space] s ↔
∀ i : ι, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) :=
iff.rfl
lemma measurable_space_mono
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (hle : τ ≤ π) :
hτ.measurable_space ≤ hπ.measurable_space :=
begin
intros s hs i,
rw (_ : s ∩ {ω | π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i}),
{ exact (hs i).inter (hπ i) },
{ ext,
simp only [set.mem_inter_eq, iff_self_and, and.congr_left_iff, set.mem_set_of_eq],
intros hle' _,
exact le_trans (hle _) hle' },
end
lemma measurable_space_le_of_encodable [encodable ι] (hτ : is_stopping_time f τ) :
hτ.measurable_space ≤ m :=
begin
intros s hs,
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs,
rw (_ : s = ⋃ i, s ∩ {ω | τ ω ≤ i}),
{ exact measurable_set.Union (λ i, f.le i _ (hs i)) },
{ ext ω, split; rw set.mem_Union,
{ exact λ hx, ⟨τ ω, hx, le_rfl⟩ },
{ rintro ⟨_, hx, _⟩,
exact hx } }
end
lemma measurable_space_le' [is_countably_generated (at_top : filter ι)] [(at_top : filter ι).ne_bot]
(hτ : is_stopping_time f τ) :
hτ.measurable_space ≤ m :=
begin
intros s hs,
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs,
obtain ⟨seq : ℕ → ι, h_seq_tendsto⟩ := at_top.exists_seq_tendsto,
rw (_ : s = ⋃ n, s ∩ {ω | τ ω ≤ seq n}),
{ exact measurable_set.Union (λ i, f.le (seq i) _ (hs (seq i))), },
{ ext ω, split; rw set.mem_Union,
{ intros hx,
suffices : ∃ i, τ ω ≤ seq i, from ⟨this.some, hx, this.some_spec⟩,
rw tendsto_at_top at h_seq_tendsto,
exact (h_seq_tendsto (τ ω)).exists, },
{ rintro ⟨_, hx, _⟩,
exact hx }, },
all_goals { apply_instance, },
end
lemma measurable_space_le {ι} [semilattice_sup ι] {f : filtration ι m} {τ : Ω → ι}
[is_countably_generated (at_top : filter ι)] (hτ : is_stopping_time f τ) :
hτ.measurable_space ≤ m :=
begin
casesI is_empty_or_nonempty ι,
{ haveI : is_empty Ω := ⟨λ ω, is_empty.false (τ ω)⟩,
intros s hsτ,
suffices hs : s = ∅, by { rw hs, exact measurable_set.empty, },
haveI : unique (set Ω) := set.unique_empty,
rw [unique.eq_default s, unique.eq_default ∅], },
exact measurable_space_le' hτ,
end
example {f : filtration ℕ m} {τ : Ω → ℕ} (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m :=
hτ.measurable_space_le
example {f : filtration ℝ m} {τ : Ω → ℝ} (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m :=
hτ.measurable_space_le
@[simp] lemma measurable_space_const (f : filtration ι m) (i : ι) :
(is_stopping_time_const f i).measurable_space = f i :=
begin
ext1 s,
change measurable_set[(is_stopping_time_const f i).measurable_space] s ↔ measurable_set[f i] s,
rw is_stopping_time.measurable_set,
split; intro h,
{ specialize h i,
simpa only [le_refl, set.set_of_true, set.inter_univ] using h, },
{ intro j,
by_cases hij : i ≤ j,
{ simp only [hij, set.set_of_true, set.inter_univ],
exact f.mono hij _ h, },
{ simp only [hij, set.set_of_false, set.inter_empty, measurable_set.empty], }, },
end
lemma measurable_set_inter_eq_iff (hτ : is_stopping_time f τ) (s : set Ω) (i : ι) :
measurable_set[hτ.measurable_space] (s ∩ {ω | τ ω = i})
↔ measurable_set[f i] (s ∩ {ω | τ ω = i}) :=
begin
have : ∀ j, ({ω : Ω | τ ω = i} ∩ {ω : Ω | τ ω ≤ j}) = {ω : Ω | τ ω = i} ∩ {ω | i ≤ j},
{ intro j,
ext1 ω,
simp only [set.mem_inter_eq, set.mem_set_of_eq, and.congr_right_iff],
intro hxi,
rw hxi, },
split; intro h,
{ specialize h i,
simpa only [set.inter_assoc, this, le_refl, set.set_of_true, set.inter_univ] using h, },
{ intro j,
rw [set.inter_assoc, this],
by_cases hij : i ≤ j,
{ simp only [hij, set.set_of_true, set.inter_univ],
exact f.mono hij _ h, },
{ simp [hij], }, },
end
lemma measurable_space_le_of_le_const (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, τ ω ≤ i) :
hτ.measurable_space ≤ f i :=
(measurable_space_mono hτ _ hτ_le).trans (measurable_space_const _ _).le
lemma le_measurable_space_of_const_le (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, i ≤ τ ω) :
f i ≤ hτ.measurable_space :=
(measurable_space_const _ _).symm.le.trans (measurable_space_mono _ hτ hτ_le)
end preorder
instance sigma_finite_stopping_time {ι} [semilattice_sup ι] [order_bot ι]
[(filter.at_top : filter ι).is_countably_generated]
{μ : measure Ω} {f : filtration ι m} {τ : Ω → ι}
[sigma_finite_filtration μ f] (hτ : is_stopping_time f τ) :
sigma_finite (μ.trim hτ.measurable_space_le) :=
begin
refine sigma_finite_trim_mono hτ.measurable_space_le _,
{ exact f ⊥, },
{ exact hτ.le_measurable_space_of_const_le (λ _, bot_le), },
{ apply_instance, },
end
section linear_order
variables [linear_order ι] {f : filtration ι m} {τ π : Ω → ι}
protected lemma measurable_set_le' (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω ≤ i} :=
begin
intro j,
have : {ω : Ω | τ ω ≤ i} ∩ {ω : Ω | τ ω ≤ j} = {ω : Ω | τ ω ≤ min i j},
{ ext1 ω, simp only [set.mem_inter_eq, set.mem_set_of_eq, le_min_iff], },
rw this,
exact f.mono (min_le_right i j) _ (hτ _),
end
protected lemma measurable_set_gt' (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | i < τ ω} :=
begin
have : {ω : Ω | i < τ ω} = {ω : Ω | τ ω ≤ i}ᶜ, by { ext1 ω, simp, },
rw this,
exact (hτ.measurable_set_le' i).compl,
end
protected lemma measurable_set_eq' [topological_space ι] [order_topology ι]
[first_countable_topology ι]
(hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω = i} :=
begin
rw [← set.univ_inter {ω | τ ω = i}, measurable_set_inter_eq_iff, set.univ_inter],
exact hτ.measurable_set_eq i,
end
protected lemma measurable_set_ge' [topological_space ι] [order_topology ι]
[first_countable_topology ι]
(hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} :=
begin
have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω},
{ ext1 ω,
simp only [le_iff_lt_or_eq, set.mem_set_of_eq, set.mem_union_eq],
rw [@eq_comm _ i, or_comm], },
rw this,
exact (hτ.measurable_set_eq' i).union (hτ.measurable_set_gt' i),
end
protected lemma measurable_set_lt' [topological_space ι] [order_topology ι]
[first_countable_topology ι]
(hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω < i} :=
begin
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i},
{ ext1 ω,
simp only [lt_iff_le_and_ne, set.mem_set_of_eq, set.mem_diff], },
rw this,
exact (hτ.measurable_set_le' i).diff (hτ.measurable_set_eq' i),
end
section countable
protected lemma measurable_set_eq_of_countable'
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω = i} :=
begin
rw [← set.univ_inter {ω | τ ω = i}, measurable_set_inter_eq_iff, set.univ_inter],
exact hτ.measurable_set_eq_of_countable h_countable i,
end
protected lemma measurable_set_eq_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω = i} :=
hτ.measurable_set_eq_of_countable' (set.to_countable _) i
protected lemma measurable_set_ge_of_countable'
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} :=
begin
have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω},
{ ext1 ω,
simp only [le_iff_lt_or_eq, set.mem_set_of_eq, set.mem_union_eq],
rw [@eq_comm _ i, or_comm], },
rw this,
exact (hτ.measurable_set_eq_of_countable' h_countable i).union (hτ.measurable_set_gt' i),
end
protected lemma measurable_set_ge_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} :=
hτ.measurable_set_ge_of_countable' (set.to_countable _) i
protected lemma measurable_set_lt_of_countable'
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω < i} :=
begin
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i},
{ ext1 ω,
simp only [lt_iff_le_and_ne, set.mem_set_of_eq, set.mem_diff], },
rw this,
exact (hτ.measurable_set_le' i).diff (hτ.measurable_set_eq_of_countable' h_countable i),
end
protected lemma measurable_set_lt_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) :
measurable_set[hτ.measurable_space] {ω | τ ω < i} :=
hτ.measurable_set_lt_of_countable' (set.to_countable _) i
protected lemma measurable_space_le_of_countable (hτ : is_stopping_time f τ)
(h_countable : (set.range τ).countable) :
hτ.measurable_space ≤ m :=
begin
intros s hs,
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs,
rw (_ : s = ⋃ (i ∈ set.range τ), s ∩ {ω | τ ω ≤ i}),
{ exact measurable_set.bUnion h_countable (λ i _, f.le i _ (hs i)), },
{ ext ω,
split; rw set.mem_Union,
{ exact λ hx, ⟨τ ω, by simpa using hx⟩,},
{ rintro ⟨i, hx⟩,
simp only [set.mem_range, set.Union_exists, set.mem_Union, set.mem_inter_eq,
set.mem_set_of_eq, exists_prop, exists_and_distrib_right] at hx,
exact hx.1.2, } }
end
end countable
protected lemma measurable [topological_space ι] [measurable_space ι]
[borel_space ι] [order_topology ι] [second_countable_topology ι]
(hτ : is_stopping_time f τ) :
measurable[hτ.measurable_space] τ :=
@measurable_of_Iic ι Ω _ _ _ hτ.measurable_space _ _ _ _ (λ i, hτ.measurable_set_le' i)
protected lemma measurable_of_le [topological_space ι] [measurable_space ι]
[borel_space ι] [order_topology ι] [second_countable_topology ι]
(hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, τ ω ≤ i) :
measurable[f i] τ :=
hτ.measurable.mono (measurable_space_le_of_le_const _ hτ_le) le_rfl
lemma measurable_space_min (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
(hτ.min hπ).measurable_space = hτ.measurable_space ⊓ hπ.measurable_space :=
begin
refine le_antisymm _ _,
{ exact le_inf (measurable_space_mono _ hτ (λ _, min_le_left _ _))
(measurable_space_mono _ hπ (λ _, min_le_right _ _)), },
{ intro s,
change measurable_set[hτ.measurable_space] s ∧ measurable_set[hπ.measurable_space] s
→ measurable_set[(hτ.min hπ).measurable_space] s,
simp_rw is_stopping_time.measurable_set,
have : ∀ i, {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i},
{ intro i, ext1 ω, simp, },
simp_rw [this, set.inter_union_distrib_left],
exact λ h i, (h.left i).union (h.right i), },
end
lemma measurable_set_min_iff (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set Ω) :
measurable_set[(hτ.min hπ).measurable_space] s
↔ measurable_set[hτ.measurable_space] s ∧ measurable_set[hπ.measurable_space] s :=
by { rw measurable_space_min, refl, }
lemma measurable_space_min_const (hτ : is_stopping_time f τ) {i : ι} :
(hτ.min_const i).measurable_space = hτ.measurable_space ⊓ f i :=
by rw [hτ.measurable_space_min (is_stopping_time_const _ i), measurable_space_const]
lemma measurable_set_min_const_iff (hτ : is_stopping_time f τ) (s : set Ω)
{i : ι} :
measurable_set[(hτ.min_const i).measurable_space] s
↔ measurable_set[hτ.measurable_space] s ∧ measurable_set[f i] s :=
by rw [measurable_space_min_const, measurable_space.measurable_set_inf]
lemma measurable_set_inter_le [topological_space ι] [second_countable_topology ι] [order_topology ι]
[measurable_space ι] [borel_space ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set Ω)
(hs : measurable_set[hτ.measurable_space] s) :
measurable_set[(hτ.min hπ).measurable_space] (s ∩ {ω | τ ω ≤ π ω}) :=
begin
simp_rw is_stopping_time.measurable_set at ⊢ hs,
intro i,
have : (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i})
= (s ∩ {ω | τ ω ≤ i}) ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i},
{ ext1 ω,
simp only [min_le_iff, set.mem_inter_eq, set.mem_set_of_eq, le_min_iff, le_refl, true_and,
and_true, true_or, or_true],
by_cases hτi : τ ω ≤ i,
{ simp only [hτi, true_or, and_true, and.congr_right_iff],
intro hx,
split; intro h,
{ exact or.inl h, },
{ cases h,
{ exact h, },
{ exact hτi.trans h, }, }, },
simp only [hτi, false_or, and_false, false_and, iff_false, not_and, not_le, and_imp],
refine λ hx hτ_le_π, lt_of_lt_of_le _ hτ_le_π,
rw ← not_le,
exact hτi, },
rw this,
refine ((hs i).inter ((hτ.min hπ) i)).inter _,
apply measurable_set_le,
{ exact (hτ.min_const i).measurable_of_le (λ _, min_le_right _ _), },
{ exact ((hτ.min hπ).min_const i).measurable_of_le (λ _, min_le_right _ _), },
end
lemma measurable_set_inter_le_iff [topological_space ι]
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π)
(s : set Ω) :
measurable_set[hτ.measurable_space] (s ∩ {ω | τ ω ≤ π ω})
↔ measurable_set[(hτ.min hπ).measurable_space] (s ∩ {ω | τ ω ≤ π ω}) :=
begin
split; intro h,
{ have : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω},
by rw [set.inter_assoc, set.inter_self],
rw this,
exact measurable_set_inter_le _ _ _ h, },
{ rw measurable_set_min_iff at h,
exact h.1, },
end
lemma measurable_set_le_stopping_time [topological_space ι]
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
measurable_set[hτ.measurable_space] {ω | τ ω ≤ π ω} :=
begin
rw hτ.measurable_set,
intro j,
have : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j},
{ ext1 ω,
simp only [set.mem_inter_eq, set.mem_set_of_eq, min_le_iff, le_min_iff, le_refl, and_true,
and.congr_left_iff],
intro h,
simp only [h, or_self, and_true],
by_cases hj : j ≤ π ω,
{ simp only [hj, h.trans hj, or_self], },
{ simp only [hj, or_false], }, },
rw this,
refine measurable_set.inter _ (hτ.measurable_set_le j),
apply measurable_set_le,
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
end
lemma measurable_set_stopping_time_le [topological_space ι]
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
measurable_set[hπ.measurable_space] {ω | τ ω ≤ π ω} :=
begin
suffices : measurable_set[(hτ.min hπ).measurable_space] {ω : Ω | τ ω ≤ π ω},
by { rw measurable_set_min_iff hτ hπ at this, exact this.2, },
rw [← set.univ_inter {ω : Ω | τ ω ≤ π ω}, ← hτ.measurable_set_inter_le_iff hπ, set.univ_inter],
exact measurable_set_le_stopping_time hτ hπ,
end
lemma measurable_set_eq_stopping_time [add_group ι]
[topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι]
[measurable_singleton_class ι] [second_countable_topology ι] [has_measurable_sub₂ ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
measurable_set[hτ.measurable_space] {ω | τ ω = π ω} :=
begin
rw hτ.measurable_set,
intro j,
have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j}
= {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j},
{ ext1 ω,
simp only [set.mem_inter_eq, set.mem_set_of_eq],
refine ⟨λ h, ⟨⟨_, h.2⟩, _⟩, λ h, ⟨_, h.1.2⟩⟩,
{ rw h.1, },
{ rw ← h.1, exact h.2, },
{ cases h with h' hσ_le,
cases h' with h_eq hτ_le,
rwa [min_eq_left hτ_le, min_eq_left hσ_le] at h_eq, }, },
rw this,
refine measurable_set.inter (measurable_set.inter _ (hτ.measurable_set_le j))
(hπ.measurable_set_le j),
apply measurable_set_eq_fun,
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
end
lemma measurable_set_eq_stopping_time_of_encodable [encodable ι]
[topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι]
[measurable_singleton_class ι] [second_countable_topology ι]
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) :
measurable_set[hτ.measurable_space] {ω | τ ω = π ω} :=
begin
rw hτ.measurable_set,
intro j,
have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j}
= {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j},
{ ext1 ω,
simp only [set.mem_inter_eq, set.mem_set_of_eq],
refine ⟨λ h, ⟨⟨_, h.2⟩, _⟩, λ h, ⟨_, h.1.2⟩⟩,
{ rw h.1, },
{ rw ← h.1, exact h.2, },
{ cases h with h' hπ_le,
cases h' with h_eq hτ_le,
rwa [min_eq_left hτ_le, min_eq_left hπ_le] at h_eq, }, },
rw this,
refine measurable_set.inter (measurable_set.inter _ (hτ.measurable_set_le j))
(hπ.measurable_set_le j),
apply measurable_set_eq_fun_of_encodable,
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), },
end
end linear_order
end is_stopping_time
section linear_order
/-! ## Stopped value and stopped process -/
/-- Given a map `u : ι → Ω → E`, its stopped value with respect to the stopping
time `τ` is the map `x ↦ u (τ ω) x`. -/
def stopped_value (u : ι → Ω → β) (τ : Ω → ι) : Ω → β :=
λ ω, u (τ ω) ω
lemma stopped_value_const (u : ι → Ω → β) (i : ι) : stopped_value u (λ ω, i) = u i :=
rfl
variable [linear_order ι]
/-- Given a map `u : ι → Ω → E`, the stopped process with respect to `τ` is `u i x` if
`i ≤ τ ω`, and `u (τ ω) x` otherwise.
Intuitively, the stopped process stops evolving once the stopping time has occured. -/
def stopped_process (u : ι → Ω → β) (τ : Ω → ι) : ι → Ω → β :=
λ i ω, u (min i (τ ω)) ω
lemma stopped_process_eq_of_le {u : ι → Ω → β} {τ : Ω → ι}
{i : ι} {ω : Ω} (h : i ≤ τ ω) : stopped_process u τ i ω = u i ω :=
by simp [stopped_process, min_eq_left h]
lemma stopped_process_eq_of_ge {u : ι → Ω → β} {τ : Ω → ι}
{i : ι} {ω : Ω} (h : τ ω ≤ i) : stopped_process u τ i ω = u (τ ω) ω :=
by simp [stopped_process, min_eq_right h]
section prog_measurable
variables [measurable_space ι] [topological_space ι] [order_topology ι]
[second_countable_topology ι] [borel_space ι]
[topological_space β]
{u : ι → Ω → β} {τ : Ω → ι} {f : filtration ι m}
lemma prog_measurable_min_stopping_time [metrizable_space ι] (hτ : is_stopping_time f τ) :
prog_measurable f (λ i ω, min i (τ ω)) :=
begin
intro i,
let m_prod : measurable_space (set.Iic i × Ω) := measurable_space.prod _ (f i),
let m_set : ∀ t : set (set.Iic i × Ω), measurable_space t :=
λ _, @subtype.measurable_space (set.Iic i × Ω) _ m_prod,
let s := {p : set.Iic i × Ω | τ p.2 ≤ i},
have hs : measurable_set[m_prod] s, from @measurable_snd (set.Iic i) Ω _ (f i) _ (hτ i),
have h_meas_fst : ∀ t : set (set.Iic i × Ω),
measurable[m_set t] (λ x : t, ((x : set.Iic i × Ω).fst : ι)),
from λ t, (@measurable_subtype_coe (set.Iic i × Ω) m_prod _).fst.subtype_coe,
apply measurable.strongly_measurable,
refine measurable_of_restrict_of_restrict_compl hs _ _,
{ refine @measurable.min _ _ _ _ _ (m_set s) _ _ _ _ _ (h_meas_fst s) _,
refine @measurable_of_Iic ι s _ _ _ (m_set s) _ _ _ _ (λ j, _),
have h_set_eq : (λ x : s, τ (x : set.Iic i × Ω).snd) ⁻¹' set.Iic j
= (λ x : s, (x : set.Iic i × Ω).snd) ⁻¹' {ω | τ ω ≤ min i j},
{ ext1 ω,
simp only [set.mem_preimage, set.mem_Iic, iff_and_self, le_min_iff, set.mem_set_of_eq],
exact λ _, ω.prop, },
rw h_set_eq,
suffices h_meas : @measurable _ _ (m_set s) (f i) (λ x : s, (x : set.Iic i × Ω).snd),
from h_meas (f.mono (min_le_left _ _) _ (hτ.measurable_set_le (min i j))),
exact measurable_snd.comp (@measurable_subtype_coe _ m_prod _), },
{ suffices h_min_eq_left : (λ x : sᶜ, min ↑((x : set.Iic i × Ω).fst) (τ (x : set.Iic i × Ω).snd))
= λ x : sᶜ, ↑((x : set.Iic i × Ω).fst),
{ rw [set.restrict, h_min_eq_left],
exact h_meas_fst _, },
ext1 ω,
rw min_eq_left,
have hx_fst_le : ↑(ω : set.Iic i × Ω).fst ≤ i, from (ω : set.Iic i × Ω).fst.prop,
refine hx_fst_le.trans (le_of_lt _),
convert ω.prop,
simp only [not_le, set.mem_compl_eq, set.mem_set_of_eq], },
end
lemma prog_measurable.stopped_process [metrizable_space ι]
(h : prog_measurable f u) (hτ : is_stopping_time f τ) :
prog_measurable f (stopped_process u τ) :=
h.comp (prog_measurable_min_stopping_time hτ) (λ i x, min_le_left _ _)
lemma prog_measurable.adapted_stopped_process [metrizable_space ι]
(h : prog_measurable f u) (hτ : is_stopping_time f τ) :
adapted f (stopped_process u τ) :=
(h.stopped_process hτ).adapted
lemma prog_measurable.strongly_measurable_stopped_process [metrizable_space ι]
(hu : prog_measurable f u) (hτ : is_stopping_time f τ) (i : ι) :
strongly_measurable (stopped_process u τ i) :=
(hu.adapted_stopped_process hτ i).mono (f.le _)
lemma strongly_measurable_stopped_value_of_le
(h : prog_measurable f u) (hτ : is_stopping_time f τ) {n : ι} (hτ_le : ∀ ω, τ ω ≤ n) :
strongly_measurable[f n] (stopped_value u τ) :=
begin
have : stopped_value u τ = (λ (p : set.Iic n × Ω), u ↑(p.fst) p.snd) ∘ (λ ω, (⟨τ ω, hτ_le ω⟩, ω)),
{ ext1 ω, simp only [stopped_value, function.comp_app, subtype.coe_mk], },
rw this,
refine strongly_measurable.comp_measurable (h n) _,
exact (hτ.measurable_of_le hτ_le).subtype_mk.prod_mk measurable_id,
end
lemma measurable_stopped_value [metrizable_space β] [measurable_space β] [borel_space β]
(hf_prog : prog_measurable f u) (hτ : is_stopping_time f τ) :
measurable[hτ.measurable_space] (stopped_value u τ) :=
begin
have h_str_meas : ∀ i, strongly_measurable[f i] (stopped_value u (λ ω, min (τ ω) i)),
from λ i, strongly_measurable_stopped_value_of_le hf_prog (hτ.min_const i)
(λ _, min_le_right _ _),
intros t ht i,
suffices : stopped_value u τ ⁻¹' t ∩ {ω : Ω | τ ω ≤ i}
= stopped_value u (λ ω, min (τ ω) i) ⁻¹' t ∩ {ω : Ω | τ ω ≤ i},
by { rw this, exact ((h_str_meas i).measurable ht).inter (hτ.measurable_set_le i), },
ext1 ω,
simp only [stopped_value, set.mem_inter_eq, set.mem_preimage, set.mem_set_of_eq,
and.congr_left_iff],
intro h,
rw min_eq_left h,
end
end prog_measurable
end linear_order
section nat
/-! ### Filtrations indexed by `ℕ` -/
open filtration
variables {f : filtration ℕ m} {u : ℕ → Ω → β} {τ π : Ω → ℕ}
lemma stopped_value_sub_eq_sum [add_comm_group β] (hle : τ ≤ π) :
stopped_value u π - stopped_value u τ =
λ ω, (∑ i in finset.Ico (τ ω) (π ω), (u (i + 1) - u i)) ω :=
begin
ext ω,
rw [finset.sum_Ico_eq_sub _ (hle ω), finset.sum_range_sub, finset.sum_range_sub],
simp [stopped_value],
end
lemma stopped_value_sub_eq_sum' [add_comm_group β] (hle : τ ≤ π) {N : ℕ} (hbdd : ∀ ω, π ω ≤ N) :
stopped_value u π - stopped_value u τ =
λ ω, (∑ i in finset.range (N + 1),
set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω :=
begin
rw stopped_value_sub_eq_sum hle,
ext ω,
simp only [finset.sum_apply, finset.sum_indicator_eq_sum_filter],
refine finset.sum_congr _ (λ _ _, rfl),
ext i,
simp only [finset.mem_filter, set.mem_set_of_eq, finset.mem_range, finset.mem_Ico],
exact ⟨λ h, ⟨lt_trans h.2 (nat.lt_succ_iff.2 $ hbdd _), h⟩, λ h, h.2
end
section add_comm_monoid
variables [add_comm_monoid β]
/-- For filtrations indexed by `ℕ`, `adapted` and `prog_measurable` are equivalent. This lemma
provides `adapted f u → prog_measurable f u`. See `prog_measurable.adapted` for the reverse
direction, which is true more generally. -/
lemma adapted.prog_measurable_of_nat [topological_space β] [has_continuous_add β]
(h : adapted f u) : prog_measurable f u :=
begin
intro i,
have : (λ p : ↥(set.Iic i) × Ω, u ↑(p.fst) p.snd)
= λ p : ↥(set.Iic i) × Ω, ∑ j in finset.range (i + 1), if ↑p.fst = j then u j p.snd else 0,
{ ext1 p,
rw finset.sum_ite_eq,
have hp_mem : (p.fst : ℕ) ∈ finset.range (i + 1) := finset.mem_range_succ_iff.mpr p.fst.prop,
simp only [hp_mem, if_true], },
rw this,
refine finset.strongly_measurable_sum _ (λ j hj, strongly_measurable.ite _ _ _),
{ suffices h_meas : measurable[measurable_space.prod _ (f i)]
a : ↥(set.Iic i) × Ω, (a.fst : ℕ)),
from h_meas (measurable_set_singleton j),
exact measurable_fst.subtype_coe, },
{ have h_le : j ≤ i, from finset.mem_range_succ_iff.mp hj,
exact (strongly_measurable.mono (h j) (f.mono h_le)).comp_measurable measurable_snd, },
{ exact strongly_measurable_const, },
end
/-- For filtrations indexed by `ℕ`, the stopped process obtained from an adapted process is
adapted. -/
lemma adapted.stopped_process_of_nat [topological_space β] [has_continuous_add β]
(hu : adapted f u) (hτ : is_stopping_time f τ) :
adapted f (stopped_process u τ) :=
(hu.prog_measurable_of_nat.stopped_process hτ).adapted
lemma adapted.strongly_measurable_stopped_process_of_nat [topological_space β]
[has_continuous_add β]
(hτ : is_stopping_time f τ) (hu : adapted f u) (n : ℕ) :
strongly_measurable (stopped_process u τ n) :=
hu.prog_measurable_of_nat.strongly_measurable_stopped_process hτ n
lemma stopped_value_eq {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) :
stopped_value u τ =
λ x, (∑ i in finset.range (N + 1), set.indicator {ω | τ ω = i} (u i)) x :=
begin
ext y,
rw [stopped_value, finset.sum_apply, finset.sum_eq_single (τ y)],
{ rw set.indicator_of_mem,
exact rfl },
{ exact λ i hi hneq, set.indicator_of_not_mem hneq.symm _ },
{ intro hy,
rw set.indicator_of_not_mem,
exact λ _, hy (finset.mem_range.2 $ lt_of_le_of_lt (hbdd _) (nat.lt_succ_self _)) }
end
lemma stopped_process_eq (n : ℕ) :
stopped_process u τ n =
set.indicator {a | n ≤ τ a} (u n) +
∑ i in finset.range n, set.indicator {ω | τ ω = i} (u i) :=
begin
ext ω,
rw [pi.add_apply, finset.sum_apply],
cases le_or_lt n (τ ω),
{ rw [stopped_process_eq_of_le h, set.indicator_of_mem, finset.sum_eq_zero, add_zero],
{ intros m hm,
rw finset.mem_range at hm,
exact set.indicator_of_not_mem ((lt_of_lt_of_le hm h).ne.symm) _ },
{ exact h } },
{ rw [stopped_process_eq_of_ge (le_of_lt h), finset.sum_eq_single_of_mem (τ ω)],
{ rw [set.indicator_of_not_mem, zero_add, set.indicator_of_mem],
{ exact rfl }, -- refl does not work
{ exact not_le.2 h } },
{ rwa [finset.mem_range] },
{ intros b hb hneq,
rw set.indicator_of_not_mem,
exact hneq.symm } },
end
end add_comm_monoid
section normed_add_comm_group
variables [normed_add_comm_group β] {p : ℝ≥0∞} {μ : measure Ω}
lemma mem_ℒp_stopped_process (hτ : is_stopping_time f τ) (hu : ∀ n, mem_ℒp (u n) p μ) (n : ℕ) :
mem_ℒp (stopped_process u τ n) p μ :=
begin
rw stopped_process_eq,
refine mem_ℒp.add _ _,
{ exact mem_ℒp.indicator (f.le n {a : Ω | n ≤ τ a} (hτ.measurable_set_ge n)) (hu n) },
{ suffices : mem_ℒp (λ ω, ∑ (i : ℕ) in finset.range n, {a : Ω | τ a = i}.indicator (u i) ω) p μ,
{ convert this, ext1 ω, simp only [finset.sum_apply] },
refine mem_ℒp_finset_sum _ (λ i hi, mem_ℒp.indicator _ (hu i)),
exact f.le i {a : Ω | τ a = i} (hτ.measurable_set_eq i) },
end
lemma integrable_stopped_process (hτ : is_stopping_time f τ)
(hu : ∀ n, integrable (u n) μ) (n : ℕ) :
integrable (stopped_process u τ n) μ :=
by { simp_rw ← mem_ℒp_one_iff_integrable at hu ⊢, exact mem_ℒp_stopped_process hτ hu n, }
lemma mem_ℒp_stopped_value (hτ : is_stopping_time f τ)
(hu : ∀ n, mem_ℒp (u n) p μ) {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) :
mem_ℒp (stopped_value u τ) p μ :=
begin
rw stopped_value_eq hbdd,
suffices : mem_ℒp (λ x, ∑ (i : ℕ) in finset.range (N + 1),
{a : Ω | τ a = i}.indicator (u i) x) p μ,
{ convert this, ext1 ω, simp only [finset.sum_apply] },
refine mem_ℒp_finset_sum _ (λ i hi, mem_ℒp.indicator _ (hu i)),
exact f.le i {a : Ω | τ a = i} (hτ.measurable_set_eq i)
end
lemma integrable_stopped_value (hτ : is_stopping_time f τ)
(hu : ∀ n, integrable (u n) μ) {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) :
integrable (stopped_value u τ) μ :=
by { simp_rw ← mem_ℒp_one_iff_integrable at hu ⊢, exact mem_ℒp_stopped_value hτ hu hbdd, }
end normed_add_comm_group
end nat
section piecewise_const
variables [preorder ι] {𝒢 : filtration ι m} {τ η : Ω → ι} {i j : ι} {s : set Ω}
[decidable_pred (∈ s)]
/-- Given stopping times `τ` and `η` which are bounded below, `set.piecewise s τ η` is also
a stopping time with respect to the same filtration. -/
lemma is_stopping_time.piecewise_of_le (hτ_st : is_stopping_time 𝒢 τ)
(hη_st : is_stopping_time 𝒢 η) (hτ : ∀ ω, i ≤ τ ω) (hη : ∀ x, i ≤ η x)
(hs : measurable_set[𝒢 i] s) :
is_stopping_time 𝒢 (s.piecewise τ η) :=
begin
intro n,
have : {x | s.piecewise τ η x ≤ n}
= (s ∩ {ω | τ ω ≤ n}) ∪ (sᶜ ∩ {x | η x ≤ n}),
{ ext1 ω,
simp only [set.piecewise, set.mem_inter_eq, set.mem_set_of_eq, and.congr_right_iff],
by_cases hx : ω ∈ s; simp [hx], },
rw this,
by_cases hin : i ≤ n,
{ have hs_n : measurable_set[𝒢 n] s, from 𝒢.mono hin _ hs,
exact (hs_n.inter (hτ_st n)).union (hs_n.compl.inter (hη_st n)), },
{ have hτn : ∀ ω, ¬ τ ω ≤ n := λ ω hτn, hin ((hτ ω).trans hτn),
have hηn : ∀ ω, ¬ η ω ≤ n := λ ω hηn, hin ((hη ω).trans hηn),
simp [hτn, hηn], },
end
lemma is_stopping_time_piecewise_const (hij : ij) (hs : measurable_set[𝒢 i] s) :
is_stopping_time 𝒢 (s.piecewise (λ _, i) (λ _, j)) :=
(is_stopping_time_const 𝒢 i).piecewise_of_le (is_stopping_time_const 𝒢 j)
(λ x, le_rfl) (λ _, hij) hs
lemma stopped_value_piecewise_const {ι' : Type*} {i j : ι'} {f : ι' → Ω → ℝ} :
stopped_value f (s.piecewise (λ _, i) (λ _, j)) = s.piecewise (f i) (f j) :=
by { ext ω, rw stopped_value, by_cases hx : ω ∈ s; simp [hx] }
lemma stopped_value_piecewise_const'' : Type*} {i j : ι'} {f : ι' → Ω → ℝ} :
stopped_value f (s.piecewise (λ _, i) (λ _, j)) = s.indicator (f i) + sᶜ.indicator (f j) :=
by { ext ω, rw stopped_value, by_cases hx : ω ∈ s; simp [hx] }
end piecewise_const
end measure_theory