Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Kexing Ying. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kexing Ying | |
-/ | |
import measure_theory.function.conditional_expectation.real | |
import topology.instances.discrete | |
/-! | |
# Filtration and stopping time | |
This file defines some standard definition from the theory of stochastic processes including | |
filtrations and stopping times. These definitions are used to model the amount of information | |
at a specific time and is the first step in formalizing stochastic processes. | |
## Main definitions | |
* `measure_theory.filtration`: a filtration on a measurable space | |
* `measure_theory.adapted`: a sequence of functions `u` is said to be adapted to a | |
filtration `f` if at each point in time `i`, `u i` is `f i`-strongly measurable | |
* `measure_theory.prog_measurable`: a sequence of functions `u` is said to be progressively | |
measurable with respect to a filtration `f` if at each point in time `i`, `u` restricted to | |
`set.Iic i × Ω` is strongly measurable with respect to the product `measurable_space` structure | |
where the σ-algebra used for `Ω` is `f i`. | |
* `measure_theory.filtration.natural`: the natural filtration with respect to a sequence of | |
measurable functions is the smallest filtration to which it is adapted to | |
* `measure_theory.is_stopping_time`: a stopping time with respect to some filtration `f` is a | |
function `τ` such that for all `i`, the preimage of `{j | j ≤ i}` along `τ` is | |
`f i`-measurable | |
* `measure_theory.is_stopping_time.measurable_space`: the σ-algebra associated with a stopping time | |
## Main results | |
* `adapted.prog_measurable_of_continuous`: a continuous adapted process is progressively measurable. | |
* `prog_measurable.stopped_process`: the stopped process of a progressively measurable process is | |
progressively measurable. | |
* `mem_ℒp_stopped_process`: if a process belongs to `ℒp` at every time in `ℕ`, then its stopped | |
process belongs to `ℒp` as well. | |
## Tags | |
filtration, stopping time, stochastic process | |
-/ | |
open filter order topological_space | |
open_locale classical measure_theory nnreal ennreal topological_space big_operators | |
namespace measure_theory | |
/-! ### Filtrations -/ | |
/-- A `filtration` on measurable space `Ω` with σ-algebra `m` is a monotone | |
sequence of sub-σ-algebras of `m`. -/ | |
structure filtration {Ω : Type*} (ι : Type*) [preorder ι] (m : measurable_space Ω) := | |
(seq : ι → measurable_space Ω) | |
(mono' : monotone seq) | |
(le' : ∀ i : ι, seq i ≤ m) | |
variables {Ω β ι : Type*} {m : measurable_space Ω} | |
instance [preorder ι] : has_coe_to_fun (filtration ι m) (λ _, ι → measurable_space Ω) := | |
⟨λ f, f.seq⟩ | |
namespace filtration | |
variables [preorder ι] | |
protected lemma mono {i j : ι} (f : filtration ι m) (hij : i ≤ j) : f i ≤ f j := f.mono' hij | |
protected lemma le (f : filtration ι m) (i : ι) : f i ≤ m := f.le' i | |
@[ext] protected lemma ext {f g : filtration ι m} (h : (f : ι → measurable_space Ω) = g) : f = g := | |
by { cases f, cases g, simp only, exact h, } | |
variable (ι) | |
/-- The constant filtration which is equal to `m` for all `i : ι`. -/ | |
def const (m' : measurable_space Ω) (hm' : m' ≤ m) : filtration ι m := | |
⟨λ _, m', monotone_const, λ _, hm'⟩ | |
variable {ι} | |
@[simp] | |
lemma const_apply {m' : measurable_space Ω} {hm' : m' ≤ m} (i : ι) : const ι m' hm' i = m' := rfl | |
instance : inhabited (filtration ι m) := ⟨const ι m le_rfl⟩ | |
instance : has_le (filtration ι m) := ⟨λ f g, ∀ i, f i ≤ g i⟩ | |
instance : has_bot (filtration ι m) := ⟨const ι ⊥ bot_le⟩ | |
instance : has_top (filtration ι m) := ⟨const ι m le_rfl⟩ | |
instance : has_sup (filtration ι m) := ⟨λ f g, | |
{ seq := λ i, f i ⊔ g i, | |
mono' := λ i j hij, sup_le ((f.mono hij).trans le_sup_left) ((g.mono hij).trans le_sup_right), | |
le' := λ i, sup_le (f.le i) (g.le i) }⟩ | |
@[norm_cast] lemma coe_fn_sup {f g : filtration ι m} : ⇑(f ⊔ g) = f ⊔ g := rfl | |
instance : has_inf (filtration ι m) := ⟨λ f g, | |
{ seq := λ i, f i ⊓ g i, | |
mono' := λ i j hij, le_inf (inf_le_left.trans (f.mono hij)) (inf_le_right.trans (g.mono hij)), | |
le' := λ i, inf_le_left.trans (f.le i) }⟩ | |
@[norm_cast] lemma coe_fn_inf {f g : filtration ι m} : ⇑(f ⊓ g) = f ⊓ g := rfl | |
instance : has_Sup (filtration ι m) := ⟨λ s, | |
{ seq := λ i, Sup ((λ f : filtration ι m, f i) '' s), | |
mono' := λ i j hij, | |
begin | |
refine Sup_le (λ m' hm', _), | |
rw [set.mem_image] at hm', | |
obtain ⟨f, hf_mem, hfm'⟩ := hm', | |
rw ← hfm', | |
refine (f.mono hij).trans _, | |
have hfj_mem : f j ∈ ((λ g : filtration ι m, g j) '' s), from ⟨f, hf_mem, rfl⟩, | |
exact le_Sup hfj_mem, | |
end, | |
le' := λ i, | |
begin | |
refine Sup_le (λ m' hm', _), | |
rw [set.mem_image] at hm', | |
obtain ⟨f, hf_mem, hfm'⟩ := hm', | |
rw ← hfm', | |
exact f.le i, | |
end, }⟩ | |
lemma Sup_def (s : set (filtration ι m)) (i : ι) : | |
Sup s i = Sup ((λ f : filtration ι m, f i) '' s) := | |
rfl | |
noncomputable | |
instance : has_Inf (filtration ι m) := ⟨λ s, | |
{ seq := λ i, if set.nonempty s then Inf ((λ f : filtration ι m, f i) '' s) else m, | |
mono' := λ i j hij, | |
begin | |
by_cases h_nonempty : set.nonempty s, | |
swap, { simp only [h_nonempty, set.nonempty_image_iff, if_false, le_refl], }, | |
simp only [h_nonempty, if_true, le_Inf_iff, set.mem_image, forall_exists_index, and_imp, | |
forall_apply_eq_imp_iff₂], | |
refine λ f hf_mem, le_trans _ (f.mono hij), | |
have hfi_mem : f i ∈ ((λ g : filtration ι m, g i) '' s), from ⟨f, hf_mem, rfl⟩, | |
exact Inf_le hfi_mem, | |
end, | |
le' := λ i, | |
begin | |
by_cases h_nonempty : set.nonempty s, | |
swap, { simp only [h_nonempty, if_false, le_refl], }, | |
simp only [h_nonempty, if_true], | |
obtain ⟨f, hf_mem⟩ := h_nonempty, | |
exact le_trans (Inf_le ⟨f, hf_mem, rfl⟩) (f.le i), | |
end, }⟩ | |
lemma Inf_def (s : set (filtration ι m)) (i : ι) : | |
Inf s i = if set.nonempty s then Inf ((λ f : filtration ι m, f i) '' s) else m := | |
rfl | |
noncomputable | |
instance : complete_lattice (filtration ι m) := | |
{ le := (≤), | |
le_refl := λ f i, le_rfl, | |
le_trans := λ f g h h_fg h_gh i, (h_fg i).trans (h_gh i), | |
le_antisymm := λ f g h_fg h_gf, filtration.ext $ funext $ λ i, (h_fg i).antisymm (h_gf i), | |
sup := (⊔), | |
le_sup_left := λ f g i, le_sup_left, | |
le_sup_right := λ f g i, le_sup_right, | |
sup_le := λ f g h h_fh h_gh i, sup_le (h_fh i) (h_gh _), | |
inf := (⊓), | |
inf_le_left := λ f g i, inf_le_left, | |
inf_le_right := λ f g i, inf_le_right, | |
le_inf := λ f g h h_fg h_fh i, le_inf (h_fg i) (h_fh i), | |
Sup := Sup, | |
le_Sup := λ s f hf_mem i, le_Sup ⟨f, hf_mem, rfl⟩, | |
Sup_le := λ s f h_forall i, Sup_le $ λ m' hm', | |
begin | |
obtain ⟨g, hg_mem, hfm'⟩ := hm', | |
rw ← hfm', | |
exact h_forall g hg_mem i, | |
end, | |
Inf := Inf, | |
Inf_le := λ s f hf_mem i, | |
begin | |
have hs : s.nonempty := ⟨f, hf_mem⟩, | |
simp only [Inf_def, hs, if_true], | |
exact Inf_le ⟨f, hf_mem, rfl⟩, | |
end, | |
le_Inf := λ s f h_forall i, | |
begin | |
by_cases hs : s.nonempty, | |
swap, { simp only [Inf_def, hs, if_false], exact f.le i, }, | |
simp only [Inf_def, hs, if_true, le_Inf_iff, set.mem_image, forall_exists_index, and_imp, | |
forall_apply_eq_imp_iff₂], | |
exact λ g hg_mem, h_forall g hg_mem i, | |
end, | |
top := ⊤, | |
bot := ⊥, | |
le_top := λ f i, f.le' i, | |
bot_le := λ f i, bot_le, } | |
end filtration | |
lemma measurable_set_of_filtration [preorder ι] {f : filtration ι m} {s : set Ω} {i : ι} | |
(hs : measurable_set[f i] s) : measurable_set[m] s := | |
f.le i s hs | |
/-- A measure is σ-finite with respect to filtration if it is σ-finite with respect | |
to all the sub-σ-algebra of the filtration. -/ | |
class sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m) : Prop := | |
(sigma_finite : ∀ i : ι, sigma_finite (μ.trim (f.le i))) | |
instance sigma_finite_of_sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m) | |
[hf : sigma_finite_filtration μ f] (i : ι) : | |
sigma_finite (μ.trim (f.le i)) := | |
by apply hf.sigma_finite -- can't exact here | |
@[priority 100] | |
instance is_finite_measure.sigma_finite_filtration [preorder ι] (μ : measure Ω) (f : filtration ι m) | |
[is_finite_measure μ] : | |
sigma_finite_filtration μ f := | |
⟨λ n, by apply_instance⟩ | |
/-- Given a integrable function `g`, the conditional expectations of `g` with respect to a | |
filtration is uniformly integrable. -/ | |
lemma integrable.uniform_integrable_condexp_filtration | |
[preorder ι] {μ : measure Ω} [is_finite_measure μ] {f : filtration ι m} | |
{g : Ω → ℝ} (hg : integrable g μ) : | |
uniform_integrable (λ i, μ[g | f i]) 1 μ := | |
hg.uniform_integrable_condexp f.le | |
section adapted_process | |
variables [topological_space β] [preorder ι] | |
{u v : ι → Ω → β} {f : filtration ι m} | |
/-- A sequence of functions `u` is adapted to a filtration `f` if for all `i`, | |
`u i` is `f i`-measurable. -/ | |
def adapted (f : filtration ι m) (u : ι → Ω → β) : Prop := | |
∀ i : ι, strongly_measurable[f i] (u i) | |
namespace adapted | |
@[protected, to_additive] lemma mul [has_mul β] [has_continuous_mul β] | |
(hu : adapted f u) (hv : adapted f v) : | |
adapted f (u * v) := | |
λ i, (hu i).mul (hv i) | |
@[protected, to_additive] lemma inv [group β] [topological_group β] (hu : adapted f u) : | |
adapted f u⁻¹ := | |
λ i, (hu i).inv | |
@[protected] lemma smul [has_smul ℝ β] [has_continuous_smul ℝ β] (c : ℝ) (hu : adapted f u) : | |
adapted f (c • u) := | |
λ i, (hu i).const_smul c | |
@[protected] lemma strongly_measurable {i : ι} (hf : adapted f u) : | |
strongly_measurable[m] (u i) := | |
(hf i).mono (f.le i) | |
lemma strongly_measurable_le {i j : ι} (hf : adapted f u) (hij : i ≤ j) : | |
strongly_measurable[f j] (u i) := | |
(hf i).mono (f.mono hij) | |
end adapted | |
lemma adapted_const (f : filtration ι m) (x : β) : adapted f (λ _ _, x) := | |
λ i, strongly_measurable_const | |
variable (β) | |
lemma adapted_zero [has_zero β] (f : filtration ι m) : adapted f (0 : ι → Ω → β) := | |
λ i, @strongly_measurable_zero Ω β (f i) _ _ | |
variable {β} | |
/-- Progressively measurable process. A sequence of functions `u` is said to be progressively | |
measurable with respect to a filtration `f` if at each point in time `i`, `u` restricted to | |
`set.Iic i × Ω` is measurable with respect to the product `measurable_space` structure where the | |
σ-algebra used for `Ω` is `f i`. | |
The usual definition uses the interval `[0,i]`, which we replace by `set.Iic i`. We recover the | |
usual definition for index types `ℝ≥0` or `ℕ`. -/ | |
def prog_measurable [measurable_space ι] (f : filtration ι m) (u : ι → Ω → β) : Prop := | |
∀ i, strongly_measurable[subtype.measurable_space.prod (f i)] (λ p : set.Iic i × Ω, u p.1 p.2) | |
lemma prog_measurable_const [measurable_space ι] (f : filtration ι m) (b : β) : | |
prog_measurable f ((λ _ _, b) : ι → Ω → β) := | |
λ i, @strongly_measurable_const _ _ (subtype.measurable_space.prod (f i)) _ _ | |
namespace prog_measurable | |
variables [measurable_space ι] | |
protected lemma adapted (h : prog_measurable f u) : adapted f u := | |
begin | |
intro i, | |
have : u i = (λ p : set.Iic i × Ω, u p.1 p.2) ∘ (λ x, (⟨i, set.mem_Iic.mpr le_rfl⟩, x)) := rfl, | |
rw this, | |
exact (h i).comp_measurable measurable_prod_mk_left, | |
end | |
protected lemma comp {t : ι → Ω → ι} [topological_space ι] [borel_space ι] [metrizable_space ι] | |
(h : prog_measurable f u) (ht : prog_measurable f t) | |
(ht_le : ∀ i ω, t i ω ≤ i) : | |
prog_measurable f (λ i ω, u (t i ω) ω) := | |
begin | |
intro i, | |
have : (λ p : ↥(set.Iic i) × Ω, u (t (p.fst : ι) p.snd) p.snd) | |
= (λ p : ↥(set.Iic i) × Ω, u (p.fst : ι) p.snd) ∘ (λ p : ↥(set.Iic i) × Ω, | |
(⟨t (p.fst : ι) p.snd, set.mem_Iic.mpr ((ht_le _ _).trans p.fst.prop)⟩, p.snd)) := rfl, | |
rw this, | |
exact (h i).comp_measurable ((ht i).measurable.subtype_mk.prod_mk measurable_snd), | |
end | |
section arithmetic | |
@[to_additive] protected lemma mul [has_mul β] [has_continuous_mul β] | |
(hu : prog_measurable f u) (hv : prog_measurable f v) : | |
prog_measurable f (λ i ω, u i ω * v i ω) := | |
λ i, (hu i).mul (hv i) | |
@[to_additive] protected lemma finset_prod' {γ} [comm_monoid β] [has_continuous_mul β] | |
{U : γ → ι → Ω → β} {s : finset γ} (h : ∀ c ∈ s, prog_measurable f (U c)) : | |
prog_measurable f (∏ c in s, U c) := | |
finset.prod_induction U (prog_measurable f) (λ _ _, prog_measurable.mul) | |
(prog_measurable_const _ 1) h | |
@[to_additive] protected lemma finset_prod {γ} [comm_monoid β] [has_continuous_mul β] | |
{U : γ → ι → Ω → β} {s : finset γ} (h : ∀ c ∈ s, prog_measurable f (U c)) : | |
prog_measurable f (λ i a, ∏ c in s, U c i a) := | |
by { convert prog_measurable.finset_prod' h, ext i a, simp only [finset.prod_apply], } | |
@[to_additive] protected lemma inv [group β] [topological_group β] (hu : prog_measurable f u) : | |
prog_measurable f (λ i ω, (u i ω)⁻¹) := | |
λ i, (hu i).inv | |
@[to_additive] protected lemma div [group β] [topological_group β] | |
(hu : prog_measurable f u) (hv : prog_measurable f v) : | |
prog_measurable f (λ i ω, u i ω / v i ω) := | |
λ i, (hu i).div (hv i) | |
end arithmetic | |
end prog_measurable | |
lemma prog_measurable_of_tendsto' {γ} [measurable_space ι] [metrizable_space β] | |
(fltr : filter γ) [fltr.ne_bot] [fltr.is_countably_generated] {U : γ → ι → Ω → β} | |
(h : ∀ l, prog_measurable f (U l)) (h_tendsto : tendsto U fltr (𝓝 u)) : | |
prog_measurable f u := | |
begin | |
assume i, | |
apply @strongly_measurable_of_tendsto (set.Iic i × Ω) β γ (measurable_space.prod _ (f i)) | |
_ _ fltr _ _ _ _ (λ l, h l i), | |
rw tendsto_pi_nhds at h_tendsto ⊢, | |
intro x, | |
specialize h_tendsto x.fst, | |
rw tendsto_nhds at h_tendsto ⊢, | |
exact λ s hs h_mem, h_tendsto {g | g x.snd ∈ s} (hs.preimage (continuous_apply x.snd)) h_mem, | |
end | |
lemma prog_measurable_of_tendsto [measurable_space ι] [metrizable_space β] | |
{U : ℕ → ι → Ω → β} | |
(h : ∀ l, prog_measurable f (U l)) (h_tendsto : tendsto U at_top (𝓝 u)) : | |
prog_measurable f u := | |
prog_measurable_of_tendsto' at_top h h_tendsto | |
/-- A continuous and adapted process is progressively measurable. -/ | |
theorem adapted.prog_measurable_of_continuous | |
[topological_space ι] [metrizable_space ι] [measurable_space ι] | |
[second_countable_topology ι] [opens_measurable_space ι] [metrizable_space β] | |
(h : adapted f u) (hu_cont : ∀ ω, continuous (λ i, u i ω)) : | |
prog_measurable f u := | |
λ i, @strongly_measurable_uncurry_of_continuous_of_strongly_measurable _ _ (set.Iic i) _ _ _ _ _ _ _ | |
(f i) _ (λ ω, (hu_cont ω).comp continuous_induced_dom) (λ j, (h j).mono (f.mono j.prop)) | |
end adapted_process | |
namespace filtration | |
variables [topological_space β] [metrizable_space β] [mβ : measurable_space β] [borel_space β] | |
[preorder ι] | |
include mβ | |
/-- Given a sequence of functions, the natural filtration is the smallest sequence | |
of σ-algebras such that that sequence of functions is measurable with respect to | |
the filtration. -/ | |
def natural (u : ι → Ω → β) (hum : ∀ i, strongly_measurable (u i)) : filtration ι m := | |
{ seq := λ i, ⨆ j ≤ i, measurable_space.comap (u j) mβ, | |
mono' := λ i j hij, bsupr_mono $ λ k, ge_trans hij, | |
le' := λ i, | |
begin | |
refine supr₂_le _, | |
rintros j hj s ⟨t, ht, rfl⟩, | |
exact (hum j).measurable ht, | |
end } | |
lemma adapted_natural {u : ι → Ω → β} (hum : ∀ i, strongly_measurable[m] (u i)) : | |
adapted (natural u hum) u := | |
begin | |
assume i, | |
refine strongly_measurable.mono _ (le_supr₂_of_le i (le_refl i) le_rfl), | |
rw strongly_measurable_iff_measurable_separable, | |
exact ⟨measurable_iff_comap_le.2 le_rfl, (hum i).is_separable_range⟩ | |
end | |
section limit | |
omit mβ | |
variables {E : Type*} [has_zero E] [topological_space E] | |
{ℱ : filtration ι m} {f : ι → Ω → E} {μ : measure Ω} | |
/-- Given a process `f` and a filtration `ℱ`, if `f` converges to some `g` almost everywhere and | |
`g` is `⨆ n, ℱ n`-measurable, then `limit_process f ℱ μ` chooses said `g`, else it returns 0. | |
This definition is used to phrase the a.e. martingale convergence theorem | |
`submartingale.ae_tendsto_limit_process` where an L¹-bounded submartingale `f` adapted to `ℱ` | |
converges to `limit_process f ℱ μ` `μ`-almost everywhere. -/ | |
noncomputable | |
def limit_process (f : ι → Ω → E) (ℱ : filtration ι m) (μ : measure Ω . volume_tac) := | |
if h : ∃ g : Ω → E, strongly_measurable[⨆ n, ℱ n] g ∧ | |
∀ᵐ ω ∂μ, tendsto (λ n, f n ω) at_top (𝓝 (g ω)) then classical.some h else 0 | |
lemma strongly_measurable_limit_process : | |
strongly_measurable[⨆ n, ℱ n] (limit_process f ℱ μ) := | |
begin | |
rw limit_process, | |
split_ifs with h h, | |
exacts [(classical.some_spec h).1, strongly_measurable_zero] | |
end | |
lemma strongly_measurable_limit_process' : | |
strongly_measurable[m] (limit_process f ℱ μ) := | |
strongly_measurable_limit_process.mono (Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _)) | |
lemma mem_ℒp_limit_process_of_snorm_bdd {R : ℝ≥0} {p : ℝ≥0∞} | |
{F : Type*} [normed_add_comm_group F] {ℱ : filtration ℕ m} {f : ℕ → Ω → F} | |
(hfm : ∀ n, ae_strongly_measurable (f n) μ) (hbdd : ∀ n, snorm (f n) p μ ≤ R) : | |
mem_ℒp (limit_process f ℱ μ) p μ := | |
begin | |
rw limit_process, | |
split_ifs with h, | |
{ refine ⟨strongly_measurable.ae_strongly_measurable | |
((classical.some_spec h).1.mono (Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _))), | |
lt_of_le_of_lt (Lp.snorm_lim_le_liminf_snorm hfm _ (classical.some_spec h).2) | |
(lt_of_le_of_lt _ (ennreal.coe_lt_top : ↑R < ∞))⟩, | |
simp_rw [liminf_eq, eventually_at_top], | |
exact Sup_le (λ b ⟨a, ha⟩, (ha a le_rfl).trans (hbdd _)) }, | |
{ exact zero_mem_ℒp } | |
end | |
end limit | |
end filtration | |
/-! ### Stopping times -/ | |
/-- A stopping time with respect to some filtration `f` is a function | |
`τ` such that for all `i`, the preimage of `{j | j ≤ i}` along `τ` is measurable | |
with respect to `f i`. | |
Intuitively, the stopping time `τ` describes some stopping rule such that at time | |
`i`, we may determine it with the information we have at time `i`. -/ | |
def is_stopping_time [preorder ι] (f : filtration ι m) (τ : Ω → ι) := | |
∀ i : ι, measurable_set[f i] $ {ω | τ ω ≤ i} | |
lemma is_stopping_time_const [preorder ι] (f : filtration ι m) (i : ι) : | |
is_stopping_time f (λ x, i) := | |
λ j, by simp only [measurable_set.const] | |
section measurable_set | |
section preorder | |
variables [preorder ι] {f : filtration ι m} {τ : Ω → ι} | |
protected lemma is_stopping_time.measurable_set_le (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | τ ω ≤ i} := | |
hτ i | |
lemma is_stopping_time.measurable_set_lt_of_pred [pred_order ι] | |
(hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | τ ω < i} := | |
begin | |
by_cases hi_min : is_min i, | |
{ suffices : {ω : Ω | τ ω < i} = ∅, by { rw this, exact @measurable_set.empty _ (f i), }, | |
ext1 ω, | |
simp only [set.mem_set_of_eq, set.mem_empty_eq, iff_false], | |
rw is_min_iff_forall_not_lt at hi_min, | |
exact hi_min (τ ω), }, | |
have : {ω : Ω | τ ω < i} = τ ⁻¹' (set.Iio i) := rfl, | |
rw [this, ←Iic_pred_of_not_is_min hi_min], | |
exact f.mono (pred_le i) _ (hτ.measurable_set_le $ pred i), | |
end | |
end preorder | |
section countable_stopping_time | |
namespace is_stopping_time | |
variables [partial_order ι] {τ : Ω → ι} {f : filtration ι m} | |
protected lemma measurable_set_eq_of_countable | |
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : | |
measurable_set[f i] {ω | τ ω = i} := | |
begin | |
have : {ω | τ ω = i} = {ω | τ ω ≤ i} \ (⋃ (j ∈ set.range τ) (hj : j < i), {ω | τ ω ≤ j}), | |
{ ext1 a, | |
simp only [set.mem_set_of_eq, set.mem_range, set.Union_exists, set.Union_Union_eq', | |
set.mem_diff, set.mem_Union, exists_prop, not_exists, not_and, not_le], | |
split; intro h, | |
{ simp only [h, lt_iff_le_not_le, le_refl, and_imp, imp_self, implies_true_iff, and_self], }, | |
{ have h_lt_or_eq : τ a < i ∨ τ a = i := lt_or_eq_of_le h.1, | |
rcases h_lt_or_eq with h_lt | rfl, | |
{ exfalso, | |
exact h.2 a h_lt (le_refl (τ a)), }, | |
{ refl, }, }, }, | |
rw this, | |
refine (hτ.measurable_set_le i).diff _, | |
refine measurable_set.bUnion h_countable (λ j hj, _), | |
by_cases hji : j < i, | |
{ simp only [hji, set.Union_true], | |
exact f.mono hji.le _ (hτ.measurable_set_le j), }, | |
{ simp only [hji, set.Union_false], | |
exact @measurable_set.empty _ (f i), }, | |
end | |
protected lemma measurable_set_eq_of_encodable [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | τ ω = i} := | |
hτ.measurable_set_eq_of_countable (set.to_countable _) i | |
protected lemma measurable_set_lt_of_countable | |
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : | |
measurable_set[f i] {ω | τ ω < i} := | |
begin | |
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}, | |
{ ext1 ω, simp [lt_iff_le_and_ne], }, | |
rw this, | |
exact (hτ.measurable_set_le i).diff (hτ.measurable_set_eq_of_countable h_countable i), | |
end | |
protected lemma measurable_set_lt_of_encodable [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | τ ω < i} := | |
hτ.measurable_set_lt_of_countable (set.to_countable _) i | |
protected lemma measurable_set_ge_of_countable {ι} [linear_order ι] {τ : Ω → ι} {f : filtration ι m} | |
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : | |
measurable_set[f i] {ω | i ≤ τ ω} := | |
begin | |
have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ, | |
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_lt], }, | |
rw this, | |
exact (hτ.measurable_set_lt_of_countable h_countable i).compl, | |
end | |
protected lemma measurable_set_ge_of_encodable {ι} [linear_order ι] {τ : Ω → ι} {f : filtration ι m} | |
[encodable ι] (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | i ≤ τ ω} := | |
hτ.measurable_set_ge_of_countable (set.to_countable _) i | |
end is_stopping_time | |
end countable_stopping_time | |
section linear_order | |
variables [linear_order ι] {f : filtration ι m} {τ : Ω → ι} | |
lemma is_stopping_time.measurable_set_gt (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | i < τ ω} := | |
begin | |
have : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ, | |
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_le], }, | |
rw this, | |
exact (hτ.measurable_set_le i).compl, | |
end | |
section topological_space | |
variables [topological_space ι] [order_topology ι] [first_countable_topology ι] | |
/-- Auxiliary lemma for `is_stopping_time.measurable_set_lt`. -/ | |
lemma is_stopping_time.measurable_set_lt_of_is_lub | |
(hτ : is_stopping_time f τ) (i : ι) (h_lub : is_lub (set.Iio i) i) : | |
measurable_set[f i] {ω | τ ω < i} := | |
begin | |
by_cases hi_min : is_min i, | |
{ suffices : {ω | τ ω < i} = ∅, by { rw this, exact @measurable_set.empty _ (f i), }, | |
ext1 ω, | |
simp only [set.mem_set_of_eq, set.mem_empty_eq, iff_false], | |
exact is_min_iff_forall_not_lt.mp hi_min (τ ω), }, | |
obtain ⟨seq, -, -, h_tendsto, h_bound⟩ : ∃ seq : ℕ → ι, | |
monotone seq ∧ (∀ j, seq j ≤ i) ∧ tendsto seq at_top (𝓝 i) ∧ (∀ j, seq j < i), | |
from h_lub.exists_seq_monotone_tendsto (not_is_min_iff.mp hi_min), | |
have h_Ioi_eq_Union : set.Iio i = ⋃ j, {k | k ≤ seq j}, | |
{ ext1 k, | |
simp only [set.mem_Iio, set.mem_Union, set.mem_set_of_eq], | |
refine ⟨λ hk_lt_i, _, λ h_exists_k_le_seq, _⟩, | |
{ rw tendsto_at_top' at h_tendsto, | |
have h_nhds : set.Ici k ∈ 𝓝 i, | |
from mem_nhds_iff.mpr ⟨set.Ioi k, set.Ioi_subset_Ici le_rfl, is_open_Ioi, hk_lt_i⟩, | |
obtain ⟨a, ha⟩ : ∃ (a : ℕ), ∀ (b : ℕ), b ≥ a → k ≤ seq b := h_tendsto (set.Ici k) h_nhds, | |
exact ⟨a, ha a le_rfl⟩, }, | |
{ obtain ⟨j, hk_seq_j⟩ := h_exists_k_le_seq, | |
exact hk_seq_j.trans_lt (h_bound j), }, }, | |
have h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' (set.Iio i), | |
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_preimage, set.mem_Iio], }, | |
rw [h_lt_eq_preimage, h_Ioi_eq_Union], | |
simp only [set.preimage_Union, set.preimage_set_of_eq], | |
exact measurable_set.Union | |
(λ n, f.mono (h_bound n).le _ (hτ.measurable_set_le (seq n))), | |
end | |
lemma is_stopping_time.measurable_set_lt (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | τ ω < i} := | |
begin | |
obtain ⟨i', hi'_lub⟩ : ∃ i', is_lub (set.Iio i) i', from exists_lub_Iio i, | |
cases lub_Iio_eq_self_or_Iio_eq_Iic i hi'_lub with hi'_eq_i h_Iio_eq_Iic, | |
{ rw ← hi'_eq_i at hi'_lub ⊢, | |
exact hτ.measurable_set_lt_of_is_lub i' hi'_lub, }, | |
{ have h_lt_eq_preimage : {ω : Ω | τ ω < i} = τ ⁻¹' (set.Iio i) := rfl, | |
rw [h_lt_eq_preimage, h_Iio_eq_Iic], | |
exact f.mono (lub_Iio_le i hi'_lub) _ (hτ.measurable_set_le i'), }, | |
end | |
lemma is_stopping_time.measurable_set_ge (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | i ≤ τ ω} := | |
begin | |
have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ, | |
{ ext1 ω, simp only [set.mem_set_of_eq, set.mem_compl_eq, not_lt], }, | |
rw this, | |
exact (hτ.measurable_set_lt i).compl, | |
end | |
lemma is_stopping_time.measurable_set_eq (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[f i] {ω | τ ω = i} := | |
begin | |
have : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i}, | |
{ ext1 ω, simp only [set.mem_set_of_eq, ge_iff_le, set.mem_inter_eq, le_antisymm_iff], }, | |
rw this, | |
exact (hτ.measurable_set_le i).inter (hτ.measurable_set_ge i), | |
end | |
lemma is_stopping_time.measurable_set_eq_le (hτ : is_stopping_time f τ) {i j : ι} (hle : i ≤ j) : | |
measurable_set[f j] {ω | τ ω = i} := | |
f.mono hle _ $ hτ.measurable_set_eq i | |
lemma is_stopping_time.measurable_set_lt_le (hτ : is_stopping_time f τ) {i j : ι} (hle : i ≤ j) : | |
measurable_set[f j] {ω | τ ω < i} := | |
f.mono hle _ $ hτ.measurable_set_lt i | |
end topological_space | |
end linear_order | |
section encodable | |
lemma is_stopping_time_of_measurable_set_eq [preorder ι] [encodable ι] | |
{f : filtration ι m} {τ : Ω → ι} (hτ : ∀ i, measurable_set[f i] {ω | τ ω = i}) : | |
is_stopping_time f τ := | |
begin | |
intro i, | |
rw show {ω | τ ω ≤ i} = ⋃ k ≤ i, {ω | τ ω = k}, by { ext, simp }, | |
refine measurable_set.bUnion (set.to_countable _) (λ k hk, _), | |
exact f.mono hk _ (hτ k), | |
end | |
end encodable | |
end measurable_set | |
namespace is_stopping_time | |
protected lemma max [linear_order ι] {f : filtration ι m} {τ π : Ω → ι} | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : | |
is_stopping_time f (λ ω, max (τ ω) (π ω)) := | |
begin | |
intro i, | |
simp_rw [max_le_iff, set.set_of_and], | |
exact (hτ i).inter (hπ i), | |
end | |
protected lemma max_const [linear_order ι] {f : filtration ι m} {τ : Ω → ι} | |
(hτ : is_stopping_time f τ) (i : ι) : | |
is_stopping_time f (λ ω, max (τ ω) i) := | |
hτ.max (is_stopping_time_const f i) | |
protected lemma min [linear_order ι] {f : filtration ι m} {τ π : Ω → ι} | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : | |
is_stopping_time f (λ ω, min (τ ω) (π ω)) := | |
begin | |
intro i, | |
simp_rw [min_le_iff, set.set_of_or], | |
exact (hτ i).union (hπ i), | |
end | |
protected lemma min_const [linear_order ι] {f : filtration ι m} {τ : Ω → ι} | |
(hτ : is_stopping_time f τ) (i : ι) : | |
is_stopping_time f (λ ω, min (τ ω) i) := | |
hτ.min (is_stopping_time_const f i) | |
lemma add_const [add_group ι] [preorder ι] [covariant_class ι ι (function.swap (+)) (≤)] | |
[covariant_class ι ι (+) (≤)] | |
{f : filtration ι m} {τ : Ω → ι} (hτ : is_stopping_time f τ) {i : ι} (hi : 0 ≤ i) : | |
is_stopping_time f (λ ω, τ ω + i) := | |
begin | |
intro j, | |
simp_rw [← le_sub_iff_add_le], | |
exact f.mono (sub_le_self j hi) _ (hτ (j - i)), | |
end | |
lemma add_const_nat | |
{f : filtration ℕ m} {τ : Ω → ℕ} (hτ : is_stopping_time f τ) {i : ℕ} : | |
is_stopping_time f (λ ω, τ ω + i) := | |
begin | |
refine is_stopping_time_of_measurable_set_eq (λ j, _), | |
by_cases hij : i ≤ j, | |
{ simp_rw [eq_comm, ← nat.sub_eq_iff_eq_add hij, eq_comm], | |
exact f.mono (j.sub_le i) _ (hτ.measurable_set_eq (j - i)) }, | |
{ rw not_le at hij, | |
convert measurable_set.empty, | |
ext ω, | |
simp only [set.mem_empty_eq, iff_false], | |
rintro (hx : τ ω + i = j), | |
linarith }, | |
end | |
-- generalize to certain encodable type? | |
lemma add | |
{f : filtration ℕ m} {τ π : Ω → ℕ} (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : | |
is_stopping_time f (τ + π) := | |
begin | |
intro i, | |
rw (_ : {ω | (τ + π) ω ≤ i} = ⋃ k ≤ i, {ω | π ω = k} ∩ {ω | τ ω + k ≤ i}), | |
{ exact measurable_set.Union (λ k, measurable_set.Union_Prop | |
(λ hk, (hπ.measurable_set_eq_le hk).inter (hτ.add_const_nat i))) }, | |
ext ω, | |
simp only [pi.add_apply, set.mem_set_of_eq, set.mem_Union, set.mem_inter_eq, exists_prop], | |
refine ⟨λ h, ⟨π ω, by linarith, rfl, h⟩, _⟩, | |
rintro ⟨j, hj, rfl, h⟩, | |
assumption | |
end | |
section preorder | |
variables [preorder ι] {f : filtration ι m} {τ π : Ω → ι} | |
/-- The associated σ-algebra with a stopping time. -/ | |
protected def measurable_space (hτ : is_stopping_time f τ) : measurable_space Ω := | |
{ measurable_set' := λ s, ∀ i : ι, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}), | |
measurable_set_empty := | |
λ i, (set.empty_inter {ω | τ ω ≤ i}).symm ▸ @measurable_set.empty _ (f i), | |
measurable_set_compl := λ s hs i, | |
begin | |
rw (_ : sᶜ ∩ {ω | τ ω ≤ i} = (sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i}), | |
{ refine measurable_set.inter _ _, | |
{ rw ← set.compl_inter, | |
exact (hs i).compl }, | |
{ exact hτ i} }, | |
{ rw set.union_inter_distrib_right, | |
simp only [set.compl_inter_self, set.union_empty] } | |
end, | |
measurable_set_Union := λ s hs i, | |
begin | |
rw forall_swap at hs, | |
rw set.Union_inter, | |
exact measurable_set.Union (hs i), | |
end } | |
protected lemma measurable_set (hτ : is_stopping_time f τ) (s : set Ω) : | |
measurable_set[hτ.measurable_space] s ↔ | |
∀ i : ι, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) := | |
iff.rfl | |
lemma measurable_space_mono | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (hle : τ ≤ π) : | |
hτ.measurable_space ≤ hπ.measurable_space := | |
begin | |
intros s hs i, | |
rw (_ : s ∩ {ω | π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i}), | |
{ exact (hs i).inter (hπ i) }, | |
{ ext, | |
simp only [set.mem_inter_eq, iff_self_and, and.congr_left_iff, set.mem_set_of_eq], | |
intros hle' _, | |
exact le_trans (hle _) hle' }, | |
end | |
lemma measurable_space_le_of_encodable [encodable ι] (hτ : is_stopping_time f τ) : | |
hτ.measurable_space ≤ m := | |
begin | |
intros s hs, | |
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs, | |
rw (_ : s = ⋃ i, s ∩ {ω | τ ω ≤ i}), | |
{ exact measurable_set.Union (λ i, f.le i _ (hs i)) }, | |
{ ext ω, split; rw set.mem_Union, | |
{ exact λ hx, ⟨τ ω, hx, le_rfl⟩ }, | |
{ rintro ⟨_, hx, _⟩, | |
exact hx } } | |
end | |
lemma measurable_space_le' [is_countably_generated (at_top : filter ι)] [(at_top : filter ι).ne_bot] | |
(hτ : is_stopping_time f τ) : | |
hτ.measurable_space ≤ m := | |
begin | |
intros s hs, | |
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs, | |
obtain ⟨seq : ℕ → ι, h_seq_tendsto⟩ := at_top.exists_seq_tendsto, | |
rw (_ : s = ⋃ n, s ∩ {ω | τ ω ≤ seq n}), | |
{ exact measurable_set.Union (λ i, f.le (seq i) _ (hs (seq i))), }, | |
{ ext ω, split; rw set.mem_Union, | |
{ intros hx, | |
suffices : ∃ i, τ ω ≤ seq i, from ⟨this.some, hx, this.some_spec⟩, | |
rw tendsto_at_top at h_seq_tendsto, | |
exact (h_seq_tendsto (τ ω)).exists, }, | |
{ rintro ⟨_, hx, _⟩, | |
exact hx }, }, | |
all_goals { apply_instance, }, | |
end | |
lemma measurable_space_le {ι} [semilattice_sup ι] {f : filtration ι m} {τ : Ω → ι} | |
[is_countably_generated (at_top : filter ι)] (hτ : is_stopping_time f τ) : | |
hτ.measurable_space ≤ m := | |
begin | |
casesI is_empty_or_nonempty ι, | |
{ haveI : is_empty Ω := ⟨λ ω, is_empty.false (τ ω)⟩, | |
intros s hsτ, | |
suffices hs : s = ∅, by { rw hs, exact measurable_set.empty, }, | |
haveI : unique (set Ω) := set.unique_empty, | |
rw [unique.eq_default s, unique.eq_default ∅], }, | |
exact measurable_space_le' hτ, | |
end | |
example {f : filtration ℕ m} {τ : Ω → ℕ} (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m := | |
hτ.measurable_space_le | |
example {f : filtration ℝ m} {τ : Ω → ℝ} (hτ : is_stopping_time f τ) : hτ.measurable_space ≤ m := | |
hτ.measurable_space_le | |
@[simp] lemma measurable_space_const (f : filtration ι m) (i : ι) : | |
(is_stopping_time_const f i).measurable_space = f i := | |
begin | |
ext1 s, | |
change measurable_set[(is_stopping_time_const f i).measurable_space] s ↔ measurable_set[f i] s, | |
rw is_stopping_time.measurable_set, | |
split; intro h, | |
{ specialize h i, | |
simpa only [le_refl, set.set_of_true, set.inter_univ] using h, }, | |
{ intro j, | |
by_cases hij : i ≤ j, | |
{ simp only [hij, set.set_of_true, set.inter_univ], | |
exact f.mono hij _ h, }, | |
{ simp only [hij, set.set_of_false, set.inter_empty, measurable_set.empty], }, }, | |
end | |
lemma measurable_set_inter_eq_iff (hτ : is_stopping_time f τ) (s : set Ω) (i : ι) : | |
measurable_set[hτ.measurable_space] (s ∩ {ω | τ ω = i}) | |
↔ measurable_set[f i] (s ∩ {ω | τ ω = i}) := | |
begin | |
have : ∀ j, ({ω : Ω | τ ω = i} ∩ {ω : Ω | τ ω ≤ j}) = {ω : Ω | τ ω = i} ∩ {ω | i ≤ j}, | |
{ intro j, | |
ext1 ω, | |
simp only [set.mem_inter_eq, set.mem_set_of_eq, and.congr_right_iff], | |
intro hxi, | |
rw hxi, }, | |
split; intro h, | |
{ specialize h i, | |
simpa only [set.inter_assoc, this, le_refl, set.set_of_true, set.inter_univ] using h, }, | |
{ intro j, | |
rw [set.inter_assoc, this], | |
by_cases hij : i ≤ j, | |
{ simp only [hij, set.set_of_true, set.inter_univ], | |
exact f.mono hij _ h, }, | |
{ simp [hij], }, }, | |
end | |
lemma measurable_space_le_of_le_const (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, τ ω ≤ i) : | |
hτ.measurable_space ≤ f i := | |
(measurable_space_mono hτ _ hτ_le).trans (measurable_space_const _ _).le | |
lemma le_measurable_space_of_const_le (hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, i ≤ τ ω) : | |
f i ≤ hτ.measurable_space := | |
(measurable_space_const _ _).symm.le.trans (measurable_space_mono _ hτ hτ_le) | |
end preorder | |
instance sigma_finite_stopping_time {ι} [semilattice_sup ι] [order_bot ι] | |
[(filter.at_top : filter ι).is_countably_generated] | |
{μ : measure Ω} {f : filtration ι m} {τ : Ω → ι} | |
[sigma_finite_filtration μ f] (hτ : is_stopping_time f τ) : | |
sigma_finite (μ.trim hτ.measurable_space_le) := | |
begin | |
refine sigma_finite_trim_mono hτ.measurable_space_le _, | |
{ exact f ⊥, }, | |
{ exact hτ.le_measurable_space_of_const_le (λ _, bot_le), }, | |
{ apply_instance, }, | |
end | |
section linear_order | |
variables [linear_order ι] {f : filtration ι m} {τ π : Ω → ι} | |
protected lemma measurable_set_le' (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | τ ω ≤ i} := | |
begin | |
intro j, | |
have : {ω : Ω | τ ω ≤ i} ∩ {ω : Ω | τ ω ≤ j} = {ω : Ω | τ ω ≤ min i j}, | |
{ ext1 ω, simp only [set.mem_inter_eq, set.mem_set_of_eq, le_min_iff], }, | |
rw this, | |
exact f.mono (min_le_right i j) _ (hτ _), | |
end | |
protected lemma measurable_set_gt' (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | i < τ ω} := | |
begin | |
have : {ω : Ω | i < τ ω} = {ω : Ω | τ ω ≤ i}ᶜ, by { ext1 ω, simp, }, | |
rw this, | |
exact (hτ.measurable_set_le' i).compl, | |
end | |
protected lemma measurable_set_eq' [topological_space ι] [order_topology ι] | |
[first_countable_topology ι] | |
(hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | τ ω = i} := | |
begin | |
rw [← set.univ_inter {ω | τ ω = i}, measurable_set_inter_eq_iff, set.univ_inter], | |
exact hτ.measurable_set_eq i, | |
end | |
protected lemma measurable_set_ge' [topological_space ι] [order_topology ι] | |
[first_countable_topology ι] | |
(hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} := | |
begin | |
have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω}, | |
{ ext1 ω, | |
simp only [le_iff_lt_or_eq, set.mem_set_of_eq, set.mem_union_eq], | |
rw [@eq_comm _ i, or_comm], }, | |
rw this, | |
exact (hτ.measurable_set_eq' i).union (hτ.measurable_set_gt' i), | |
end | |
protected lemma measurable_set_lt' [topological_space ι] [order_topology ι] | |
[first_countable_topology ι] | |
(hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | τ ω < i} := | |
begin | |
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}, | |
{ ext1 ω, | |
simp only [lt_iff_le_and_ne, set.mem_set_of_eq, set.mem_diff], }, | |
rw this, | |
exact (hτ.measurable_set_le' i).diff (hτ.measurable_set_eq' i), | |
end | |
section countable | |
protected lemma measurable_set_eq_of_countable' | |
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | τ ω = i} := | |
begin | |
rw [← set.univ_inter {ω | τ ω = i}, measurable_set_inter_eq_iff, set.univ_inter], | |
exact hτ.measurable_set_eq_of_countable h_countable i, | |
end | |
protected lemma measurable_set_eq_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | τ ω = i} := | |
hτ.measurable_set_eq_of_countable' (set.to_countable _) i | |
protected lemma measurable_set_ge_of_countable' | |
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} := | |
begin | |
have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω}, | |
{ ext1 ω, | |
simp only [le_iff_lt_or_eq, set.mem_set_of_eq, set.mem_union_eq], | |
rw [@eq_comm _ i, or_comm], }, | |
rw this, | |
exact (hτ.measurable_set_eq_of_countable' h_countable i).union (hτ.measurable_set_gt' i), | |
end | |
protected lemma measurable_set_ge_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | i ≤ τ ω} := | |
hτ.measurable_set_ge_of_countable' (set.to_countable _) i | |
protected lemma measurable_set_lt_of_countable' | |
(hτ : is_stopping_time f τ) (h_countable : (set.range τ).countable) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | τ ω < i} := | |
begin | |
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}, | |
{ ext1 ω, | |
simp only [lt_iff_le_and_ne, set.mem_set_of_eq, set.mem_diff], }, | |
rw this, | |
exact (hτ.measurable_set_le' i).diff (hτ.measurable_set_eq_of_countable' h_countable i), | |
end | |
protected lemma measurable_set_lt_of_encodable' [encodable ι] (hτ : is_stopping_time f τ) (i : ι) : | |
measurable_set[hτ.measurable_space] {ω | τ ω < i} := | |
hτ.measurable_set_lt_of_countable' (set.to_countable _) i | |
protected lemma measurable_space_le_of_countable (hτ : is_stopping_time f τ) | |
(h_countable : (set.range τ).countable) : | |
hτ.measurable_space ≤ m := | |
begin | |
intros s hs, | |
change ∀ i, measurable_set[f i] (s ∩ {ω | τ ω ≤ i}) at hs, | |
rw (_ : s = ⋃ (i ∈ set.range τ), s ∩ {ω | τ ω ≤ i}), | |
{ exact measurable_set.bUnion h_countable (λ i _, f.le i _ (hs i)), }, | |
{ ext ω, | |
split; rw set.mem_Union, | |
{ exact λ hx, ⟨τ ω, by simpa using hx⟩,}, | |
{ rintro ⟨i, hx⟩, | |
simp only [set.mem_range, set.Union_exists, set.mem_Union, set.mem_inter_eq, | |
set.mem_set_of_eq, exists_prop, exists_and_distrib_right] at hx, | |
exact hx.1.2, } } | |
end | |
end countable | |
protected lemma measurable [topological_space ι] [measurable_space ι] | |
[borel_space ι] [order_topology ι] [second_countable_topology ι] | |
(hτ : is_stopping_time f τ) : | |
measurable[hτ.measurable_space] τ := | |
@measurable_of_Iic ι Ω _ _ _ hτ.measurable_space _ _ _ _ (λ i, hτ.measurable_set_le' i) | |
protected lemma measurable_of_le [topological_space ι] [measurable_space ι] | |
[borel_space ι] [order_topology ι] [second_countable_topology ι] | |
(hτ : is_stopping_time f τ) {i : ι} (hτ_le : ∀ ω, τ ω ≤ i) : | |
measurable[f i] τ := | |
hτ.measurable.mono (measurable_space_le_of_le_const _ hτ_le) le_rfl | |
lemma measurable_space_min (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : | |
(hτ.min hπ).measurable_space = hτ.measurable_space ⊓ hπ.measurable_space := | |
begin | |
refine le_antisymm _ _, | |
{ exact le_inf (measurable_space_mono _ hτ (λ _, min_le_left _ _)) | |
(measurable_space_mono _ hπ (λ _, min_le_right _ _)), }, | |
{ intro s, | |
change measurable_set[hτ.measurable_space] s ∧ measurable_set[hπ.measurable_space] s | |
→ measurable_set[(hτ.min hπ).measurable_space] s, | |
simp_rw is_stopping_time.measurable_set, | |
have : ∀ i, {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i}, | |
{ intro i, ext1 ω, simp, }, | |
simp_rw [this, set.inter_union_distrib_left], | |
exact λ h i, (h.left i).union (h.right i), }, | |
end | |
lemma measurable_set_min_iff (hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set Ω) : | |
measurable_set[(hτ.min hπ).measurable_space] s | |
↔ measurable_set[hτ.measurable_space] s ∧ measurable_set[hπ.measurable_space] s := | |
by { rw measurable_space_min, refl, } | |
lemma measurable_space_min_const (hτ : is_stopping_time f τ) {i : ι} : | |
(hτ.min_const i).measurable_space = hτ.measurable_space ⊓ f i := | |
by rw [hτ.measurable_space_min (is_stopping_time_const _ i), measurable_space_const] | |
lemma measurable_set_min_const_iff (hτ : is_stopping_time f τ) (s : set Ω) | |
{i : ι} : | |
measurable_set[(hτ.min_const i).measurable_space] s | |
↔ measurable_set[hτ.measurable_space] s ∧ measurable_set[f i] s := | |
by rw [measurable_space_min_const, measurable_space.measurable_set_inf] | |
lemma measurable_set_inter_le [topological_space ι] [second_countable_topology ι] [order_topology ι] | |
[measurable_space ι] [borel_space ι] | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) (s : set Ω) | |
(hs : measurable_set[hτ.measurable_space] s) : | |
measurable_set[(hτ.min hπ).measurable_space] (s ∩ {ω | τ ω ≤ π ω}) := | |
begin | |
simp_rw is_stopping_time.measurable_set at ⊢ hs, | |
intro i, | |
have : (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i}) | |
= (s ∩ {ω | τ ω ≤ i}) ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}, | |
{ ext1 ω, | |
simp only [min_le_iff, set.mem_inter_eq, set.mem_set_of_eq, le_min_iff, le_refl, true_and, | |
and_true, true_or, or_true], | |
by_cases hτi : τ ω ≤ i, | |
{ simp only [hτi, true_or, and_true, and.congr_right_iff], | |
intro hx, | |
split; intro h, | |
{ exact or.inl h, }, | |
{ cases h, | |
{ exact h, }, | |
{ exact hτi.trans h, }, }, }, | |
simp only [hτi, false_or, and_false, false_and, iff_false, not_and, not_le, and_imp], | |
refine λ hx hτ_le_π, lt_of_lt_of_le _ hτ_le_π, | |
rw ← not_le, | |
exact hτi, }, | |
rw this, | |
refine ((hs i).inter ((hτ.min hπ) i)).inter _, | |
apply measurable_set_le, | |
{ exact (hτ.min_const i).measurable_of_le (λ _, min_le_right _ _), }, | |
{ exact ((hτ.min hπ).min_const i).measurable_of_le (λ _, min_le_right _ _), }, | |
end | |
lemma measurable_set_inter_le_iff [topological_space ι] | |
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι] | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) | |
(s : set Ω) : | |
measurable_set[hτ.measurable_space] (s ∩ {ω | τ ω ≤ π ω}) | |
↔ measurable_set[(hτ.min hπ).measurable_space] (s ∩ {ω | τ ω ≤ π ω}) := | |
begin | |
split; intro h, | |
{ have : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω}, | |
by rw [set.inter_assoc, set.inter_self], | |
rw this, | |
exact measurable_set_inter_le _ _ _ h, }, | |
{ rw measurable_set_min_iff at h, | |
exact h.1, }, | |
end | |
lemma measurable_set_le_stopping_time [topological_space ι] | |
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι] | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : | |
measurable_set[hτ.measurable_space] {ω | τ ω ≤ π ω} := | |
begin | |
rw hτ.measurable_set, | |
intro j, | |
have : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}, | |
{ ext1 ω, | |
simp only [set.mem_inter_eq, set.mem_set_of_eq, min_le_iff, le_min_iff, le_refl, and_true, | |
and.congr_left_iff], | |
intro h, | |
simp only [h, or_self, and_true], | |
by_cases hj : j ≤ π ω, | |
{ simp only [hj, h.trans hj, or_self], }, | |
{ simp only [hj, or_false], }, }, | |
rw this, | |
refine measurable_set.inter _ (hτ.measurable_set_le j), | |
apply measurable_set_le, | |
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, | |
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, | |
end | |
lemma measurable_set_stopping_time_le [topological_space ι] | |
[second_countable_topology ι] [order_topology ι] [measurable_space ι] [borel_space ι] | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : | |
measurable_set[hπ.measurable_space] {ω | τ ω ≤ π ω} := | |
begin | |
suffices : measurable_set[(hτ.min hπ).measurable_space] {ω : Ω | τ ω ≤ π ω}, | |
by { rw measurable_set_min_iff hτ hπ at this, exact this.2, }, | |
rw [← set.univ_inter {ω : Ω | τ ω ≤ π ω}, ← hτ.measurable_set_inter_le_iff hπ, set.univ_inter], | |
exact measurable_set_le_stopping_time hτ hπ, | |
end | |
lemma measurable_set_eq_stopping_time [add_group ι] | |
[topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι] | |
[measurable_singleton_class ι] [second_countable_topology ι] [has_measurable_sub₂ ι] | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : | |
measurable_set[hτ.measurable_space] {ω | τ ω = π ω} := | |
begin | |
rw hτ.measurable_set, | |
intro j, | |
have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} | |
= {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}, | |
{ ext1 ω, | |
simp only [set.mem_inter_eq, set.mem_set_of_eq], | |
refine ⟨λ h, ⟨⟨_, h.2⟩, _⟩, λ h, ⟨_, h.1.2⟩⟩, | |
{ rw h.1, }, | |
{ rw ← h.1, exact h.2, }, | |
{ cases h with h' hσ_le, | |
cases h' with h_eq hτ_le, | |
rwa [min_eq_left hτ_le, min_eq_left hσ_le] at h_eq, }, }, | |
rw this, | |
refine measurable_set.inter (measurable_set.inter _ (hτ.measurable_set_le j)) | |
(hπ.measurable_set_le j), | |
apply measurable_set_eq_fun, | |
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, | |
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, | |
end | |
lemma measurable_set_eq_stopping_time_of_encodable [encodable ι] | |
[topological_space ι] [measurable_space ι] [borel_space ι] [order_topology ι] | |
[measurable_singleton_class ι] [second_countable_topology ι] | |
(hτ : is_stopping_time f τ) (hπ : is_stopping_time f π) : | |
measurable_set[hτ.measurable_space] {ω | τ ω = π ω} := | |
begin | |
rw hτ.measurable_set, | |
intro j, | |
have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} | |
= {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}, | |
{ ext1 ω, | |
simp only [set.mem_inter_eq, set.mem_set_of_eq], | |
refine ⟨λ h, ⟨⟨_, h.2⟩, _⟩, λ h, ⟨_, h.1.2⟩⟩, | |
{ rw h.1, }, | |
{ rw ← h.1, exact h.2, }, | |
{ cases h with h' hπ_le, | |
cases h' with h_eq hτ_le, | |
rwa [min_eq_left hτ_le, min_eq_left hπ_le] at h_eq, }, }, | |
rw this, | |
refine measurable_set.inter (measurable_set.inter _ (hτ.measurable_set_le j)) | |
(hπ.measurable_set_le j), | |
apply measurable_set_eq_fun_of_encodable, | |
{ exact (hτ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, | |
{ exact (hπ.min_const j).measurable_of_le (λ _, min_le_right _ _), }, | |
end | |
end linear_order | |
end is_stopping_time | |
section linear_order | |
/-! ## Stopped value and stopped process -/ | |
/-- Given a map `u : ι → Ω → E`, its stopped value with respect to the stopping | |
time `τ` is the map `x ↦ u (τ ω) x`. -/ | |
def stopped_value (u : ι → Ω → β) (τ : Ω → ι) : Ω → β := | |
λ ω, u (τ ω) ω | |
lemma stopped_value_const (u : ι → Ω → β) (i : ι) : stopped_value u (λ ω, i) = u i := | |
rfl | |
variable [linear_order ι] | |
/-- Given a map `u : ι → Ω → E`, the stopped process with respect to `τ` is `u i x` if | |
`i ≤ τ ω`, and `u (τ ω) x` otherwise. | |
Intuitively, the stopped process stops evolving once the stopping time has occured. -/ | |
def stopped_process (u : ι → Ω → β) (τ : Ω → ι) : ι → Ω → β := | |
λ i ω, u (min i (τ ω)) ω | |
lemma stopped_process_eq_of_le {u : ι → Ω → β} {τ : Ω → ι} | |
{i : ι} {ω : Ω} (h : i ≤ τ ω) : stopped_process u τ i ω = u i ω := | |
by simp [stopped_process, min_eq_left h] | |
lemma stopped_process_eq_of_ge {u : ι → Ω → β} {τ : Ω → ι} | |
{i : ι} {ω : Ω} (h : τ ω ≤ i) : stopped_process u τ i ω = u (τ ω) ω := | |
by simp [stopped_process, min_eq_right h] | |
section prog_measurable | |
variables [measurable_space ι] [topological_space ι] [order_topology ι] | |
[second_countable_topology ι] [borel_space ι] | |
[topological_space β] | |
{u : ι → Ω → β} {τ : Ω → ι} {f : filtration ι m} | |
lemma prog_measurable_min_stopping_time [metrizable_space ι] (hτ : is_stopping_time f τ) : | |
prog_measurable f (λ i ω, min i (τ ω)) := | |
begin | |
intro i, | |
let m_prod : measurable_space (set.Iic i × Ω) := measurable_space.prod _ (f i), | |
let m_set : ∀ t : set (set.Iic i × Ω), measurable_space t := | |
λ _, @subtype.measurable_space (set.Iic i × Ω) _ m_prod, | |
let s := {p : set.Iic i × Ω | τ p.2 ≤ i}, | |
have hs : measurable_set[m_prod] s, from @measurable_snd (set.Iic i) Ω _ (f i) _ (hτ i), | |
have h_meas_fst : ∀ t : set (set.Iic i × Ω), | |
measurable[m_set t] (λ x : t, ((x : set.Iic i × Ω).fst : ι)), | |
from λ t, (@measurable_subtype_coe (set.Iic i × Ω) m_prod _).fst.subtype_coe, | |
apply measurable.strongly_measurable, | |
refine measurable_of_restrict_of_restrict_compl hs _ _, | |
{ refine @measurable.min _ _ _ _ _ (m_set s) _ _ _ _ _ (h_meas_fst s) _, | |
refine @measurable_of_Iic ι s _ _ _ (m_set s) _ _ _ _ (λ j, _), | |
have h_set_eq : (λ x : s, τ (x : set.Iic i × Ω).snd) ⁻¹' set.Iic j | |
= (λ x : s, (x : set.Iic i × Ω).snd) ⁻¹' {ω | τ ω ≤ min i j}, | |
{ ext1 ω, | |
simp only [set.mem_preimage, set.mem_Iic, iff_and_self, le_min_iff, set.mem_set_of_eq], | |
exact λ _, ω.prop, }, | |
rw h_set_eq, | |
suffices h_meas : @measurable _ _ (m_set s) (f i) (λ x : s, (x : set.Iic i × Ω).snd), | |
from h_meas (f.mono (min_le_left _ _) _ (hτ.measurable_set_le (min i j))), | |
exact measurable_snd.comp (@measurable_subtype_coe _ m_prod _), }, | |
{ suffices h_min_eq_left : (λ x : sᶜ, min ↑((x : set.Iic i × Ω).fst) (τ (x : set.Iic i × Ω).snd)) | |
= λ x : sᶜ, ↑((x : set.Iic i × Ω).fst), | |
{ rw [set.restrict, h_min_eq_left], | |
exact h_meas_fst _, }, | |
ext1 ω, | |
rw min_eq_left, | |
have hx_fst_le : ↑(ω : set.Iic i × Ω).fst ≤ i, from (ω : set.Iic i × Ω).fst.prop, | |
refine hx_fst_le.trans (le_of_lt _), | |
convert ω.prop, | |
simp only [not_le, set.mem_compl_eq, set.mem_set_of_eq], }, | |
end | |
lemma prog_measurable.stopped_process [metrizable_space ι] | |
(h : prog_measurable f u) (hτ : is_stopping_time f τ) : | |
prog_measurable f (stopped_process u τ) := | |
h.comp (prog_measurable_min_stopping_time hτ) (λ i x, min_le_left _ _) | |
lemma prog_measurable.adapted_stopped_process [metrizable_space ι] | |
(h : prog_measurable f u) (hτ : is_stopping_time f τ) : | |
adapted f (stopped_process u τ) := | |
(h.stopped_process hτ).adapted | |
lemma prog_measurable.strongly_measurable_stopped_process [metrizable_space ι] | |
(hu : prog_measurable f u) (hτ : is_stopping_time f τ) (i : ι) : | |
strongly_measurable (stopped_process u τ i) := | |
(hu.adapted_stopped_process hτ i).mono (f.le _) | |
lemma strongly_measurable_stopped_value_of_le | |
(h : prog_measurable f u) (hτ : is_stopping_time f τ) {n : ι} (hτ_le : ∀ ω, τ ω ≤ n) : | |
strongly_measurable[f n] (stopped_value u τ) := | |
begin | |
have : stopped_value u τ = (λ (p : set.Iic n × Ω), u ↑(p.fst) p.snd) ∘ (λ ω, (⟨τ ω, hτ_le ω⟩, ω)), | |
{ ext1 ω, simp only [stopped_value, function.comp_app, subtype.coe_mk], }, | |
rw this, | |
refine strongly_measurable.comp_measurable (h n) _, | |
exact (hτ.measurable_of_le hτ_le).subtype_mk.prod_mk measurable_id, | |
end | |
lemma measurable_stopped_value [metrizable_space β] [measurable_space β] [borel_space β] | |
(hf_prog : prog_measurable f u) (hτ : is_stopping_time f τ) : | |
measurable[hτ.measurable_space] (stopped_value u τ) := | |
begin | |
have h_str_meas : ∀ i, strongly_measurable[f i] (stopped_value u (λ ω, min (τ ω) i)), | |
from λ i, strongly_measurable_stopped_value_of_le hf_prog (hτ.min_const i) | |
(λ _, min_le_right _ _), | |
intros t ht i, | |
suffices : stopped_value u τ ⁻¹' t ∩ {ω : Ω | τ ω ≤ i} | |
= stopped_value u (λ ω, min (τ ω) i) ⁻¹' t ∩ {ω : Ω | τ ω ≤ i}, | |
by { rw this, exact ((h_str_meas i).measurable ht).inter (hτ.measurable_set_le i), }, | |
ext1 ω, | |
simp only [stopped_value, set.mem_inter_eq, set.mem_preimage, set.mem_set_of_eq, | |
and.congr_left_iff], | |
intro h, | |
rw min_eq_left h, | |
end | |
end prog_measurable | |
end linear_order | |
section nat | |
/-! ### Filtrations indexed by `ℕ` -/ | |
open filtration | |
variables {f : filtration ℕ m} {u : ℕ → Ω → β} {τ π : Ω → ℕ} | |
lemma stopped_value_sub_eq_sum [add_comm_group β] (hle : τ ≤ π) : | |
stopped_value u π - stopped_value u τ = | |
λ ω, (∑ i in finset.Ico (τ ω) (π ω), (u (i + 1) - u i)) ω := | |
begin | |
ext ω, | |
rw [finset.sum_Ico_eq_sub _ (hle ω), finset.sum_range_sub, finset.sum_range_sub], | |
simp [stopped_value], | |
end | |
lemma stopped_value_sub_eq_sum' [add_comm_group β] (hle : τ ≤ π) {N : ℕ} (hbdd : ∀ ω, π ω ≤ N) : | |
stopped_value u π - stopped_value u τ = | |
λ ω, (∑ i in finset.range (N + 1), | |
set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω := | |
begin | |
rw stopped_value_sub_eq_sum hle, | |
ext ω, | |
simp only [finset.sum_apply, finset.sum_indicator_eq_sum_filter], | |
refine finset.sum_congr _ (λ _ _, rfl), | |
ext i, | |
simp only [finset.mem_filter, set.mem_set_of_eq, finset.mem_range, finset.mem_Ico], | |
exact ⟨λ h, ⟨lt_trans h.2 (nat.lt_succ_iff.2 $ hbdd _), h⟩, λ h, h.2⟩ | |
end | |
section add_comm_monoid | |
variables [add_comm_monoid β] | |
/-- For filtrations indexed by `ℕ`, `adapted` and `prog_measurable` are equivalent. This lemma | |
provides `adapted f u → prog_measurable f u`. See `prog_measurable.adapted` for the reverse | |
direction, which is true more generally. -/ | |
lemma adapted.prog_measurable_of_nat [topological_space β] [has_continuous_add β] | |
(h : adapted f u) : prog_measurable f u := | |
begin | |
intro i, | |
have : (λ p : ↥(set.Iic i) × Ω, u ↑(p.fst) p.snd) | |
= λ p : ↥(set.Iic i) × Ω, ∑ j in finset.range (i + 1), if ↑p.fst = j then u j p.snd else 0, | |
{ ext1 p, | |
rw finset.sum_ite_eq, | |
have hp_mem : (p.fst : ℕ) ∈ finset.range (i + 1) := finset.mem_range_succ_iff.mpr p.fst.prop, | |
simp only [hp_mem, if_true], }, | |
rw this, | |
refine finset.strongly_measurable_sum _ (λ j hj, strongly_measurable.ite _ _ _), | |
{ suffices h_meas : measurable[measurable_space.prod _ (f i)] | |
(λ a : ↥(set.Iic i) × Ω, (a.fst : ℕ)), | |
from h_meas (measurable_set_singleton j), | |
exact measurable_fst.subtype_coe, }, | |
{ have h_le : j ≤ i, from finset.mem_range_succ_iff.mp hj, | |
exact (strongly_measurable.mono (h j) (f.mono h_le)).comp_measurable measurable_snd, }, | |
{ exact strongly_measurable_const, }, | |
end | |
/-- For filtrations indexed by `ℕ`, the stopped process obtained from an adapted process is | |
adapted. -/ | |
lemma adapted.stopped_process_of_nat [topological_space β] [has_continuous_add β] | |
(hu : adapted f u) (hτ : is_stopping_time f τ) : | |
adapted f (stopped_process u τ) := | |
(hu.prog_measurable_of_nat.stopped_process hτ).adapted | |
lemma adapted.strongly_measurable_stopped_process_of_nat [topological_space β] | |
[has_continuous_add β] | |
(hτ : is_stopping_time f τ) (hu : adapted f u) (n : ℕ) : | |
strongly_measurable (stopped_process u τ n) := | |
hu.prog_measurable_of_nat.strongly_measurable_stopped_process hτ n | |
lemma stopped_value_eq {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) : | |
stopped_value u τ = | |
λ x, (∑ i in finset.range (N + 1), set.indicator {ω | τ ω = i} (u i)) x := | |
begin | |
ext y, | |
rw [stopped_value, finset.sum_apply, finset.sum_eq_single (τ y)], | |
{ rw set.indicator_of_mem, | |
exact rfl }, | |
{ exact λ i hi hneq, set.indicator_of_not_mem hneq.symm _ }, | |
{ intro hy, | |
rw set.indicator_of_not_mem, | |
exact λ _, hy (finset.mem_range.2 $ lt_of_le_of_lt (hbdd _) (nat.lt_succ_self _)) } | |
end | |
lemma stopped_process_eq (n : ℕ) : | |
stopped_process u τ n = | |
set.indicator {a | n ≤ τ a} (u n) + | |
∑ i in finset.range n, set.indicator {ω | τ ω = i} (u i) := | |
begin | |
ext ω, | |
rw [pi.add_apply, finset.sum_apply], | |
cases le_or_lt n (τ ω), | |
{ rw [stopped_process_eq_of_le h, set.indicator_of_mem, finset.sum_eq_zero, add_zero], | |
{ intros m hm, | |
rw finset.mem_range at hm, | |
exact set.indicator_of_not_mem ((lt_of_lt_of_le hm h).ne.symm) _ }, | |
{ exact h } }, | |
{ rw [stopped_process_eq_of_ge (le_of_lt h), finset.sum_eq_single_of_mem (τ ω)], | |
{ rw [set.indicator_of_not_mem, zero_add, set.indicator_of_mem], | |
{ exact rfl }, -- refl does not work | |
{ exact not_le.2 h } }, | |
{ rwa [finset.mem_range] }, | |
{ intros b hb hneq, | |
rw set.indicator_of_not_mem, | |
exact hneq.symm } }, | |
end | |
end add_comm_monoid | |
section normed_add_comm_group | |
variables [normed_add_comm_group β] {p : ℝ≥0∞} {μ : measure Ω} | |
lemma mem_ℒp_stopped_process (hτ : is_stopping_time f τ) (hu : ∀ n, mem_ℒp (u n) p μ) (n : ℕ) : | |
mem_ℒp (stopped_process u τ n) p μ := | |
begin | |
rw stopped_process_eq, | |
refine mem_ℒp.add _ _, | |
{ exact mem_ℒp.indicator (f.le n {a : Ω | n ≤ τ a} (hτ.measurable_set_ge n)) (hu n) }, | |
{ suffices : mem_ℒp (λ ω, ∑ (i : ℕ) in finset.range n, {a : Ω | τ a = i}.indicator (u i) ω) p μ, | |
{ convert this, ext1 ω, simp only [finset.sum_apply] }, | |
refine mem_ℒp_finset_sum _ (λ i hi, mem_ℒp.indicator _ (hu i)), | |
exact f.le i {a : Ω | τ a = i} (hτ.measurable_set_eq i) }, | |
end | |
lemma integrable_stopped_process (hτ : is_stopping_time f τ) | |
(hu : ∀ n, integrable (u n) μ) (n : ℕ) : | |
integrable (stopped_process u τ n) μ := | |
by { simp_rw ← mem_ℒp_one_iff_integrable at hu ⊢, exact mem_ℒp_stopped_process hτ hu n, } | |
lemma mem_ℒp_stopped_value (hτ : is_stopping_time f τ) | |
(hu : ∀ n, mem_ℒp (u n) p μ) {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) : | |
mem_ℒp (stopped_value u τ) p μ := | |
begin | |
rw stopped_value_eq hbdd, | |
suffices : mem_ℒp (λ x, ∑ (i : ℕ) in finset.range (N + 1), | |
{a : Ω | τ a = i}.indicator (u i) x) p μ, | |
{ convert this, ext1 ω, simp only [finset.sum_apply] }, | |
refine mem_ℒp_finset_sum _ (λ i hi, mem_ℒp.indicator _ (hu i)), | |
exact f.le i {a : Ω | τ a = i} (hτ.measurable_set_eq i) | |
end | |
lemma integrable_stopped_value (hτ : is_stopping_time f τ) | |
(hu : ∀ n, integrable (u n) μ) {N : ℕ} (hbdd : ∀ ω, τ ω ≤ N) : | |
integrable (stopped_value u τ) μ := | |
by { simp_rw ← mem_ℒp_one_iff_integrable at hu ⊢, exact mem_ℒp_stopped_value hτ hu hbdd, } | |
end normed_add_comm_group | |
end nat | |
section piecewise_const | |
variables [preorder ι] {𝒢 : filtration ι m} {τ η : Ω → ι} {i j : ι} {s : set Ω} | |
[decidable_pred (∈ s)] | |
/-- Given stopping times `τ` and `η` which are bounded below, `set.piecewise s τ η` is also | |
a stopping time with respect to the same filtration. -/ | |
lemma is_stopping_time.piecewise_of_le (hτ_st : is_stopping_time 𝒢 τ) | |
(hη_st : is_stopping_time 𝒢 η) (hτ : ∀ ω, i ≤ τ ω) (hη : ∀ x, i ≤ η x) | |
(hs : measurable_set[𝒢 i] s) : | |
is_stopping_time 𝒢 (s.piecewise τ η) := | |
begin | |
intro n, | |
have : {x | s.piecewise τ η x ≤ n} | |
= (s ∩ {ω | τ ω ≤ n}) ∪ (sᶜ ∩ {x | η x ≤ n}), | |
{ ext1 ω, | |
simp only [set.piecewise, set.mem_inter_eq, set.mem_set_of_eq, and.congr_right_iff], | |
by_cases hx : ω ∈ s; simp [hx], }, | |
rw this, | |
by_cases hin : i ≤ n, | |
{ have hs_n : measurable_set[𝒢 n] s, from 𝒢.mono hin _ hs, | |
exact (hs_n.inter (hτ_st n)).union (hs_n.compl.inter (hη_st n)), }, | |
{ have hτn : ∀ ω, ¬ τ ω ≤ n := λ ω hτn, hin ((hτ ω).trans hτn), | |
have hηn : ∀ ω, ¬ η ω ≤ n := λ ω hηn, hin ((hη ω).trans hηn), | |
simp [hτn, hηn], }, | |
end | |
lemma is_stopping_time_piecewise_const (hij : i ≤ j) (hs : measurable_set[𝒢 i] s) : | |
is_stopping_time 𝒢 (s.piecewise (λ _, i) (λ _, j)) := | |
(is_stopping_time_const 𝒢 i).piecewise_of_le (is_stopping_time_const 𝒢 j) | |
(λ x, le_rfl) (λ _, hij) hs | |
lemma stopped_value_piecewise_const {ι' : Type*} {i j : ι'} {f : ι' → Ω → ℝ} : | |
stopped_value f (s.piecewise (λ _, i) (λ _, j)) = s.piecewise (f i) (f j) := | |
by { ext ω, rw stopped_value, by_cases hx : ω ∈ s; simp [hx] } | |
lemma stopped_value_piecewise_const' {ι' : Type*} {i j : ι'} {f : ι' → Ω → ℝ} : | |
stopped_value f (s.piecewise (λ _, i) (λ _, j)) = s.indicator (f i) + sᶜ.indicator (f j) := | |
by { ext ω, rw stopped_value, by_cases hx : ω ∈ s; simp [hx] } | |
end piecewise_const | |
end measure_theory | |