Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Aodv_Loop_Freedom.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke, Inria | |
*) | |
section "Lift and transfer invariants to show loop freedom" | |
theory Aodv_Loop_Freedom | |
imports AWN.OClosed_Transfer AWN.Qmsg_Lifting Global_Invariants Loop_Freedom | |
begin | |
subsection \<open>Lift to parallel processes with queues\<close> | |
lemma par_step_no_change_on_send_or_receive: | |
fixes \<sigma> s a \<sigma>' s' | |
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)" | |
and "a \<noteq> \<tau>" | |
shows "\<sigma>' i = \<sigma> i" | |
using assms by (rule qmsg_no_change_on_send_or_receive) | |
lemma par_nhop_quality_increases: | |
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile> (otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m. | |
msg_fresh \<sigma> m \<and> msg_zhops m)), | |
other quality_increases {i} \<rightarrow>) | |
global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip) | |
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip | |
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))" | |
proof (rule lift_into_qmsg [OF seq_nhop_quality_increases]) | |
show "opaodv i \<Turnstile>\<^sub>A (otherwith ((=)) {i} | |
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)), | |
other quality_increases {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))" | |
proof (rule ostep_invariant_weakenE [OF oquality_increases], simp_all) | |
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition" | |
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)) t" | |
thus "quality_increases (fst (fst t) i) (fst (snd (snd t)) i)" | |
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label) | |
next | |
fix \<sigma> \<sigma>' a | |
assume "otherwith ((=)) {i} | |
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a" | |
thus "otherwith quality_increases {i} (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma> \<sigma>' a" | |
by - (erule weaken_otherwith, auto) | |
qed | |
qed auto | |
lemma par_rreq_rrep_sn_quality_increases: | |
"opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))" | |
proof - | |
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))" | |
by (rule ostep_invariant_weakenE [OF olocal_quality_increases]) | |
(auto dest!: onllD seqllD elim!: aodv_ex_labelE) | |
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))" | |
by (rule lift_step_into_qmsg_statelessassm) simp_all | |
thus ?thesis by rule auto | |
qed | |
lemma par_rreq_rrep_nsqn_fresh_any_step: | |
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, | |
other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)" | |
proof - | |
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)" | |
proof (rule ostep_invariant_weakenE [OF rreq_rrep_nsqn_fresh_any_step_invariant]) | |
fix t | |
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a) t" | |
thus "globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a) t" | |
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label) | |
qed auto | |
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)" | |
by (rule lift_step_into_qmsg_statelessassm) simp_all | |
thus ?thesis by rule auto | |
qed | |
lemma par_anycast_msg_zhops: | |
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(_, a, _). anycast msg_zhops a)" | |
proof - | |
from anycast_msg_zhops initiali_aodv oaodv_trans aodv_trans | |
have "opaodv i \<Turnstile>\<^sub>A (act TT, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a))" | |
by (rule open_seq_step_invariant) | |
hence "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(_, a, _). anycast msg_zhops a)" | |
proof (rule ostep_invariant_weakenE) | |
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition" | |
assume "seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)) t" | |
thus "globala (\<lambda>(_, a, _). anycast msg_zhops a) t" | |
by (cases t) (clarsimp dest!: seqllD onllD, metis aodv_ex_label) | |
qed simp_all | |
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(_, a, _). anycast msg_zhops a)" | |
by (rule lift_step_into_qmsg_statelessassm) simp_all | |
thus ?thesis by rule auto | |
qed | |
subsection \<open>Lift to nodes\<close> | |
lemma node_step_no_change_on_send_or_receive: | |
assumes "((\<sigma>, NodeS i P R), a, (\<sigma>', NodeS i' P' R')) \<in> onode_sos | |
(oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G))" | |
and "a \<noteq> \<tau>" | |
shows "\<sigma>' i = \<sigma> i" | |
using assms | |
by (cases a) (auto elim!: par_step_no_change_on_send_or_receive) | |
lemma node_nhop_quality_increases: | |
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile> | |
(otherwith ((=)) {i} | |
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)), | |
other quality_increases {i} | |
\<rightarrow>) global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip) | |
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip | |
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))" | |
by (rule node_lift [OF par_nhop_quality_increases]) auto | |
lemma node_quality_increases: | |
"\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, | |
other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))" | |
by (rule node_lift_step_statelessassm [OF par_rreq_rrep_sn_quality_increases]) simp | |
lemma node_rreq_rrep_nsqn_fresh_any_step: | |
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A | |
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, a, \<sigma>'). castmsg (msg_fresh \<sigma>) a)" | |
by (rule node_lift_anycast_statelessassm [OF par_rreq_rrep_nsqn_fresh_any_step]) | |
lemma node_anycast_msg_zhops: | |
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A | |
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(_, a, _). castmsg msg_zhops a)" | |
by (rule node_lift_anycast_statelessassm [OF par_anycast_msg_zhops]) | |
lemma node_silent_change_only: | |
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>, | |
other (\<lambda>_ _. True) {i} \<rightarrow>) | |
globala (\<lambda>(\<sigma>, a, \<sigma>'). a \<noteq> \<tau> \<longrightarrow> \<sigma>' i = \<sigma> i)" | |
proof (rule ostep_invariantI, simp (no_asm), rule impI) | |
fix \<sigma> \<zeta> a \<sigma>' \<zeta>' | |
assume or: "(\<sigma>, \<zeta>) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o) | |
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>) | |
(other (\<lambda>_ _. True) {i})" | |
and tr: "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)" | |
and "a \<noteq> \<tau>\<^sub>n" | |
from or obtain p R where "\<zeta> = NodeS i p R" | |
by - (drule node_net_state, metis) | |
with tr have "((\<sigma>, NodeS i p R), a, (\<sigma>', \<zeta>')) | |
\<in> onode_sos (oparp_sos i (trans (opaodv i)) (trans qmsg))" | |
by simp | |
thus "\<sigma>' i = \<sigma> i" using \<open>a \<noteq> \<tau>\<^sub>n\<close> | |
by (cases rule: onode_sos.cases) | |
(auto elim: qmsg_no_change_on_send_or_receive) | |
qed | |
subsection \<open>Lift to partial networks\<close> | |
lemma arrive_rreq_rrep_nsqn_fresh_inc_sn [simp]: | |
assumes "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> P \<sigma> m) \<sigma> m" | |
shows "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> m" | |
using assms by (cases m) auto | |
lemma opnet_nhop_quality_increases: | |
shows "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p \<Turnstile> | |
(otherwith ((=)) (net_tree_ips p) | |
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)), | |
other quality_increases (net_tree_ips p) \<rightarrow>) | |
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip. | |
let nhip = the (nhop (rt (\<sigma> i)) dip) | |
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip | |
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))" | |
proof (rule pnet_lift [OF node_nhop_quality_increases]) | |
fix i R | |
have "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, | |
other (\<lambda>_ _. True) {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>'). | |
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)" | |
proof (rule ostep_invariantI, simp (no_asm)) | |
fix \<sigma> s a \<sigma>' s' | |
assume or: "(\<sigma>, s) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o) | |
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>) | |
(other (\<lambda>_ _. True) {i})" | |
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)" | |
and am: "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> a" | |
from or tr am have "castmsg (msg_fresh \<sigma>) a" | |
by (auto dest!: ostep_invariantD [OF node_rreq_rrep_nsqn_fresh_any_step]) | |
moreover from or tr am have "castmsg (msg_zhops) a" | |
by (auto dest!: ostep_invariantD [OF node_anycast_msg_zhops]) | |
ultimately show "castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a" | |
by (case_tac a) auto | |
qed | |
thus "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A | |
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>, | |
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, _). | |
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)" | |
by rule auto | |
next | |
fix i R | |
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A | |
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>, | |
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>'). | |
a \<noteq> \<tau> \<and> (\<forall>d. a \<noteq> i:deliver(d)) \<longrightarrow> \<sigma> i = \<sigma>' i)" | |
by (rule ostep_invariant_weakenE [OF node_silent_change_only]) auto | |
next | |
fix i R | |
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A | |
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>, | |
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>'). | |
a = \<tau> \<or> (\<exists>d. a = i:deliver(d)) \<longrightarrow> quality_increases (\<sigma> i) (\<sigma>' i))" | |
by (rule ostep_invariant_weakenE [OF node_quality_increases]) auto | |
qed simp_all | |
subsection \<open>Lift to closed networks\<close> | |
lemma onet_nhop_quality_increases: | |
shows "oclosed (opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p) | |
\<Turnstile> (\<lambda>_ _ _. True, other quality_increases (net_tree_ips p) \<rightarrow>) | |
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip. | |
let nhip = the (nhop (rt (\<sigma> i)) dip) | |
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip | |
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))" | |
(is "_ \<Turnstile> (_, ?U \<rightarrow>) ?inv") | |
proof (rule inclosed_closed) | |
from opnet_nhop_quality_increases | |
show "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p | |
\<Turnstile> (otherwith ((=)) (net_tree_ips p) inoclosed, ?U \<rightarrow>) ?inv" | |
proof (rule oinvariant_weakenE) | |
fix \<sigma> \<sigma>' :: "ip \<Rightarrow> state" and a :: "msg node_action" | |
assume "otherwith ((=)) (net_tree_ips p) inoclosed \<sigma> \<sigma>' a" | |
thus "otherwith ((=)) (net_tree_ips p) | |
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a" | |
proof (rule otherwithEI) | |
fix \<sigma> :: "ip \<Rightarrow> state" and a :: "msg node_action" | |
assume "inoclosed \<sigma> a" | |
thus "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma> a" | |
proof (cases a) | |
fix ii ni ms | |
assume "a = ii\<not>ni:arrive(ms)" | |
moreover with \<open>inoclosed \<sigma> a\<close> obtain d di where "ms = newpkt(d, di)" | |
by (cases ms) auto | |
ultimately show ?thesis by simp | |
qed simp_all | |
qed | |
qed | |
qed | |
subsection \<open>Transfer into the standard model\<close> | |
interpretation aodv_openproc: openproc paodv opaodv id | |
rewrites "aodv_openproc.initmissing = initmissing" | |
proof - | |
show "openproc paodv opaodv id" | |
proof unfold_locales | |
fix i :: ip | |
have "{(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<and> (\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j \<in> fst ` \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V j)} \<subseteq> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def | |
proof (rule equalityD1) | |
show "\<And>f p. {(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> {(f i, p)} \<and> (\<forall>j. j \<noteq> i | |
\<longrightarrow> \<sigma> j \<in> fst ` {(f j, p)})} = {(f, p)}" | |
by (rule set_eqI) auto | |
qed | |
thus "{ (\<sigma>, \<zeta>) |\<sigma> \<zeta> s. s \<in> init (paodv i) | |
\<and> (\<sigma> i, \<zeta>) = id s | |
\<and> (\<forall>j. j\<noteq>i \<longrightarrow> \<sigma> j \<in> (fst o id) ` init (paodv j)) } \<subseteq> init (opaodv i)" | |
by simp | |
next | |
show "\<forall>j. init (paodv j) \<noteq> {}" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp | |
next | |
fix i s a s' \<sigma> \<sigma>' | |
assume "\<sigma> i = fst (id s)" | |
and "\<sigma>' i = fst (id s')" | |
and "(s, a, s') \<in> trans (paodv i)" | |
then obtain q q' where "s = (\<sigma> i, q)" | |
and "s' = (\<sigma>' i, q')" | |
and "((\<sigma> i, q), a, (\<sigma>' i, q')) \<in> trans (paodv i)" | |
by (cases s, cases s') auto | |
from this(3) have "((\<sigma>, q), a, (\<sigma>', q')) \<in> trans (opaodv i)" | |
by simp (rule open_seqp_action [OF aodv_wf]) | |
with \<open>s = (\<sigma> i, q)\<close> and \<open>s' = (\<sigma>' i, q')\<close> | |
show "((\<sigma>, snd (id s)), a, (\<sigma>', snd (id s'))) \<in> trans (opaodv i)" | |
by simp | |
qed | |
then interpret opn: openproc paodv opaodv id . | |
have [simp]: "\<And>i. (SOME x. x \<in> (fst o id) ` init (paodv i)) = aodv_init i" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp | |
hence "\<And>i. openproc.initmissing paodv id i = initmissing i" | |
unfolding opn.initmissing_def opn.someinit_def initmissing_def | |
by (auto split: option.split) | |
thus "openproc.initmissing paodv id = initmissing" .. | |
qed | |
interpretation aodv_openproc_par_qmsg: openproc_parq paodv opaodv id qmsg | |
rewrites "aodv_openproc_par_qmsg.netglobal = netglobal" | |
and "aodv_openproc_par_qmsg.initmissing = initmissing" | |
proof - | |
show "openproc_parq paodv opaodv id qmsg" | |
by (unfold_locales) simp | |
then interpret opq: openproc_parq paodv opaodv id qmsg . | |
have im: "\<And>\<sigma>. openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) \<sigma> | |
= initmissing \<sigma>" | |
unfolding opq.initmissing_def opq.someinit_def initmissing_def | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def by (clarsimp cong: option.case_cong) | |
thus "openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = initmissing" | |
by (rule ext) | |
have "\<And>P \<sigma>. openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) P \<sigma> | |
= netglobal P \<sigma>" | |
unfolding opq.netglobal_def netglobal_def opq.initmissing_def initmissing_def opq.someinit_def | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def | |
by (clarsimp cong: option.case_cong | |
simp del: One_nat_def | |
simp add: fst_initmissing_netgmap_default_aodv_init_netlift | |
[symmetric, unfolded initmissing_def]) | |
thus "openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = netglobal" | |
by auto | |
qed | |
lemma net_nhop_quality_increases: | |
assumes "wf_net_tree n" | |
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal | |
(\<lambda>\<sigma>. \<forall>i dip. let nhip = the (nhop (rt (\<sigma> i)) dip) | |
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip | |
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))" | |
(is "_ \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i. ?inv \<sigma> i)") | |
proof - | |
from \<open>wf_net_tree n\<close> | |
have proto: "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. \<forall>dip. | |
let nhip = the (nhop (rt (\<sigma> i)) dip) | |
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip | |
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))" | |
by (rule aodv_openproc_par_qmsg.close_opnet [OF _ onet_nhop_quality_increases]) | |
show ?thesis | |
unfolding invariant_def opnet_sos.opnet_tau1 | |
proof (rule, simp only: aodv_openproc_par_qmsg.netglobalsimp | |
fst_initmissing_netgmap_pair_fst, rule allI) | |
fix \<sigma> i | |
assume sr: "\<sigma> \<in> reachable (closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n)) TT" | |
hence "\<forall>i\<in>net_tree_ips n. ?inv (fst (initmissing (netgmap fst \<sigma>))) i" | |
by - (drule invariantD [OF proto], | |
simp only: aodv_openproc_par_qmsg.netglobalsimp | |
fst_initmissing_netgmap_pair_fst) | |
thus "?inv (fst (initmissing (netgmap fst \<sigma>))) i" | |
proof (cases "i\<in>net_tree_ips n") | |
assume "i\<notin>net_tree_ips n" | |
from sr have "\<sigma> \<in> reachable (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) TT" .. | |
hence "net_ips \<sigma> = net_tree_ips n" .. | |
with \<open>i\<notin>net_tree_ips n\<close> have "i\<notin>net_ips \<sigma>" by simp | |
hence "(fst (initmissing (netgmap fst \<sigma>))) i = aodv_init i" | |
by simp | |
thus ?thesis by simp | |
qed metis | |
qed | |
qed | |
subsection \<open>Loop freedom of AODV\<close> | |
theorem aodv_loop_freedom: | |
assumes "wf_net_tree n" | |
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>dip. irrefl ((rt_graph \<sigma> dip)\<^sup>+))" | |
using assms by (rule aodv_openproc_par_qmsg.netglobal_weakenE | |
[OF net_nhop_quality_increases inv_to_loop_freedom]) | |
end | |