Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /AODV /Aodv_Loop_Freedom.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
24.3 kB
(* Title: Aodv_Loop_Freedom.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke, Inria
*)
section "Lift and transfer invariants to show loop freedom"
theory Aodv_Loop_Freedom
imports AWN.OClosed_Transfer AWN.Qmsg_Lifting Global_Invariants Loop_Freedom
begin
subsection \<open>Lift to parallel processes with queues\<close>
lemma par_step_no_change_on_send_or_receive:
fixes \<sigma> s a \<sigma>' s'
assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
and "a \<noteq> \<tau>"
shows "\<sigma>' i = \<sigma> i"
using assms by (rule qmsg_no_change_on_send_or_receive)
lemma par_nhop_quality_increases:
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile> (otherwith ((=)) {i} (orecvmsg (\<lambda>\<sigma> m.
msg_fresh \<sigma> m \<and> msg_zhops m)),
other quality_increases {i} \<rightarrow>)
global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
proof (rule lift_into_qmsg [OF seq_nhop_quality_increases])
show "opaodv i \<Turnstile>\<^sub>A (otherwith ((=)) {i}
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
other quality_increases {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
proof (rule ostep_invariant_weakenE [OF oquality_increases], simp_all)
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition"
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), _, (\<sigma>', _)). \<forall>j. quality_increases (\<sigma> j) (\<sigma>' j)) t"
thus "quality_increases (fst (fst t) i) (fst (snd (snd t)) i)"
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label)
next
fix \<sigma> \<sigma>' a
assume "otherwith ((=)) {i}
(orecvmsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a"
thus "otherwith quality_increases {i} (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma> \<sigma>' a"
by - (erule weaken_otherwith, auto)
qed
qed auto
lemma par_rreq_rrep_sn_quality_increases:
"opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
proof -
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
by (rule ostep_invariant_weakenE [OF olocal_quality_increases])
(auto dest!: onllD seqllD elim!: aodv_ex_labelE)
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
by (rule lift_step_into_qmsg_statelessassm) simp_all
thus ?thesis by rule auto
qed
lemma par_rreq_rrep_nsqn_fresh_any_step:
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
proof -
have "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
proof (rule ostep_invariant_weakenE [OF rreq_rrep_nsqn_fresh_any_step_invariant])
fix t
assume "onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>((\<sigma>, _), a, _). anycast (msg_fresh \<sigma>) a) t"
thus "globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a) t"
by (cases t) (clarsimp dest!: onllD, metis aodv_ex_label)
qed auto
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. (orecvmsg (\<lambda>_. rreq_rrep_sn)) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, \<sigma>'). anycast (msg_fresh \<sigma>) a)"
by (rule lift_step_into_qmsg_statelessassm) simp_all
thus ?thesis by rule auto
qed
lemma par_anycast_msg_zhops:
shows "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
proof -
from anycast_msg_zhops initiali_aodv oaodv_trans aodv_trans
have "opaodv i \<Turnstile>\<^sub>A (act TT, other (\<lambda>_ _. True) {i} \<rightarrow>)
seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a))"
by (rule open_seq_step_invariant)
hence "opaodv i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
proof (rule ostep_invariant_weakenE)
fix t :: "(((nat \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp), msg seq_action) transition"
assume "seqll i (onll \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (\<lambda>(_, a, _). anycast msg_zhops a)) t"
thus "globala (\<lambda>(_, a, _). anycast msg_zhops a) t"
by (cases t) (clarsimp dest!: seqllD onllD, metis aodv_ex_label)
qed simp_all
hence "opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(_, a, _). anycast msg_zhops a)"
by (rule lift_step_into_qmsg_statelessassm) simp_all
thus ?thesis by rule auto
qed
subsection \<open>Lift to nodes\<close>
lemma node_step_no_change_on_send_or_receive:
assumes "((\<sigma>, NodeS i P R), a, (\<sigma>', NodeS i' P' R')) \<in> onode_sos
(oparp_sos i (oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G))"
and "a \<noteq> \<tau>"
shows "\<sigma>' i = \<sigma> i"
using assms
by (cases a) (auto elim!: par_step_no_change_on_send_or_receive)
lemma node_nhop_quality_increases:
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>
(otherwith ((=)) {i}
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
other quality_increases {i}
\<rightarrow>) global (\<lambda>\<sigma>. \<forall>dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
by (rule node_lift [OF par_nhop_quality_increases]) auto
lemma node_quality_increases:
"\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). quality_increases (\<sigma> i) (\<sigma>' i))"
by (rule node_lift_step_statelessassm [OF par_rreq_rrep_sn_quality_increases]) simp
lemma node_rreq_rrep_nsqn_fresh_any_step:
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, \<sigma>'). castmsg (msg_fresh \<sigma>) a)"
by (rule node_lift_anycast_statelessassm [OF par_rreq_rrep_nsqn_fresh_any_step])
lemma node_anycast_msg_zhops:
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R \<rangle>\<^sub>o \<Turnstile>\<^sub>A
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(_, a, _). castmsg msg_zhops a)"
by (rule node_lift_anycast_statelessassm [OF par_anycast_msg_zhops])
lemma node_silent_change_only:
shows "\<langle> i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i \<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>,
other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, \<sigma>'). a \<noteq> \<tau> \<longrightarrow> \<sigma>' i = \<sigma> i)"
proof (rule ostep_invariantI, simp (no_asm), rule impI)
fix \<sigma> \<zeta> a \<sigma>' \<zeta>'
assume or: "(\<sigma>, \<zeta>) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>)
(other (\<lambda>_ _. True) {i})"
and tr: "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o)"
and "a \<noteq> \<tau>\<^sub>n"
from or obtain p R where "\<zeta> = NodeS i p R"
by - (drule node_net_state, metis)
with tr have "((\<sigma>, NodeS i p R), a, (\<sigma>', \<zeta>'))
\<in> onode_sos (oparp_sos i (trans (opaodv i)) (trans qmsg))"
by simp
thus "\<sigma>' i = \<sigma> i" using \<open>a \<noteq> \<tau>\<^sub>n\<close>
by (cases rule: onode_sos.cases)
(auto elim: qmsg_no_change_on_send_or_receive)
qed
subsection \<open>Lift to partial networks\<close>
lemma arrive_rreq_rrep_nsqn_fresh_inc_sn [simp]:
assumes "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> P \<sigma> m) \<sigma> m"
shows "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> m"
using assms by (cases m) auto
lemma opnet_nhop_quality_increases:
shows "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p \<Turnstile>
(otherwith ((=)) (net_tree_ips p)
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)),
other quality_increases (net_tree_ips p) \<rightarrow>)
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip.
let nhip = the (nhop (rt (\<sigma> i)) dip)
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
proof (rule pnet_lift [OF node_nhop_quality_increases])
fix i R
have "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>,
other (\<lambda>_ _. True) {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)"
proof (rule ostep_invariantI, simp (no_asm))
fix \<sigma> s a \<sigma>' s'
assume or: "(\<sigma>, s) \<in> oreachable (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma>)
(other (\<lambda>_ _. True) {i})"
and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans (\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o)"
and am: "oarrivemsg (\<lambda>_. rreq_rrep_sn) \<sigma> a"
from or tr am have "castmsg (msg_fresh \<sigma>) a"
by (auto dest!: ostep_invariantD [OF node_rreq_rrep_nsqn_fresh_any_step])
moreover from or tr am have "castmsg (msg_zhops) a"
by (auto dest!: ostep_invariantD [OF node_anycast_msg_zhops])
ultimately show "castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a"
by (case_tac a) auto
qed
thus "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, _).
castmsg (\<lambda>m. msg_fresh \<sigma> m \<and> msg_zhops m) a)"
by rule auto
next
fix i R
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
a \<noteq> \<tau> \<and> (\<forall>d. a \<noteq> i:deliver(d)) \<longrightarrow> \<sigma> i = \<sigma>' i)"
by (rule ostep_invariant_weakenE [OF node_silent_change_only]) auto
next
fix i R
show "\<langle>i : opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A
(\<lambda>\<sigma> _. oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma>,
other quality_increases {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, \<sigma>').
a = \<tau> \<or> (\<exists>d. a = i:deliver(d)) \<longrightarrow> quality_increases (\<sigma> i) (\<sigma>' i))"
by (rule ostep_invariant_weakenE [OF node_quality_increases]) auto
qed simp_all
subsection \<open>Lift to closed networks\<close>
lemma onet_nhop_quality_increases:
shows "oclosed (opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p)
\<Turnstile> (\<lambda>_ _ _. True, other quality_increases (net_tree_ips p) \<rightarrow>)
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips p. \<forall>dip.
let nhip = the (nhop (rt (\<sigma> i)) dip)
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
(is "_ \<Turnstile> (_, ?U \<rightarrow>) ?inv")
proof (rule inclosed_closed)
from opnet_nhop_quality_increases
show "opnet (\<lambda>i. opaodv i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) p
\<Turnstile> (otherwith ((=)) (net_tree_ips p) inoclosed, ?U \<rightarrow>) ?inv"
proof (rule oinvariant_weakenE)
fix \<sigma> \<sigma>' :: "ip \<Rightarrow> state" and a :: "msg node_action"
assume "otherwith ((=)) (net_tree_ips p) inoclosed \<sigma> \<sigma>' a"
thus "otherwith ((=)) (net_tree_ips p)
(oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m)) \<sigma> \<sigma>' a"
proof (rule otherwithEI)
fix \<sigma> :: "ip \<Rightarrow> state" and a :: "msg node_action"
assume "inoclosed \<sigma> a"
thus "oarrivemsg (\<lambda>\<sigma> m. msg_fresh \<sigma> m \<and> msg_zhops m) \<sigma> a"
proof (cases a)
fix ii ni ms
assume "a = ii\<not>ni:arrive(ms)"
moreover with \<open>inoclosed \<sigma> a\<close> obtain d di where "ms = newpkt(d, di)"
by (cases ms) auto
ultimately show ?thesis by simp
qed simp_all
qed
qed
qed
subsection \<open>Transfer into the standard model\<close>
interpretation aodv_openproc: openproc paodv opaodv id
rewrites "aodv_openproc.initmissing = initmissing"
proof -
show "openproc paodv opaodv id"
proof unfold_locales
fix i :: ip
have "{(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<and> (\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j \<in> fst ` \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V j)} \<subseteq> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'"
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def
proof (rule equalityD1)
show "\<And>f p. {(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> {(f i, p)} \<and> (\<forall>j. j \<noteq> i
\<longrightarrow> \<sigma> j \<in> fst ` {(f j, p)})} = {(f, p)}"
by (rule set_eqI) auto
qed
thus "{ (\<sigma>, \<zeta>) |\<sigma> \<zeta> s. s \<in> init (paodv i)
\<and> (\<sigma> i, \<zeta>) = id s
\<and> (\<forall>j. j\<noteq>i \<longrightarrow> \<sigma> j \<in> (fst o id) ` init (paodv j)) } \<subseteq> init (opaodv i)"
by simp
next
show "\<forall>j. init (paodv j) \<noteq> {}"
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
next
fix i s a s' \<sigma> \<sigma>'
assume "\<sigma> i = fst (id s)"
and "\<sigma>' i = fst (id s')"
and "(s, a, s') \<in> trans (paodv i)"
then obtain q q' where "s = (\<sigma> i, q)"
and "s' = (\<sigma>' i, q')"
and "((\<sigma> i, q), a, (\<sigma>' i, q')) \<in> trans (paodv i)"
by (cases s, cases s') auto
from this(3) have "((\<sigma>, q), a, (\<sigma>', q')) \<in> trans (opaodv i)"
by simp (rule open_seqp_action [OF aodv_wf])
with \<open>s = (\<sigma> i, q)\<close> and \<open>s' = (\<sigma>' i, q')\<close>
show "((\<sigma>, snd (id s)), a, (\<sigma>', snd (id s'))) \<in> trans (opaodv i)"
by simp
qed
then interpret opn: openproc paodv opaodv id .
have [simp]: "\<And>i. (SOME x. x \<in> (fst o id) ` init (paodv i)) = aodv_init i"
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def by simp
hence "\<And>i. openproc.initmissing paodv id i = initmissing i"
unfolding opn.initmissing_def opn.someinit_def initmissing_def
by (auto split: option.split)
thus "openproc.initmissing paodv id = initmissing" ..
qed
interpretation aodv_openproc_par_qmsg: openproc_parq paodv opaodv id qmsg
rewrites "aodv_openproc_par_qmsg.netglobal = netglobal"
and "aodv_openproc_par_qmsg.initmissing = initmissing"
proof -
show "openproc_parq paodv opaodv id qmsg"
by (unfold_locales) simp
then interpret opq: openproc_parq paodv opaodv id qmsg .
have im: "\<And>\<sigma>. openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) \<sigma>
= initmissing \<sigma>"
unfolding opq.initmissing_def opq.someinit_def initmissing_def
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def by (clarsimp cong: option.case_cong)
thus "openproc.initmissing (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = initmissing"
by (rule ext)
have "\<And>P \<sigma>. openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) P \<sigma>
= netglobal P \<sigma>"
unfolding opq.netglobal_def netglobal_def opq.initmissing_def initmissing_def opq.someinit_def
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def
by (clarsimp cong: option.case_cong
simp del: One_nat_def
simp add: fst_initmissing_netgmap_default_aodv_init_netlift
[symmetric, unfolded initmissing_def])
thus "openproc.netglobal (\<lambda>i. paodv i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (id p), snd (id p), q)) = netglobal"
by auto
qed
lemma net_nhop_quality_increases:
assumes "wf_net_tree n"
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal
(\<lambda>\<sigma>. \<forall>i dip. let nhip = the (nhop (rt (\<sigma> i)) dip)
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
(is "_ \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i. ?inv \<sigma> i)")
proof -
from \<open>wf_net_tree n\<close>
have proto: "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. \<forall>dip.
let nhip = the (nhop (rt (\<sigma> i)) dip)
in dip \<in> vD (rt (\<sigma> i)) \<inter> vD (rt (\<sigma> nhip)) \<and> nhip \<noteq> dip
\<longrightarrow> (rt (\<sigma> i)) \<sqsubset>\<^bsub>dip\<^esub> (rt (\<sigma> nhip)))"
by (rule aodv_openproc_par_qmsg.close_opnet [OF _ onet_nhop_quality_increases])
show ?thesis
unfolding invariant_def opnet_sos.opnet_tau1
proof (rule, simp only: aodv_openproc_par_qmsg.netglobalsimp
fst_initmissing_netgmap_pair_fst, rule allI)
fix \<sigma> i
assume sr: "\<sigma> \<in> reachable (closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n)) TT"
hence "\<forall>i\<in>net_tree_ips n. ?inv (fst (initmissing (netgmap fst \<sigma>))) i"
by - (drule invariantD [OF proto],
simp only: aodv_openproc_par_qmsg.netglobalsimp
fst_initmissing_netgmap_pair_fst)
thus "?inv (fst (initmissing (netgmap fst \<sigma>))) i"
proof (cases "i\<in>net_tree_ips n")
assume "i\<notin>net_tree_ips n"
from sr have "\<sigma> \<in> reachable (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) TT" ..
hence "net_ips \<sigma> = net_tree_ips n" ..
with \<open>i\<notin>net_tree_ips n\<close> have "i\<notin>net_ips \<sigma>" by simp
hence "(fst (initmissing (netgmap fst \<sigma>))) i = aodv_init i"
by simp
thus ?thesis by simp
qed metis
qed
qed
subsection \<open>Loop freedom of AODV\<close>
theorem aodv_loop_freedom:
assumes "wf_net_tree n"
shows "closed (pnet (\<lambda>i. paodv i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>dip. irrefl ((rt_graph \<sigma> dip)\<^sup>+))"
using assms by (rule aodv_openproc_par_qmsg.netglobal_weakenE
[OF net_nhop_quality_increases inv_to_loop_freedom])
end