Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Operations on Expressions\<close> | |
theory Floatarith_Expression | |
imports | |
"HOL-Decision_Procs.Approximation" | |
Affine_Arithmetic_Auxiliarities | |
Executable_Euclidean_Space | |
begin | |
text \<open>Much of this could move to the distribution...\<close> | |
subsection \<open>Approximating Expression*s*\<close> | |
unbundle floatarith_notation | |
text \<open>\label{sec:affineexpr}\<close> | |
primrec interpret_floatariths :: "floatarith list \<Rightarrow> real list \<Rightarrow> real list" | |
where | |
"interpret_floatariths [] vs = []" | |
| "interpret_floatariths (a#bs) vs = interpret_floatarith a vs#interpret_floatariths bs vs" | |
lemma length_interpret_floatariths[simp]: "length (interpret_floatariths fas xs) = length fas" | |
by (induction fas) auto | |
lemma interpret_floatariths_nth[simp]: | |
"interpret_floatariths fas xs ! n = interpret_floatarith (fas ! n) xs" | |
if "n < length fas" | |
using that | |
by (induction fas arbitrary: n) (auto simp: nth_Cons split: nat.splits) | |
abbreviation "einterpret \<equiv> \<lambda>fas vs. eucl_of_list (interpret_floatariths fas vs)" | |
subsection \<open>Syntax\<close> | |
syntax interpret_floatarith::"floatarith \<Rightarrow> real list \<Rightarrow> real" | |
instantiation floatarith :: "{plus, minus, uminus, times, inverse, zero, one}" | |
begin | |
definition "- f = Minus f" | |
lemma interpret_floatarith_uminus[simp]: | |
"interpret_floatarith (- f) xs = - interpret_floatarith f xs" | |
by (auto simp: uminus_floatarith_def) | |
definition "f + g = Add f g" | |
lemma interpret_floatarith_plus[simp]: | |
"interpret_floatarith (f + g) xs = interpret_floatarith f xs + interpret_floatarith g xs" | |
by (auto simp: plus_floatarith_def) | |
definition "f - g = Add f (Minus g)" | |
lemma interpret_floatarith_minus[simp]: | |
"interpret_floatarith (f - g) xs = interpret_floatarith f xs - interpret_floatarith g xs" | |
by (auto simp: minus_floatarith_def) | |
definition "inverse f = Inverse f" | |
lemma interpret_floatarith_inverse[simp]: | |
"interpret_floatarith (inverse f) xs = inverse (interpret_floatarith f xs)" | |
by (auto simp: inverse_floatarith_def) | |
definition "f * g = Mult f g" | |
lemma interpret_floatarith_times[simp]: | |
"interpret_floatarith (f * g) xs = interpret_floatarith f xs * interpret_floatarith g xs" | |
by (auto simp: times_floatarith_def) | |
definition "f div g = f * Inverse g" | |
lemma interpret_floatarith_divide[simp]: | |
"interpret_floatarith (f div g) xs = interpret_floatarith f xs / interpret_floatarith g xs" | |
by (auto simp: divide_floatarith_def inverse_eq_divide) | |
definition "1 = Num 1" | |
lemma interpret_floatarith_one[simp]: | |
"interpret_floatarith 1 xs = 1" | |
by (auto simp: one_floatarith_def) | |
definition "0 = Num 0" | |
lemma interpret_floatarith_zero[simp]: | |
"interpret_floatarith 0 xs = 0" | |
by (auto simp: zero_floatarith_def) | |
instance proof qed | |
end | |
subsection \<open>Derived symbols\<close> | |
definition "R\<^sub>e r = (case quotient_of r of (n, d) \<Rightarrow> Num (of_int n) / Num (of_int d))" | |
declare [[coercion R\<^sub>e ]] | |
lemma interpret_R\<^sub>e[simp]: "interpret_floatarith (R\<^sub>e x) xs = real_of_rat x" | |
by (auto simp: R\<^sub>e_def of_rat_divide dest!: quotient_of_div split: prod.splits) | |
definition "Sin x = Cos ((Pi * (Num (Float 1 (-1)))) - x)" | |
lemma interpret_floatarith_Sin[simp]: | |
"interpret_floatarith (Sin x) vs = sin (interpret_floatarith x vs)" | |
by (auto simp: Sin_def approximation_preproc_floatarith(11)) | |
definition "Half x = Mult (Num (Float 1 (-1))) x" | |
lemma interpret_Half[simp]: "interpret_floatarith (Half x) xs = interpret_floatarith x xs / 2" | |
by (auto simp: Half_def) | |
definition "Tan x = (Sin x) / (Cos x)" | |
lemma interpret_floatarith_Tan[simp]: | |
"interpret_floatarith (Tan x) vs = tan (interpret_floatarith x vs)" | |
by (auto simp: Tan_def approximation_preproc_floatarith(12) inverse_eq_divide) | |
primrec Sum\<^sub>e where | |
"Sum\<^sub>e f [] = 0" | |
| "Sum\<^sub>e f (x#xs) = f x + Sum\<^sub>e f xs" | |
lemma interpret_floatarith_Sum\<^sub>e[simp]: | |
"interpret_floatarith (Sum\<^sub>e f x) vs = (\<Sum>i\<leftarrow>x. interpret_floatarith (f i) vs)" | |
by (induction x) auto | |
definition Norm where "Norm is = Sqrt (Sum\<^sub>e (\<lambda>i. i * i) is)" | |
lemma interpret_floatarith_norm[simp]: | |
assumes [simp]: "length x = DIM('a)" | |
shows "interpret_floatarith (Norm x) vs = norm (einterpret x vs::'a::executable_euclidean_space)" | |
apply (auto simp: Norm_def norm_eq_sqrt_inner) | |
apply (subst euclidean_inner[where 'a='a]) | |
apply (auto simp: power2_eq_square[symmetric] ) | |
apply (subst sum_list_Basis_list[symmetric]) | |
apply (rule sum_list_nth_eqI) | |
by (auto simp: in_set_zip eucl_of_list_inner) | |
notation floatarith.Power (infixr "^\<^sub>e" 80) | |
subsection \<open>Constant Folding\<close> | |
fun dest_Num_fa where | |
"dest_Num_fa (floatarith.Num x) = Some x" | |
| "dest_Num_fa _ = None" | |
fun_cases dest_Num_fa_None: "dest_Num_fa fa = None" | |
and dest_Num_fa_Some: "dest_Num_fa fa = Some x" | |
fun fold_const_fa where | |
"fold_const_fa (Add fa1 fa2) = | |
(let (ffa1, ffa2) = (fold_const_fa fa1, fold_const_fa fa2) | |
in case (dest_Num_fa ffa1, dest_Num_fa (ffa2)) of | |
(Some a, Some b) \<Rightarrow> Num (a + b) | |
| (Some a, None) \<Rightarrow> (if a = 0 then ffa2 else Add (Num a) ffa2) | |
| (None, Some a) \<Rightarrow> (if a = 0 then ffa1 else Add ffa1 (Num a)) | |
| (None, None) \<Rightarrow> Add ffa1 ffa2)" | |
| "fold_const_fa (Minus a) = | |
(case (fold_const_fa a) of | |
(Num x) \<Rightarrow> Num (-x) | |
| x \<Rightarrow> Minus x)" | |
| "fold_const_fa (Mult fa1 fa2) = | |
(let (ffa1, ffa2) = (fold_const_fa fa1, fold_const_fa fa2) | |
in case (dest_Num_fa ffa1, dest_Num_fa (ffa2)) of | |
(Some a, Some b) \<Rightarrow> Num (a * b) | |
| (Some a, None) \<Rightarrow> (if a = 0 then Num 0 else if a = 1 then ffa2 else Mult (Num a) ffa2) | |
| (None, Some a) \<Rightarrow> (if a = 0 then Num 0 else if a = 1 then ffa1 else Mult ffa1 (Num a)) | |
| (None, None) \<Rightarrow> Mult ffa1 ffa2)" | |
| "fold_const_fa (Inverse a) = Inverse (fold_const_fa a)" | |
| "fold_const_fa (Abs a) = | |
(case (fold_const_fa a) of | |
(Num x) \<Rightarrow> Num (abs x) | |
| x \<Rightarrow> Abs x)" | |
| "fold_const_fa (Max a b) = | |
(case (fold_const_fa a, fold_const_fa b) of | |
(Num x, Num y) \<Rightarrow> Num (max x y) | |
| (x, y) \<Rightarrow> Max x y)" | |
| "fold_const_fa (Min a b) = | |
(case (fold_const_fa a, fold_const_fa b) of | |
(Num x, Num y) \<Rightarrow> Num (min x y) | |
| (x, y) \<Rightarrow> Min x y)" | |
| "fold_const_fa (Floor a) = | |
(case (fold_const_fa a) of | |
(Num x) \<Rightarrow> Num (floor_fl x) | |
| x \<Rightarrow> Floor x)" | |
| "fold_const_fa (Power a b) = | |
(case (fold_const_fa a) of | |
(Num x) \<Rightarrow> Num (x ^ b) | |
| x \<Rightarrow> Power x b)" | |
| "fold_const_fa (Cos a) = Cos (fold_const_fa a)" | |
| "fold_const_fa (Arctan a) = Arctan (fold_const_fa a)" | |
| "fold_const_fa (Sqrt a) = Sqrt (fold_const_fa a)" | |
| "fold_const_fa (Exp a) = Exp (fold_const_fa a)" | |
| "fold_const_fa (Ln a) = Ln (fold_const_fa a)" | |
| "fold_const_fa (Powr a b) = Powr (fold_const_fa a) (fold_const_fa b)" | |
| "fold_const_fa Pi = Pi" | |
| "fold_const_fa (Var v) = Var v" | |
| "fold_const_fa (Num x) = Num x" | |
fun_cases fold_const_fa_Num: "fold_const_fa fa = Num y" | |
and fold_const_fa_Add: "fold_const_fa fa = Add x y" | |
and fold_const_fa_Minus: "fold_const_fa fa = Minus y" | |
lemma fold_const_fa[simp]: "interpret_floatarith (fold_const_fa fa) xs = interpret_floatarith fa xs" | |
by (induction fa) (auto split!: prod.splits floatarith.splits option.splits | |
elim!: dest_Num_fa_None dest_Num_fa_Some | |
simp: max_def min_def floor_fl_def) | |
subsection \<open>Free Variables\<close> | |
primrec max_Var_floatarith where\<comment> \<open>TODO: include bound in predicate\<close> | |
"max_Var_floatarith (Add a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
| "max_Var_floatarith (Mult a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
| "max_Var_floatarith (Inverse a) = max_Var_floatarith a" | |
| "max_Var_floatarith (Minus a) = max_Var_floatarith a" | |
| "max_Var_floatarith (Num a) = 0" | |
| "max_Var_floatarith (Var i) = Suc i" | |
| "max_Var_floatarith (Cos a) = max_Var_floatarith a" | |
| "max_Var_floatarith (floatarith.Arctan a) = max_Var_floatarith a" | |
| "max_Var_floatarith (Abs a) = max_Var_floatarith a" | |
| "max_Var_floatarith (floatarith.Max a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
| "max_Var_floatarith (floatarith.Min a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
| "max_Var_floatarith (floatarith.Pi) = 0" | |
| "max_Var_floatarith (Sqrt a) = max_Var_floatarith a" | |
| "max_Var_floatarith (Exp a) = max_Var_floatarith a" | |
| "max_Var_floatarith (Powr a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
| "max_Var_floatarith (floatarith.Ln a) = max_Var_floatarith a" | |
| "max_Var_floatarith (Power a n) = max_Var_floatarith a" | |
| "max_Var_floatarith (Floor a) = max_Var_floatarith a" | |
primrec max_Var_floatariths where | |
"max_Var_floatariths [] = 0" | |
| "max_Var_floatariths (x#xs) = max (max_Var_floatarith x) (max_Var_floatariths xs)" | |
primrec max_Var_form where | |
"max_Var_form (Conj a b) = max (max_Var_form a) (max_Var_form b)" | |
| "max_Var_form (Disj a b) = max (max_Var_form a) (max_Var_form b)" | |
| "max_Var_form (Less a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
| "max_Var_form (LessEqual a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
| "max_Var_form (Bound a b c d) = linorder_class.Max {max_Var_floatarith a,max_Var_floatarith b, max_Var_floatarith c, max_Var_form d}" | |
| "max_Var_form (AtLeastAtMost a b c) = linorder_class.Max {max_Var_floatarith a,max_Var_floatarith b, max_Var_floatarith c}" | |
| "max_Var_form (Assign a b c) = linorder_class.Max {max_Var_floatarith a,max_Var_floatarith b, max_Var_form c}" | |
lemma | |
interpret_floatarith_eq_take_max_VarI: | |
assumes "take (max_Var_floatarith ra) ys = take (max_Var_floatarith ra) zs" | |
shows "interpret_floatarith ra ys = interpret_floatarith ra zs" | |
using assms | |
by (induct ra) (auto dest!: take_max_eqD simp: take_Suc_eq split: if_split_asm) | |
lemma | |
interpret_floatariths_eq_take_max_VarI: | |
assumes "take (max_Var_floatariths ea) ys = take (max_Var_floatariths ea) zs" | |
shows "interpret_floatariths ea ys = interpret_floatariths ea zs" | |
using assms | |
apply (induction ea) | |
subgoal by simp | |
subgoal by (clarsimp) (metis interpret_floatarith_eq_take_max_VarI take_map take_max_eqD) | |
done | |
lemma Max_Image_distrib: | |
includes no_floatarith_notation | |
assumes "finite X" "X \<noteq> {}" | |
shows "Max ((\<lambda>x. max (f1 x) (f2 x)) ` X) = max (Max (f1 ` X)) (Max (f2 ` X))" | |
apply (rule Max_eqI) | |
subgoal using assms by simp | |
subgoal for y | |
using assms | |
by (force intro: max.coboundedI1 max.coboundedI2 Max_ge) | |
subgoal | |
proof - | |
have "Max (f1 ` X) \<in> f1 ` X" using assms by auto | |
then obtain x1 where x1: "x1 \<in> X" "Max (f1 ` X) = f1 x1" by auto | |
have "Max (f2 ` X) \<in> f2 ` X" using assms by auto | |
then obtain x2 where x2: "x2 \<in> X" "Max (f2 ` X) = f2 x2" by auto | |
show ?thesis | |
apply (rule image_eqI[where x="if f1 x1 \<le> f2 x2 then x2 else x1"]) | |
using x1 x2 assms | |
apply (auto simp: max_def) | |
apply (metis Max_ge dual_order.trans finite_imageI image_eqI assms(1)) | |
apply (metis Max_ge dual_order.trans finite_imageI image_eqI assms(1)) | |
done | |
qed | |
done | |
lemma max_Var_floatarith_simps[simp]: | |
"max_Var_floatarith (a / b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
"max_Var_floatarith (a * b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
"max_Var_floatarith (a + b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
"max_Var_floatarith (a - b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | |
"max_Var_floatarith (- b) = (max_Var_floatarith b)" | |
by (auto simp: divide_floatarith_def times_floatarith_def plus_floatarith_def minus_floatarith_def | |
uminus_floatarith_def) | |
lemma max_Var_floatariths_Max: | |
"max_Var_floatariths xs = (if set xs = {} then 0 else linorder_class.Max (max_Var_floatarith ` set xs))" | |
by (induct xs) auto | |
lemma max_Var_floatariths_map_plus[simp]: | |
"max_Var_floatariths (map (\<lambda>i. fa1 i + fa2 i) xs) = max (max_Var_floatariths (map fa1 xs)) (max_Var_floatariths (map fa2 xs))" | |
by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) | |
lemma max_Var_floatariths_map_times[simp]: | |
"max_Var_floatariths (map (\<lambda>i. fa1 i * fa2 i) xs) = max (max_Var_floatariths (map fa1 xs)) (max_Var_floatariths (map fa2 xs))" | |
by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) | |
lemma max_Var_floatariths_map_divide[simp]: | |
"max_Var_floatariths (map (\<lambda>i. fa1 i / fa2 i) xs) = max (max_Var_floatariths (map fa1 xs)) (max_Var_floatariths (map fa2 xs))" | |
by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) | |
lemma max_Var_floatariths_map_uminus[simp]: | |
"max_Var_floatariths (map (\<lambda>i. - fa1 i) xs) = max_Var_floatariths (map fa1 xs)" | |
by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) | |
lemma max_Var_floatariths_map_const[simp]: | |
"max_Var_floatariths (map (\<lambda>i. fa) xs) = (if xs = [] then 0 else max_Var_floatarith fa)" | |
by (auto simp: max_Var_floatariths_Max image_image image_constant_conv) | |
lemma max_Var_floatariths_map_minus[simp]: | |
"max_Var_floatariths (map (\<lambda>i. fa1 i - fa2 i) xs) = max (max_Var_floatariths (map fa1 xs)) (max_Var_floatariths (map fa2 xs))" | |
by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) | |
primrec fresh_floatarith where | |
"fresh_floatarith (Var y) x \<longleftrightarrow> (x \<noteq> y)" | |
| "fresh_floatarith (Num a) x \<longleftrightarrow> True" | |
| "fresh_floatarith Pi x \<longleftrightarrow> True" | |
| "fresh_floatarith (Cos a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Abs a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Arctan a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Sqrt a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Exp a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Floor a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Power a n) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Minus a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Ln a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Inverse a) x \<longleftrightarrow> fresh_floatarith a x" | |
| "fresh_floatarith (Add a b) x \<longleftrightarrow> fresh_floatarith a x \<and> fresh_floatarith b x" | |
| "fresh_floatarith (Mult a b) x \<longleftrightarrow> fresh_floatarith a x \<and> fresh_floatarith b x" | |
| "fresh_floatarith (Max a b) x \<longleftrightarrow> fresh_floatarith a x \<and> fresh_floatarith b x" | |
| "fresh_floatarith (Min a b) x \<longleftrightarrow> fresh_floatarith a x \<and> fresh_floatarith b x" | |
| "fresh_floatarith (Powr a b) x \<longleftrightarrow> fresh_floatarith a x \<and> fresh_floatarith b x" | |
lemma fresh_floatarith_subst: | |
fixes v::float | |
assumes "fresh_floatarith e x" | |
assumes "x < length vs" | |
shows "interpret_floatarith e (vs[x:=v]) = interpret_floatarith e vs" | |
using assms | |
by (induction e) (auto simp: map_update) | |
lemma fresh_floatarith_max_Var: | |
assumes "max_Var_floatarith ea \<le> i" | |
shows "fresh_floatarith ea i" | |
using assms | |
by (induction ea) auto | |
primrec fresh_floatariths where | |
"fresh_floatariths [] x \<longleftrightarrow> True" | |
| "fresh_floatariths (a#as) x \<longleftrightarrow> fresh_floatarith a x \<and> fresh_floatariths as x" | |
lemma fresh_floatariths_max_Var: | |
assumes "max_Var_floatariths ea \<le> i" | |
shows "fresh_floatariths ea i" | |
using assms | |
by (induction ea) (auto simp: fresh_floatarith_max_Var) | |
lemma | |
interpret_floatariths_take_eqI: | |
assumes "take n ys = take n zs" | |
assumes "max_Var_floatariths ea \<le> n" | |
shows "interpret_floatariths ea ys = interpret_floatariths ea zs" | |
by (rule interpret_floatariths_eq_take_max_VarI) (rule take_greater_eqI[OF assms]) | |
lemma | |
interpret_floatarith_fresh_eqI: | |
assumes "\<And>i. fresh_floatarith ea i \<or> (i < length ys \<and> i < length zs \<and> ys ! i = zs ! i)" | |
shows "interpret_floatarith ea ys = interpret_floatarith ea zs" | |
using assms | |
by (induction ea) force+ | |
lemma | |
interpret_floatariths_fresh_eqI: | |
assumes "\<And>i. fresh_floatariths ea i \<or> (i < length ys \<and> i < length zs \<and> ys ! i = zs ! i)" | |
shows "interpret_floatariths ea ys = interpret_floatariths ea zs" | |
using assms | |
apply (induction ea) | |
subgoal by (force simp: interpret_floatarith_fresh_eqI intro: interpret_floatarith_fresh_eqI) | |
subgoal for e ea | |
apply clarsimp | |
apply (auto simp: list_eq_iff_nth_eq) | |
using interpret_floatarith_fresh_eqI by blast | |
done | |
lemma | |
interpret_floatarith_max_Var_cong: | |
assumes "\<And>i. i < max_Var_floatarith f \<Longrightarrow> xs ! i = ys ! i" | |
shows "interpret_floatarith f ys = interpret_floatarith f xs" | |
using assms | |
by (induction f) auto | |
lemma | |
interpret_floatarith_fresh_cong: | |
assumes "\<And>i. \<not>fresh_floatarith f i \<Longrightarrow> xs ! i = ys ! i" | |
shows "interpret_floatarith f ys = interpret_floatarith f xs" | |
using assms | |
by (induction f) auto | |
lemma max_Var_floatarith_le_max_Var_floatariths: | |
"fa \<in> set fas \<Longrightarrow> max_Var_floatarith fa \<le> max_Var_floatariths fas" | |
by (induction fas) (auto simp: nth_Cons max_def split: nat.splits) | |
lemma max_Var_floatarith_le_max_Var_floatariths_nth: | |
"n < length fas \<Longrightarrow> max_Var_floatarith (fas ! n) \<le> max_Var_floatariths fas" | |
by (rule max_Var_floatarith_le_max_Var_floatariths) auto | |
lemma max_Var_floatariths_leI: | |
assumes "\<And>i. i < length xs \<Longrightarrow> max_Var_floatarith (xs ! i) \<le> F" | |
shows "max_Var_floatariths xs \<le> F" | |
using assms | |
by (auto simp: max_Var_floatariths_Max in_set_conv_nth) | |
lemma fresh_floatariths_map_Var[simp]: | |
"fresh_floatariths (map floatarith.Var xs) i \<longleftrightarrow> i \<notin> set xs" | |
by (induction xs) auto | |
lemma max_Var_floatarith_fold_const_fa: | |
"max_Var_floatarith (fold_const_fa fa) \<le> max_Var_floatarith fa" | |
by (induction fa) (auto simp: fold_const_fa.simps split!: option.splits floatarith.splits) | |
lemma max_Var_floatariths_fold_const_fa: | |
"max_Var_floatariths (map fold_const_fa xs) \<le> max_Var_floatariths xs" | |
by (auto simp: intro!: max_Var_floatariths_leI max_Var_floatarith_le_max_Var_floatariths_nth | |
max_Var_floatarith_fold_const_fa[THEN order_trans]) | |
lemma interpret_form_max_Var_cong: | |
assumes "\<And>i. i < max_Var_form f \<Longrightarrow> xs ! i = ys ! i" | |
shows "interpret_form f xs = interpret_form f ys" | |
using assms | |
by (induction f) (auto simp: interpret_floatarith_max_Var_cong[where xs=xs and ys=ys]) | |
lemma max_Var_floatariths_lessI: "i < max_Var_floatarith (fas ! j) \<Longrightarrow> j < length fas \<Longrightarrow> i < max_Var_floatariths fas" | |
by (metis leD le_trans less_le max_Var_floatarith_le_max_Var_floatariths nth_mem) | |
lemma interpret_floatariths_max_Var_cong: | |
assumes "\<And>i. i < max_Var_floatariths f \<Longrightarrow> xs ! i = ys ! i" | |
shows "interpret_floatariths f ys = interpret_floatariths f xs" | |
by (auto intro!: nth_equalityI interpret_floatarith_max_Var_cong assms max_Var_floatariths_lessI) | |
lemma max_Var_floatarithimage_Var[simp]: "max_Var_floatarith ` Var ` X = Suc ` X" by force | |
lemma max_Var_floatariths_map_Var[simp]: | |
"max_Var_floatariths (map Var xs) = (if xs = [] then 0 else Suc (linorder_class.Max (set xs)))" | |
by (auto simp: max_Var_floatariths_Max hom_Max_commute split: if_splits) | |
lemma Max_atLeastLessThan_nat[simp]: "a < b \<Longrightarrow> linorder_class.Max {a..<b} = b - 1" for a b::nat | |
by (auto intro!: Max_eqI) | |
subsection \<open>Derivatives\<close> | |
lemma isDERIV_Power_iff: "isDERIV j (Power fa n) xs = (if n = 0 then True else isDERIV j fa xs)" | |
by (cases n) auto | |
lemma isDERIV_max_Var_floatarithI: | |
assumes "isDERIV n f ys" | |
assumes "\<And>i. i < max_Var_floatarith f \<Longrightarrow> xs ! i = ys ! i" | |
shows "isDERIV n f xs" | |
using assms | |
proof (induction f) | |
case (Power f n) then show ?case by (cases n) auto | |
qed (auto simp: max_def interpret_floatarith_max_Var_cong[of _ xs ys] split: if_splits) | |
definition isFDERIV where "isFDERIV n xs fas vs \<longleftrightarrow> | |
(\<forall>i<n. \<forall>j<n. isDERIV (xs ! i) (fas ! j) vs) \<and> length fas = n \<and> length xs = n" | |
lemma isFDERIV_I: "(\<And>i j. i < n \<Longrightarrow> j < n \<Longrightarrow> isDERIV (xs ! i) (fas ! j) vs) \<Longrightarrow> | |
length fas = n \<Longrightarrow> length xs = n \<Longrightarrow> isFDERIV n xs fas vs" | |
by (auto simp: isFDERIV_def) | |
lemma isFDERIV_isDERIV_D: "isFDERIV n xs fas vs \<Longrightarrow> i < n \<Longrightarrow> j < n \<Longrightarrow> isDERIV (xs ! i) (fas ! j) vs" | |
by (auto simp: isFDERIV_def) | |
lemma isFDERIV_lengthD: "length fas = n" "length xs = n" if "isFDERIV n xs fas vs" | |
using that by (auto simp: isFDERIV_def) | |
lemma isFDERIV_uptD: "isFDERIV n [0..<n] fas vs \<Longrightarrow> i < n \<Longrightarrow> j < n \<Longrightarrow> isDERIV i (fas ! j) vs" | |
by (auto simp: isFDERIV_def) | |
lemma isFDERIV_max_Var_congI: "isFDERIV n xs fas ws" | |
if f: "isFDERIV n xs fas vs" and c: "(\<And>i. i < max_Var_floatariths fas \<Longrightarrow> vs ! i = ws ! i)" | |
using c f | |
by (auto simp: isFDERIV_def max_Var_floatariths_lessI | |
intro!: isFDERIV_I isDERIV_max_Var_floatarithI[OF isFDERIV_isDERIV_D[OF f]]) | |
lemma isFDERIV_max_Var_cong: "isFDERIV n xs fas ws \<longleftrightarrow> isFDERIV n xs fas vs" | |
if c: "(\<And>i. i < max_Var_floatariths fas \<Longrightarrow> vs ! i = ws ! i)" | |
using c by (auto intro: isFDERIV_max_Var_congI) | |
lemma isDERIV_max_VarI: | |
"i \<ge> max_Var_floatarith fa \<Longrightarrow> isDERIV j fa xs \<Longrightarrow> isDERIV i fa xs" | |
by (induction fa) (auto simp: isDERIV_Power_iff) | |
lemmas max_Var_floatarith_le_max_Var_floatariths_nthI = | |
max_Var_floatarith_le_max_Var_floatariths_nth[THEN order_trans] | |
lemma | |
isFDERIV_appendD1: | |
assumes "isFDERIV (J + K) [0..<J + K] (es @ rs) xs" | |
assumes "length es = J" | |
assumes "length rs = K" | |
assumes "max_Var_floatariths es \<le> J" | |
shows "isFDERIV J [0..<J] (es) xs" | |
unfolding isFDERIV_def | |
apply (safe) | |
subgoal for i j | |
using assms | |
apply (cases "i < length es") | |
subgoal by (auto simp: nth_append isFDERIV_def) (metis add.commute trans_less_add2) | |
subgoal | |
apply (rule isDERIV_max_VarI[where j=0]) | |
apply (rule max_Var_floatarith_le_max_Var_floatariths_nthI) | |
apply force | |
apply force | |
apply force | |
done | |
done | |
subgoal by (auto simp: assms) | |
subgoal by (auto simp: assms) | |
done | |
lemma interpret_floatariths_Var[simp]: | |
"interpret_floatariths (map floatarith.Var xs) vs = (map (nth vs) xs)" | |
by (induction xs) (auto simp: ) | |
lemma max_Var_floatariths_append[simp]: "max_Var_floatariths (xs @ ys) = max (max_Var_floatariths xs) (max_Var_floatariths ys)" | |
by (induction xs) (auto) | |
lemma map_nth_append_upt[simp]: | |
assumes "a \<ge> length xs" | |
shows "map ((!) (xs @ ys)) [a..<b] = map ((!) ys) [a - length xs..<b - length xs]" | |
using assms | |
by (auto intro!: nth_equalityI simp: nth_append) | |
lemma map_nth_Cons_upt[simp]: | |
assumes "a > 0" | |
shows "map ((!) (x # ys)) [a..<b] = map ((!) ys) [a - Suc 0..<b - Suc 0]" | |
using assms | |
by (auto intro!: nth_equalityI simp: nth_append) | |
lemma map_nth_eq_self[simp]: | |
shows "length fas = l \<Longrightarrow> (map ((!) fas) [0..<l]) = fas" | |
by (auto simp: intro!: nth_equalityI) | |
lemma | |
isFDERIV_appendI1: | |
assumes "isFDERIV J [0..<J] (es) xs" | |
assumes "\<And>i j. i < J + K \<Longrightarrow> j < K \<Longrightarrow> isDERIV i (rs ! j) xs" | |
assumes "length es = J" | |
assumes "length rs = K" | |
assumes "max_Var_floatariths es \<le> J" | |
shows "isFDERIV (J + K) [0..<J + K] (es @ rs) xs" | |
unfolding isFDERIV_def | |
apply safe | |
subgoal for i j | |
using assms | |
apply (cases "j < length es") | |
subgoal | |
apply (auto simp: nth_append isFDERIV_def) | |
by (metis (no_types, opaque_lifting) isDERIV_max_VarI le_trans less_le | |
max_Var_floatarith_le_max_Var_floatariths_nthI nat_le_linear) | |
subgoal by (auto simp: nth_append) | |
done | |
subgoal by (auto simp: assms) | |
subgoal by (auto simp: assms) | |
done | |
lemma matrix_matrix_mult_zero[simp]: | |
"a ** 0 = 0" "0 ** a = 0" | |
by (vector matrix_matrix_mult_def)+ | |
lemma scaleR_blinfun_compose_left: "i *\<^sub>R (A o\<^sub>L B) = i *\<^sub>R A o\<^sub>L B" | |
and scaleR_blinfun_compose_right: "i *\<^sub>R (A o\<^sub>L B) = A o\<^sub>L i *\<^sub>R B" | |
by (auto intro!: blinfun_eqI simp: blinfun.bilinear_simps) | |
lemma | |
matrix_blinfun_compose: | |
fixes A B::"(real ^ 'n) \<Rightarrow>\<^sub>L (real ^ 'n)" | |
shows "matrix (A o\<^sub>L B) = (matrix A) ** (matrix B)" | |
by transfer (auto simp: matrix_compose linear_linear) | |
lemma matrix_add_rdistrib: "((B + C) ** A) = (B ** A) + (C ** A)" | |
by (vector matrix_matrix_mult_def sum.distrib[symmetric] field_simps) | |
lemma matrix_scaleR_right: "r *\<^sub>R (a::'a::real_algebra_1^'n^'m) ** b = r *\<^sub>R (a ** b)" | |
by (vector matrix_matrix_mult_def algebra_simps scaleR_sum_right) | |
lemma matrix_scaleR_left: "(a::'a::real_algebra_1^'n^'m) ** r *\<^sub>R b = r *\<^sub>R (a ** b)" | |
by (vector matrix_matrix_mult_def algebra_simps scaleR_sum_right) | |
lemma bounded_bilinear_matrix_matrix_mult[bounded_bilinear]: | |
"bounded_bilinear ((**):: | |
('a::{euclidean_space, real_normed_algebra_1}^'n^'m) \<Rightarrow> | |
('a::{euclidean_space, real_normed_algebra_1}^'p^'n) \<Rightarrow> | |
('a::{euclidean_space, real_normed_algebra_1}^'p^'m))" | |
unfolding bilinear_conv_bounded_bilinear[symmetric] | |
unfolding bilinear_def | |
apply safe | |
by unfold_locales (auto simp: matrix_add_ldistrib matrix_add_rdistrib matrix_scaleR_right matrix_scaleR_left) | |
lemma norm_axis: "norm (axis ia 1::'a::{real_normed_algebra_1}^'n) = 1" | |
by (auto simp: axis_def norm_vec_def L2_set_def if_distrib if_distribR sum.delta | |
cong: if_cong) | |
lemma abs_vec_nth_blinfun_apply_lemma: | |
fixes x::"(real^'n) \<Rightarrow>\<^sub>L (real^'m)" | |
shows "abs (vec_nth (blinfun_apply x (axis ia 1)) i) \<le> norm x" | |
apply (rule component_le_norm_cart[THEN order_trans]) | |
apply (rule norm_blinfun[THEN order_trans]) | |
by (auto simp: norm_axis) | |
lemma bounded_linear_matrix_blinfun_apply: "bounded_linear (\<lambda>x::(real^'n) \<Rightarrow>\<^sub>L (real^'m). matrix (blinfun_apply x))" | |
apply standard | |
subgoal by (vector blinfun.bilinear_simps matrix_def) | |
subgoal by (vector blinfun.bilinear_simps matrix_def) | |
apply (rule exI[where x="real (CARD('n) * CARD('m))"]) | |
apply (auto simp: matrix_def) | |
apply (subst norm_vec_def) | |
apply (rule L2_set_le_sum[THEN order_trans]) | |
apply simp | |
apply auto | |
apply (rule sum_mono[THEN order_trans]) | |
apply (subst norm_vec_def) | |
apply (rule L2_set_le_sum) | |
apply simp | |
apply (rule sum_mono[THEN order_trans]) | |
apply (rule sum_mono) | |
apply simp | |
apply (rule abs_vec_nth_blinfun_apply_lemma) | |
apply (simp add: abs_vec_nth_blinfun_apply_lemma) | |
done | |
lemma matrix_has_derivative: | |
shows "((\<lambda>x::(real^'n)\<Rightarrow>\<^sub>L(real^'n). matrix (blinfun_apply x)) has_derivative (\<lambda>h. matrix (blinfun_apply h))) (at x)" | |
apply (auto simp: has_derivative_at2) | |
unfolding linear_linear | |
subgoal by (rule bounded_linear_matrix_blinfun_apply) | |
subgoal | |
by (auto simp: blinfun.bilinear_simps matrix_def) vector | |
done | |
lemma | |
matrix_comp_has_derivative[derivative_intros]: | |
fixes f::"'a::real_normed_vector \<Rightarrow> ((real^'n)\<Rightarrow>\<^sub>L(real^'n))" | |
assumes "(f has_derivative f') (at x within S)" | |
shows "((\<lambda>x. matrix (blinfun_apply (f x))) has_derivative (\<lambda>x. matrix (f' x))) (at x within S)" | |
using has_derivative_compose[OF assms matrix_has_derivative] | |
by auto | |
fun inner_floatariths where | |
"inner_floatariths [] _ = Num 0" | |
| "inner_floatariths _ [] = Num 0" | |
| "inner_floatariths (x#xs) (y#ys) = Add (Mult x y) (inner_floatariths xs ys)" | |
lemma interpret_floatarith_inner_eq: | |
assumes "length xs = length ys" | |
shows "interpret_floatarith (inner_floatariths xs ys) vs = | |
(\<Sum>i<length ys. (interpret_floatariths xs vs ! i) * (interpret_floatariths ys vs ! i))" | |
using assms | |
proof (induction rule: list_induct2) | |
case Nil | |
then show ?case by simp | |
next | |
case (Cons x xs y ys) | |
then show ?case | |
unfolding length_Cons sum.lessThan_Suc_shift | |
by simp | |
qed | |
lemma | |
interpret_floatarith_inner_floatariths: | |
assumes "length xs = DIM('a::executable_euclidean_space)" | |
assumes "length ys = DIM('a)" | |
assumes "eucl_of_list (interpret_floatariths xs vs) = (x::'a)" | |
assumes "eucl_of_list (interpret_floatariths ys vs) = y" | |
shows "interpret_floatarith (inner_floatariths xs ys) vs = x \<bullet> y" | |
using assms | |
by (subst euclidean_inner) | |
(auto simp: interpret_floatarith_inner_eq sum_Basis_sum_nth_Basis_list eucl_of_list_inner | |
index_nth_id | |
intro!: euclidean_eqI[where 'a='a] sum.cong) | |
lemma max_Var_floatarith_inner_floatariths[simp]: | |
assumes "length f = length g" | |
shows "max_Var_floatarith (inner_floatariths f g) = max (max_Var_floatariths f) (max_Var_floatariths g)" | |
using assms | |
by (induction f g rule: list_induct2) auto | |
definition FDERIV_floatarith where | |
"FDERIV_floatarith fa xs d = inner_floatariths (map (\<lambda>x. fold_const_fa (DERIV_floatarith x fa)) xs) d" | |
\<comment> \<open>TODO: specialize to \<open>FDERIV_floatarith fa [0..<n] [m..<m + n]\<close> and do the rest with @{term subst_floatarith}? | |
TODO: introduce approximation on type @{typ "real^'i^'j"} and use @{term jacobian}?\<close> | |
lemma interpret_floatariths_map: "interpret_floatariths (map f xs) vs = map (\<lambda>x. interpret_floatarith (f x) vs) xs" | |
by (induct xs) (auto simp: ) | |
lemma max_Var_floatarith_DERIV_floatarith: | |
"max_Var_floatarith (DERIV_floatarith x fa) \<le> max_Var_floatarith fa" | |
by (induction x fa rule: DERIV_floatarith.induct) (auto) | |
lemma max_Var_floatarith_FDERIV_floatarith: | |
"length xs = length d \<Longrightarrow> | |
max_Var_floatarith (FDERIV_floatarith fa xs d) \<le> max (max_Var_floatarith fa) (max_Var_floatariths d)" | |
unfolding FDERIV_floatarith_def | |
by (auto simp: max_Var_floatariths_Max intro!: max_Var_floatarith_DERIV_floatarith[THEN order_trans] | |
max_Var_floatarith_fold_const_fa[THEN order_trans]) | |
definition FDERIV_floatariths where | |
"FDERIV_floatariths fas xs d = map (\<lambda>fa. FDERIV_floatarith fa xs d) fas" | |
lemma max_Var_floatarith_FDERIV_floatariths: | |
"length xs = length d \<Longrightarrow> max_Var_floatariths (FDERIV_floatariths fa xs d) \<le> max (max_Var_floatariths fa) (max_Var_floatariths d)" | |
by (auto simp: FDERIV_floatariths_def max_Var_floatariths_Max | |
intro!: max_Var_floatarith_FDERIV_floatarith[THEN order_trans]) | |
(auto simp: max_def) | |
lemma length_FDERIV_floatariths[simp]: | |
"length (FDERIV_floatariths fas xs ds) = length fas" | |
by (auto simp: FDERIV_floatariths_def) | |
lemma FDERIV_floatariths_nth[simp]: | |
"i < length fas \<Longrightarrow> FDERIV_floatariths fas xs ds ! i = FDERIV_floatarith (fas ! i) xs ds" | |
by (auto simp: FDERIV_floatariths_def) | |
definition "FDERIV_n_floatariths fas xs ds n = ((\<lambda>x. FDERIV_floatariths x xs ds)^^n) fas" | |
lemma FDERIV_n_floatariths_Suc[simp]: | |
"FDERIV_n_floatariths fa xs ds 0 = fa" | |
"FDERIV_n_floatariths fa xs ds (Suc n) = FDERIV_floatariths (FDERIV_n_floatariths fa xs ds n) xs ds" | |
by (auto simp: FDERIV_n_floatariths_def) | |
lemma length_FDERIV_n_floatariths[simp]: "length (FDERIV_n_floatariths fa xs ds n) = length fa" | |
by (induction n) (auto simp: FDERIV_n_floatariths_def) | |
lemma max_Var_floatarith_FDERIV_n_floatariths: | |
"length xs = length d \<Longrightarrow> max_Var_floatariths (FDERIV_n_floatariths fa xs d n) \<le> max (max_Var_floatariths fa) (max_Var_floatariths d)" | |
by (induction n) | |
(auto intro!: max_Var_floatarith_FDERIV_floatariths[THEN order_trans] simp: FDERIV_n_floatariths_def) | |
lemma interpret_floatarith_FDERIV_floatarith_cong: | |
assumes rq: "\<And>i. i < max_Var_floatarith f \<Longrightarrow> rs ! i = qs ! i" | |
assumes [simp]: "length ds = length xs" "length es = length xs" | |
assumes "interpret_floatariths ds qs = interpret_floatariths es rs" | |
shows "interpret_floatarith (FDERIV_floatarith f xs ds) qs = | |
interpret_floatarith (FDERIV_floatarith f xs es) rs" | |
apply (auto simp: FDERIV_floatarith_def interpret_floatarith_inner_eq) | |
apply (rule sum.cong[OF refl]) | |
subgoal premises prems for i | |
proof - | |
have "interpret_floatarith (DERIV_floatarith (xs ! i) f) qs = interpret_floatarith (DERIV_floatarith (xs ! i) f) rs" | |
apply (rule interpret_floatarith_max_Var_cong) | |
apply (auto simp: intro!: rq) | |
by (metis leD le_trans max_Var_floatarith_DERIV_floatarith nat_less_le) | |
moreover | |
have "interpret_floatarith (ds ! i) qs = interpret_floatarith (es ! i) rs" | |
using assms | |
by (metis \<open>i \<in> {..<length xs}\<close> interpret_floatariths_nth lessThan_iff) | |
ultimately show ?thesis by auto | |
qed | |
done | |
theorem | |
matrix_vector_mult_eq_list_of_eucl_nth: | |
"(M::real^'n::enum^'m::enum) *v v = | |
(\<Sum>i<CARD('m). | |
(\<Sum>j<CARD('n). list_of_eucl M ! (i * CARD('n) + j) * list_of_eucl v ! j) *\<^sub>R Basis_list ! i)" | |
using eucl_of_list_matrix_vector_mult_eq_sum_nth_Basis_list[of "list_of_eucl M" "list_of_eucl v", | |
where 'n='n and 'm = 'm] | |
by auto | |
definition "mmult_fa l m n AS BS = | |
concat (map (\<lambda>i. map (\<lambda>k. inner_floatariths | |
(map (\<lambda>j. AS ! (i * m + j)) [0..<m]) (map (\<lambda>j. BS ! (j * n + k)) [0..<m])) [0..<n]) [0..<l])" | |
lemma length_mmult_fa[simp]: "length (mmult_fa l m n AS BS) = l * n" | |
by (auto simp: mmult_fa_def length_concat o_def sum_list_distinct_conv_sum_set) | |
lemma einterpret_mmult_fa: | |
assumes [simp]: "Dn = CARD('n::enum)" "Dm = CARD('m::enum)" "Dl = CARD('l::enum)" | |
"length A = CARD('l)*CARD('m)" "length B = CARD('m)*CARD('n)" | |
shows "einterpret (mmult_fa Dl Dm Dn A B) vs = (einterpret A vs::((real, 'm::enum) vec, 'l) vec) ** (einterpret B vs::((real, 'n::enum) vec, 'm) vec)" | |
apply (vector matrix_matrix_mult_def) | |
apply (auto simp: mmult_fa_def vec_nth_eucl_of_list_eq2 index_Basis_list_axis2 | |
concat_map_map_index length_concat o_def sum_list_distinct_conv_sum_set | |
interpret_floatarith_inner_eq) | |
apply (subst sum_index_enum_eq) | |
apply simp | |
done | |
lemma max_Var_floatariths_mmult_fa: | |
assumes [simp]: "length A = D * E" "length B = E * F" | |
shows "max_Var_floatariths (mmult_fa D E F A B) \<le> max (max_Var_floatariths A) (max_Var_floatariths B)" | |
apply (auto simp: mmult_fa_def concat_map_map_index intro!: max_Var_floatariths_leI) | |
apply (rule max.coboundedI1) | |
apply (auto intro!: max_Var_floatarith_le_max_Var_floatariths_nth max.coboundedI2) | |
apply (cases "F = 0") | |
apply simp_all | |
done | |
lemma isDERIV_inner_iff: | |
assumes "length xs = length ys" | |
shows "isDERIV i (inner_floatariths xs ys) vs \<longleftrightarrow> | |
(\<forall>k < length xs. isDERIV i (xs ! k) vs) \<and> (\<forall>k < length ys. isDERIV i (ys ! k) vs)" | |
using assms | |
by (induction xs ys rule: list_induct2) (auto simp: nth_Cons split: nat.splits) | |
lemma isDERIV_Power: "isDERIV x (fa) vs \<Longrightarrow> isDERIV x (fa ^\<^sub>e n) vs" | |
by (induction n) (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
lemma isDERIV_mmult_fa_nth: | |
assumes "\<And>j. j < D * E \<Longrightarrow> isDERIV i (A ! j) xs" | |
assumes "\<And>j. j < E * F \<Longrightarrow> isDERIV i (B ! j) xs" | |
assumes [simp]: "length A = D * E" "length B = E * F" "j < D * F" | |
shows "isDERIV i (mmult_fa D E F A B ! j) xs" | |
using assms | |
apply (cases "F = 0") | |
apply (auto simp: mmult_fa_def concat_map_map_index isDERIV_inner_iff ac_simps) | |
apply (metis add.commute assms(5) in_square_lemma less_square_imp_div_less mult.commute) | |
done | |
definition "mvmult_fa n m AS B = | |
map (\<lambda>i. inner_floatariths (map (\<lambda>j. AS ! (i * m + j)) [0..<m]) (map (\<lambda>j. B ! j) [0..<m])) [0..<n]" | |
lemma einterpret_mvmult_fa: | |
assumes [simp]: "Dn = CARD('n::enum)" "Dm = CARD('m::enum)" | |
"length A = CARD('n)*CARD('m)" "length B = CARD('m)" | |
shows "einterpret (mvmult_fa Dn Dm A B) vs = (einterpret A vs::((real, 'm::enum) vec, 'n) vec) *v (einterpret B vs::(real, 'm) vec)" | |
apply (vector matrix_vector_mult_def) | |
apply (auto simp: mvmult_fa_def vec_nth_eucl_of_list_eq2 index_Basis_list_axis2 index_Basis_list_axis1 vec_nth_eucl_of_list_eq | |
concat_map_map_index length_concat o_def sum_list_distinct_conv_sum_set | |
interpret_floatarith_inner_eq) | |
apply (subst sum_index_enum_eq) | |
apply simp | |
done | |
lemma max_Var_floatariths_mvult_fa: | |
assumes [simp]: "length A = D * E" "length B = E" | |
shows "max_Var_floatariths (mvmult_fa D E A B) \<le> max (max_Var_floatariths A) (max_Var_floatariths B)" | |
apply (auto simp: mvmult_fa_def concat_map_map_index intro!: max_Var_floatariths_leI) | |
apply (rule max.coboundedI1) | |
by (auto intro!: max_Var_floatarith_le_max_Var_floatariths_nth max.coboundedI2) | |
lemma isDERIV_mvmult_fa_nth: | |
assumes "\<And>j. j < D * E \<Longrightarrow> isDERIV i (A ! j) xs" | |
assumes "\<And>j. j < E \<Longrightarrow> isDERIV i (B ! j) xs" | |
assumes [simp]: "length A = D * E" "length B = E" "j < D" | |
shows "isDERIV i (mvmult_fa D E A B ! j) xs" | |
using assms | |
apply (auto simp: mvmult_fa_def concat_map_map_index isDERIV_inner_iff ac_simps) | |
by (metis assms(5) in_square_lemma semiring_normalization_rules(24) semiring_normalization_rules(7)) | |
lemma max_Var_floatariths_mapI: | |
assumes "\<And>x. x \<in> set xs \<Longrightarrow> max_Var_floatarith (f x) \<le> m" | |
shows "max_Var_floatariths (map f xs) \<le> m" | |
using assms | |
by (force intro!: max_Var_floatariths_leI simp: in_set_conv_nth) | |
lemma | |
max_Var_floatariths_list_updateI: | |
assumes "max_Var_floatariths xs \<le> m" | |
assumes "max_Var_floatarith v \<le> m" | |
assumes "i < length xs" | |
shows "max_Var_floatariths (xs[i := v]) \<le> m" | |
using assms | |
apply (auto simp: nth_list_update intro!: max_Var_floatariths_leI ) | |
using max_Var_floatarith_le_max_Var_floatariths_nthI by blast | |
lemma | |
max_Var_floatariths_replicateI: | |
assumes "max_Var_floatarith v \<le> m" | |
shows "max_Var_floatariths (replicate n v) \<le> m" | |
using assms | |
by (auto intro!: max_Var_floatariths_leI ) | |
definition "FDERIV_n_floatarith fa xs ds n = ((\<lambda>x. FDERIV_floatarith x xs ds)^^n) fa" | |
lemma FDERIV_n_floatariths_nth: "i < length fas \<Longrightarrow> FDERIV_n_floatariths fas xs ds n ! i = FDERIV_n_floatarith (fas ! i) xs ds n" | |
by (induction n) | |
(auto simp: FDERIV_n_floatarith_def FDERIV_floatariths_nth) | |
lemma einterpret_fold_const_fa[simp]: | |
"(einterpret (map (\<lambda>i. fold_const_fa (fa i)) xs) vs::'a::executable_euclidean_space) = | |
einterpret (map fa xs) vs" if "length xs = DIM('a)" | |
using that | |
by (auto intro!: euclidean_eqI[where 'a='a] simp: algebra_simps eucl_of_list_inner) | |
lemma einterpret_plus[simp]: | |
shows "(einterpret (map (\<lambda>i. fa1 i + fa2 i) [0..<DIM('a)]) vs::'a) = | |
einterpret (map fa1 [0..<DIM('a::executable_euclidean_space)]) vs + einterpret (map fa2 [0..<DIM('a)]) vs" | |
by (auto intro!: euclidean_eqI[where 'a='a] simp: algebra_simps eucl_of_list_inner) | |
lemma einterpret_uminus[simp]: | |
shows "(einterpret (map (\<lambda>i. - fa1 i) [0..<DIM('a)]) vs::'a::executable_euclidean_space) = | |
- einterpret (map fa1 [0..<DIM('a)]) vs" | |
by (auto intro!: euclidean_eqI[where 'a='a] simp: algebra_simps eucl_of_list_inner) | |
lemma diff_floatarith_conv_add_uminus: "a - b = a + - b" for a b::floatarith | |
by (auto simp: minus_floatarith_def plus_floatarith_def uminus_floatarith_def) | |
lemma einterpret_minus[simp]: | |
shows "(einterpret (map (\<lambda>i. fa1 i - fa2 i) [0..<DIM('a)]) vs::'a::executable_euclidean_space) = | |
einterpret (map fa1 [0..<DIM('a)]) vs - einterpret (map fa2 [0..<DIM('a)]) vs" | |
by (simp add: diff_floatarith_conv_add_uminus) | |
lemma einterpret_scaleR[simp]: | |
shows "(einterpret (map (\<lambda>i. fa1 * fa2 i) [0..<DIM('a)]) vs::'a::executable_euclidean_space) = | |
interpret_floatarith (fa1) vs *\<^sub>R einterpret (map fa2 [0..<DIM('a)]) vs" | |
by (auto intro!: euclidean_eqI[where 'a='a] simp: algebra_simps eucl_of_list_inner) | |
lemma einterpret_nth[simp]: | |
assumes [simp]: "length xs = DIM('a)" | |
shows "(einterpret (map ((!) xs) [0..<DIM('a)]) vs::'a::executable_euclidean_space) = einterpret xs vs" | |
by (auto intro!: euclidean_eqI[where 'a='a] simp: algebra_simps eucl_of_list_inner) | |
type_synonym 'n rvec = "(real, 'n) vec" | |
lemma length_mvmult_fa[simp]: "length (mvmult_fa D E xs ys) = D" | |
by (auto simp: mvmult_fa_def) | |
lemma interpret_mvmult_nth: | |
assumes "D = CARD('n::enum)" | |
assumes "E = CARD('m::enum)" | |
assumes "length xs = D * E" | |
assumes "length ys = E" | |
assumes "n < CARD('n)" | |
shows "interpret_floatarith (mvmult_fa D E xs ys ! n) vs = | |
((einterpret xs vs::((real, 'm) vec, 'n) vec) *v einterpret ys vs) \<bullet> (Basis_list ! n)" | |
proof - | |
have "interpret_floatarith (mvmult_fa D E xs ys ! n) vs = einterpret (mvmult_fa D E xs ys) vs \<bullet> (Basis_list ! n::'n rvec)" | |
using assms | |
by (auto simp: eucl_of_list_inner) | |
also | |
from einterpret_mvmult_fa[OF assms(1,2), of xs ys vs] | |
have "einterpret (mvmult_fa D E xs ys) vs = (einterpret xs vs::((real, 'm) vec, 'n) vec) *v einterpret ys vs" | |
using assms by simp | |
finally show ?thesis by simp | |
qed | |
lemmas [simp del] = fold_const_fa.simps | |
lemma take_eq_map_nth: "n < length xs \<Longrightarrow> take n xs = map ((!) xs) [0..<n]" | |
by (induction xs) (auto intro!: nth_equalityI) | |
lemmas [simp del] = upt_rec_numeral | |
lemmas map_nth_eq_take = take_eq_map_nth[symmetric] | |
subsection \<open>Definition of Approximating Function using Affine Arithmetic\<close> | |
lemma interpret_Floatreal: "interpret_floatarith (floatarith.Num f) vs = (real_of_float f)" | |
by simp | |
ML \<open> | |
(* Make a congruence rule out of a defining equation for the interpretation | |
th is one defining equation of f, | |
i.e. th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)" | |
Cp is a constructor pattern and P is a pattern | |
The result is: | |
[|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn) | |
+ the a list of names of the A1 .. An, Those are fresh in the ctxt *) | |
fun mk_congeq ctxt fs th = | |
let | |
val Const (fN, _) = th |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq | |
|> fst |> strip_comb |> fst; | |
val ((_, [th']), ctxt') = Variable.import true [th] ctxt; | |
val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th')); | |
fun add_fterms (t as t1 $ t2) = | |
if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs | |
then insert (op aconv) t | |
else add_fterms t1 #> add_fterms t2 | |
| add_fterms (t as Abs _) = | |
if exists_Const (fn (c, _) => c = fN) t | |
then K [t] | |
else K [] | |
| add_fterms _ = I; | |
val fterms = add_fterms rhs []; | |
val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt'; | |
val tys = map fastype_of fterms; | |
val vs = map Free (xs ~~ tys); | |
val env = fterms ~~ vs; (*FIXME*) | |
fun replace_fterms (t as t1 $ t2) = | |
(case AList.lookup (op aconv) env t of | |
SOME v => v | |
| NONE => replace_fterms t1 $ replace_fterms t2) | |
| replace_fterms t = | |
(case AList.lookup (op aconv) env t of | |
SOME v => v | |
| NONE => t); | |
fun mk_def (Abs (x, xT, t), v) = | |
HOLogic.mk_Trueprop (HOLogic.all_const xT $ Abs (x, xT, HOLogic.mk_eq (v $ Bound 0, t))) | |
| mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t)); | |
fun tryext x = | |
(x RS @{lemma "(\<forall>x. f x = g x) \<Longrightarrow> f = g" by blast} handle THM _ => x); | |
val cong = | |
(Goal.prove ctxt'' [] (map mk_def env) | |
(HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs))) | |
(fn {context = goal_ctxt, prems} => | |
Local_Defs.unfold0_tac goal_ctxt (map tryext prems) THEN resolve_tac goal_ctxt [th'] 1)) | |
RS sym; | |
val (cong' :: vars') = | |
Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o Thm.cterm_of ctxt'') vs); | |
val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars'; | |
in (vs', cong') end; | |
fun mk_congs ctxt eqs = | |
let | |
val fs = fold_rev (fn eq => insert (op =) (eq |> Thm.prop_of |> HOLogic.dest_Trueprop | |
|> HOLogic.dest_eq |> fst |> strip_comb | |
|> fst)) eqs []; | |
val tys = fold_rev (fn f => fold (insert (op =)) (f |> fastype_of |> binder_types |> tl)) fs []; | |
val (vs, ctxt') = Variable.variant_fixes (replicate (length tys) "vs") ctxt; | |
val subst = | |
the o AList.lookup (op =) | |
(map2 (fn T => fn v => (T, Thm.cterm_of ctxt' (Free (v, T)))) tys vs); | |
fun prep_eq eq = | |
let | |
val (_, _ :: vs) = eq |> Thm.prop_of |> HOLogic.dest_Trueprop | |
|> HOLogic.dest_eq |> fst |> strip_comb; | |
val subst = map_filter (fn Var v => SOME (v, subst (#2 v)) | _ => NONE) vs; | |
in Thm.instantiate (TVars.empty, Vars.make subst) eq end; | |
val (ps, congs) = map_split (mk_congeq ctxt' fs o prep_eq) eqs; | |
val bds = AList.make (K ([], [])) tys; | |
in (ps ~~ Variable.export ctxt' ctxt congs, bds) end | |
\<close> | |
ML \<open> | |
fun interpret_floatariths_congs ctxt = | |
mk_congs ctxt @{thms interpret_floatarith.simps interpret_floatariths.simps} | |
|> fst | |
|> map snd | |
\<close> | |
ML \<open> | |
fun preproc_form_conv ctxt = | |
Simplifier.rewrite | |
(put_simpset HOL_basic_ss ctxt addsimps | |
(Named_Theorems.get ctxt @{named_theorems approximation_preproc}))\<close> | |
ML \<open>fun reify_floatariths_tac ctxt i = | |
CONVERSION (preproc_form_conv ctxt) i | |
THEN REPEAT_ALL_NEW (fn i => resolve_tac ctxt (interpret_floatariths_congs ctxt) i) i\<close> | |
method_setup reify_floatariths = \<open> | |
Scan.succeed (fn ctxt => SIMPLE_METHOD' (reify_floatariths_tac ctxt)) | |
\<close> "reification of floatariths expression" | |
schematic_goal reify_example: | |
"[xs!i * xs!j, xs!i + xs!j powr (sin (xs!0)), xs!k + (2 / 3 * xs!i * xs!j)] = interpret_floatariths ?fas xs" | |
by (reify_floatariths) | |
ML \<open>fun interpret_floatariths_step_tac ctxt i = resolve_tac ctxt (interpret_floatariths_congs ctxt) i\<close> | |
method_setup reify_floatariths_step = \<open> | |
Scan.succeed (fn ctxt => SIMPLE_METHOD' (interpret_floatariths_step_tac ctxt)) | |
\<close> "reification of floatariths expression (step)" | |
lemma eucl_of_list_interpret_floatariths_cong: | |
fixes y::"'a::executable_euclidean_space" | |
assumes "\<And>b. b \<in> Basis \<Longrightarrow> interpret_floatarith (fa (index Basis_list b)) vs = y \<bullet> b" | |
assumes "length xs = DIM('a)" | |
shows "eucl_of_list (interpret_floatariths (map fa [0..<DIM('a)]) vs) = y" | |
apply (rule euclidean_eqI) | |
apply (subst eucl_of_list_inner) | |
by (auto simp: assms) | |
lemma interpret_floatariths_fold_const_fa[simp]: | |
"interpret_floatariths (map fold_const_fa ds) = interpret_floatariths ds" | |
by (auto intro!: nth_equalityI) | |
fun subst_floatarith where | |
"subst_floatarith s (Add a b) = Add (subst_floatarith s a) (subst_floatarith s b)" | | |
"subst_floatarith s (Mult a b) = Mult (subst_floatarith s a) (subst_floatarith s b)" | | |
"subst_floatarith s (Minus a) = Minus (subst_floatarith s a)" | | |
"subst_floatarith s (Inverse a) = Inverse (subst_floatarith s a)" | | |
"subst_floatarith s (Cos a) = Cos (subst_floatarith s a)" | | |
"subst_floatarith s (Arctan a) = Arctan (subst_floatarith s a)" | | |
"subst_floatarith s (Min a b) = Min (subst_floatarith s a) (subst_floatarith s b)" | | |
"subst_floatarith s (Max a b) = Max (subst_floatarith s a) (subst_floatarith s b)" | | |
"subst_floatarith s (Abs a) = Abs (subst_floatarith s a)" | | |
"subst_floatarith s Pi = Pi" | | |
"subst_floatarith s (Sqrt a) = Sqrt (subst_floatarith s a)" | | |
"subst_floatarith s (Exp a) = Exp (subst_floatarith s a)" | | |
"subst_floatarith s (Powr a b) = Powr (subst_floatarith s a) (subst_floatarith s b)" | | |
"subst_floatarith s (Ln a) = Ln (subst_floatarith s a)" | | |
"subst_floatarith s (Power a i) = Power (subst_floatarith s a) i" | | |
"subst_floatarith s (Floor a) = Floor (subst_floatarith s a)" | | |
"subst_floatarith s (Num f) = Num f" | | |
"subst_floatarith s (Var n) = s n" | |
lemma interpret_floatarith_subst_floatarith: | |
assumes "max_Var_floatarith fa \<le> D" | |
shows "interpret_floatarith (subst_floatarith s fa) vs = | |
interpret_floatarith fa (map (\<lambda>i. interpret_floatarith (s i) vs) [0..<D])" | |
using assms | |
by (induction fa) auto | |
lemma max_Var_floatarith_subst_floatarith_le[THEN order_trans]: | |
assumes "length xs \<ge> max_Var_floatarith fa" | |
shows "max_Var_floatarith (subst_floatarith ((!) xs) fa) \<le> max_Var_floatariths xs" | |
using assms | |
by (induction fa) (auto intro!: max_Var_floatarith_le_max_Var_floatariths_nth) | |
lemma max_Var_floatariths_subst_floatarith_le[THEN order_trans]: | |
assumes "length xs \<ge> max_Var_floatariths fas" | |
shows "max_Var_floatariths (map (subst_floatarith ((!) xs)) fas) \<le> max_Var_floatariths xs" | |
using assms | |
by (induction fas) (auto simp: max_Var_floatarith_subst_floatarith_le) | |
fun continuous_on_floatarith :: "floatarith \<Rightarrow> bool" where | |
"continuous_on_floatarith (Add a b) = (continuous_on_floatarith a \<and> continuous_on_floatarith b)" | | |
"continuous_on_floatarith (Mult a b) = (continuous_on_floatarith a \<and> continuous_on_floatarith b)" | | |
"continuous_on_floatarith (Minus a) = continuous_on_floatarith a" | | |
"continuous_on_floatarith (Inverse a) = False" | | |
"continuous_on_floatarith (Cos a) = continuous_on_floatarith a" | | |
"continuous_on_floatarith (Arctan a) = continuous_on_floatarith a" | | |
"continuous_on_floatarith (Min a b) = (continuous_on_floatarith a \<and> continuous_on_floatarith b)" | | |
"continuous_on_floatarith (Max a b) = (continuous_on_floatarith a \<and> continuous_on_floatarith b)" | | |
"continuous_on_floatarith (Abs a) = continuous_on_floatarith a" | | |
"continuous_on_floatarith Pi = True" | | |
"continuous_on_floatarith (Sqrt a) = False" | | |
"continuous_on_floatarith (Exp a) = continuous_on_floatarith a" | | |
"continuous_on_floatarith (Powr a b) = False" | | |
"continuous_on_floatarith (Ln a) = False" | | |
"continuous_on_floatarith (Floor a) = False" | | |
"continuous_on_floatarith (Power a n) = (if n = 0 then True else continuous_on_floatarith a)" | | |
"continuous_on_floatarith (Num f) = True" | | |
"continuous_on_floatarith (Var n) = True" | |
definition "Maxs\<^sub>e xs = fold (\<lambda>a b. floatarith.Max a b) xs" | |
definition "norm2\<^sub>e n = Maxs\<^sub>e (map (\<lambda>j. Norm (map (\<lambda>i. Var (Suc j * n + i)) [0..<n])) [0..<n]) (Num 0)" | |
definition "N\<^sub>r l = Num (float_of l)" | |
lemma interpret_floatarith_Norm: | |
"interpret_floatarith (Norm xs) vs = L2_set (\<lambda>i. interpret_floatarith (xs ! i) vs) {0..<length xs}" | |
by (auto simp: Norm_def L2_set_def sum_list_sum_nth power2_eq_square) | |
lemma interpret_floatarith_Nr[simp]: "interpret_floatarith (N\<^sub>r U) vs = real_of_float (float_of U)" | |
by (auto simp: N\<^sub>r_def) | |
fun list_updates where | |
"list_updates [] _ xs = xs" | |
| "list_updates _ [] xs = xs" | |
| "list_updates (i#is) (u#us) xs = list_updates is us (xs[i:=u])" | |
lemma list_updates_nth_notmem: | |
assumes "length xs = length ys" | |
assumes "i \<notin> set xs" | |
shows "list_updates xs ys vs ! i = vs ! i" | |
using assms | |
by (induction xs ys arbitrary: i vs rule: list_induct2) auto | |
lemma list_updates_nth_less: | |
assumes "length xs = length ys" "distinct xs" | |
assumes "i < length vs" | |
shows "list_updates xs ys vs ! i = (if i \<in> set xs then ys ! (index xs i) else vs ! i)" | |
using assms | |
by (induction xs ys arbitrary: i vs rule: list_induct2) (auto simp: list_updates_nth_notmem) | |
lemma length_list_updates[simp]: "length (list_updates xs ys vs) = length vs" | |
by (induction xs ys vs rule: list_updates.induct) simp_all | |
lemma list_updates_nth_ge[simp]: | |
"x \<ge> length vs \<Longrightarrow> length xs = length ys \<Longrightarrow> list_updates xs ys vs ! x = vs ! x" | |
apply (induction xs ys vs rule: list_updates.induct) | |
apply (auto simp: nth_list_update) | |
by (metis list_update_beyond nth_list_update_neq) | |
lemma | |
list_updates_nth: | |
assumes [simp]: "length xs = length ys" "distinct xs" | |
shows "list_updates xs ys vs ! i = (if i < length vs \<and> i \<in> set xs then ys ! index xs i else vs ! i)" | |
by (auto simp: list_updates_nth_less list_updates_nth_notmem) | |
lemma list_of_eucl_coord_update: | |
assumes [simp]: "length xs = DIM('a::executable_euclidean_space)" | |
assumes [simp]: "distinct xs" | |
assumes [simp]: "i \<in> Basis" | |
assumes [simp]: "\<And>n. n \<in> set xs \<Longrightarrow> n < length vs" | |
shows "list_updates xs (list_of_eucl (x + (p - x \<bullet> i) *\<^sub>R i::'a)) vs = | |
(list_updates xs (list_of_eucl x) vs)[xs ! index Basis_list i := p]" | |
apply (auto intro!: nth_equalityI simp: list_updates_nth nth_list_update) | |
apply (simp add: algebra_simps inner_Basis index_nth_id) | |
apply (auto simp add: algebra_simps inner_Basis index_nth_id) | |
done | |
definition "eucl_of_env is vs = eucl_of_list (map (nth vs) is)" | |
lemma list_updates_list_of_eucl_of_env[simp]: | |
assumes [simp]: "length xs = DIM('a::executable_euclidean_space)" "distinct xs" | |
shows "list_updates xs (list_of_eucl (eucl_of_env xs vs::'a)) vs = vs" | |
by (auto intro!: nth_equalityI simp: list_updates_nth nth_list_update eucl_of_env_def) | |
lemma nth_nth_eucl_of_env_inner: | |
"b \<in> Basis \<Longrightarrow> length is = DIM('a) \<Longrightarrow> vs ! (is ! index Basis_list b) = eucl_of_env is vs \<bullet> b" | |
for b::"'a::executable_euclidean_space" | |
by (auto simp: eucl_of_env_def eucl_of_list_inner) | |
lemma list_updates_idem[simp]: | |
assumes "(\<And>i. i \<in> set X0 \<Longrightarrow> i < length vs)" | |
shows "(list_updates X0 (map ((!) vs) X0) vs) = vs" | |
using assms | |
by (induction X0) auto | |
lemma pairwise_orthogonal_Basis[intro, simp]: "pairwise orthogonal Basis" | |
by (auto simp: pairwise_alt orthogonal_def inner_Basis) | |
primrec freshs_floatarith where | |
"freshs_floatarith (Var y) x \<longleftrightarrow> (y \<notin> set x)" | |
| "freshs_floatarith (Num a) x \<longleftrightarrow> True" | |
| "freshs_floatarith Pi x \<longleftrightarrow> True" | |
| "freshs_floatarith (Cos a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Abs a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Arctan a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Sqrt a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Exp a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Floor a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Power a n) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Minus a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Ln a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Inverse a) x \<longleftrightarrow> freshs_floatarith a x" | |
| "freshs_floatarith (Add a b) x \<longleftrightarrow> freshs_floatarith a x \<and> freshs_floatarith b x" | |
| "freshs_floatarith (Mult a b) x \<longleftrightarrow> freshs_floatarith a x \<and> freshs_floatarith b x" | |
| "freshs_floatarith (floatarith.Max a b) x \<longleftrightarrow> freshs_floatarith a x \<and> freshs_floatarith b x" | |
| "freshs_floatarith (floatarith.Min a b) x \<longleftrightarrow> freshs_floatarith a x \<and> freshs_floatarith b x" | |
| "freshs_floatarith (Powr a b) x \<longleftrightarrow> freshs_floatarith a x \<and> freshs_floatarith b x" | |
lemma freshs_floatarith[simp]: | |
assumes "freshs_floatarith fa ds" "length ds = length xs" | |
shows "interpret_floatarith fa (list_updates ds xs vs) = interpret_floatarith fa vs" | |
using assms | |
by (induction fa) (auto simp: list_updates_nth_notmem) | |
lemma freshs_floatarith_max_Var_floatarithI: | |
assumes "\<And>x. x \<in> set xs \<Longrightarrow> max_Var_floatarith f \<le> x" | |
shows "freshs_floatarith f xs" | |
using assms Suc_n_not_le_n | |
by (induction f; force) | |
definition "freshs_floatariths fas xs = (\<forall>fa\<in>set fas. freshs_floatarith fa xs)" | |
lemma freshs_floatariths_max_Var_floatarithsI: | |
assumes "\<And>x. x \<in> set xs \<Longrightarrow> max_Var_floatariths f \<le> x" | |
shows "freshs_floatariths f xs" | |
using assms le_trans max_Var_floatarith_le_max_Var_floatariths | |
by (force simp: freshs_floatariths_def intro!: freshs_floatarith_max_Var_floatarithI) | |
lemma freshs_floatariths_freshs_floatarithI: | |
assumes "\<And>fa. fa \<in> set fas \<Longrightarrow> freshs_floatarith fa xs" | |
shows "freshs_floatariths fas xs" | |
by (auto simp: freshs_floatariths_def assms) | |
lemma fresh_floatariths_fresh_floatarithI: | |
assumes "freshs_floatariths fas xs" | |
assumes "fa \<in> set fas" | |
shows "freshs_floatarith fa xs" | |
using assms | |
by (auto simp: freshs_floatariths_def) | |
lemma fresh_floatariths_fresh_floatarith[simp]: | |
"fresh_floatariths (fas) i \<Longrightarrow> fa \<in> set fas \<Longrightarrow> fresh_floatarith fa i" | |
by (induction fas) auto | |
lemma interpret_floatariths_fresh_cong: | |
assumes "\<And>i. \<not>fresh_floatariths f i \<Longrightarrow> xs ! i = ys ! i" | |
shows "interpret_floatariths f ys = interpret_floatariths f xs" | |
by (auto intro!: nth_equalityI assms interpret_floatarith_fresh_cong simp: ) | |
fun subterms :: "floatarith \<Rightarrow> floatarith set" where | |
"subterms (Add a b) = insert (Add a b) (subterms a \<union> subterms b)" | | |
"subterms (Mult a b) = insert (Mult a b) (subterms a \<union> subterms b)" | | |
"subterms (Min a b) = insert (Min a b) (subterms a \<union> subterms b)" | | |
"subterms (floatarith.Max a b) = insert (floatarith.Max a b) (subterms a \<union> subterms b)" | | |
"subterms (Powr a b) = insert (Powr a b) (subterms a \<union> subterms b)" | | |
"subterms (Inverse a) = insert (Inverse a) (subterms a)" | | |
"subterms (Cos a) = insert (Cos a) (subterms a)" | | |
"subterms (Arctan a) = insert (Arctan a) (subterms a)" | | |
"subterms (Abs a) = insert (Abs a) (subterms a)" | | |
"subterms (Sqrt a) = insert (Sqrt a) (subterms a)" | | |
"subterms (Exp a) = insert (Exp a) (subterms a)" | | |
"subterms (Ln a) = insert (Ln a) (subterms a)" | | |
"subterms (Power a n) = insert (Power a n) (subterms a)" | | |
"subterms (Floor a) = insert (Floor a) (subterms a)" | | |
"subterms (Minus a) = insert (Minus a) (subterms a)" | | |
"subterms Pi = {Pi}" | | |
"subterms (Var v) = {Var v}" | | |
"subterms (Num n) = {Num n}" | |
lemma subterms_self[simp]: "fa2 \<in> subterms fa2" | |
by (induction fa2) auto | |
lemma interpret_floatarith_FDERIV_floatarith_eucl_of_env:\<comment> \<open>TODO: cleanup, reduce to DERIV?!\<close> | |
assumes iD: "\<And>i. i < DIM('a) \<Longrightarrow> isDERIV (xs ! i) fa vs" | |
assumes ds_fresh: "freshs_floatarith fa ds" | |
assumes [simp]: "length xs = DIM ('a)" "length ds = DIM ('a)" | |
"\<And>i. i \<in> set xs \<Longrightarrow> i < length vs" "distinct xs" | |
"\<And>i. i \<in> set ds \<Longrightarrow> i < length vs" "distinct ds" | |
shows "((\<lambda>x::'a::executable_euclidean_space. | |
(interpret_floatarith fa (list_updates xs (list_of_eucl x) vs))) has_derivative | |
(\<lambda>d. interpret_floatarith (FDERIV_floatarith fa xs (map Var ds)) (list_updates ds (list_of_eucl d) vs) ) | |
) (at (eucl_of_env xs vs))" | |
using iD ds_fresh | |
proof (induction fa) | |
case (Add fa1 fa2) | |
then show ?case | |
by (auto intro!: derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) | |
next | |
case (Minus fa) | |
then show ?case | |
by (auto intro!: derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) | |
next | |
case (Mult fa1 fa2) | |
then show ?case | |
by (auto intro!: derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) | |
next | |
case (Inverse fa) | |
then show ?case | |
by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] power2_eq_square) | |
next | |
case (Cos fa) | |
then show ?case | |
by (auto intro!: derivative_eq_intros ext simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map add.commute minus_sin_cos_eq | |
simp flip: mult_minus_left list_of_eucl_coord_update cos_pi_minus) | |
next | |
case (Arctan fa) | |
then show ?case | |
by (auto intro!: derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) | |
next | |
case (Abs fa) | |
then show ?case | |
by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case (Max fa1 fa2) | |
then show ?case | |
by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case (Min fa1 fa2) | |
then show ?case | |
by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case Pi | |
then show ?case | |
by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case (Sqrt fa) | |
then show ?case | |
by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case (Exp fa) | |
then show ?case | |
by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case (Powr fa1 fa2) | |
then show ?case | |
by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps divide_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case (Ln fa) | |
then show ?case | |
by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case (Power fa x2a) | |
then show ?case | |
apply (cases x2a) | |
apply (auto intro!: DIM_positive derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) | |
apply (auto intro!: ext simp: ) | |
by (simp add: semiring_normalization_rules(27)) | |
next | |
case (Floor fa) | |
then show ?case | |
by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
next | |
case (Var x) | |
then show ?case | |
apply (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] if_distrib) | |
apply (subst list_updates_nth) | |
apply (auto intro!: derivative_eq_intros ext split: if_splits | |
cong: if_cong simp: if_distribR eucl_of_list_if) | |
apply (subst inner_commute) | |
apply (rule arg_cong[where f="\<lambda>b. a \<bullet> b" for a]) | |
apply (auto intro!: euclidean_eqI[where 'a='a] simp: eucl_of_list_inner list_updates_nth index_nth_id) | |
done | |
next | |
case (Num x) | |
then show ?case | |
by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths | |
interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) | |
qed | |
lemma interpret_floatarith_FDERIV_floatarith_append: | |
assumes iD: "\<And>i j. i < DIM('a) \<Longrightarrow> isDERIV i (fa) (list_of_eucl x @ params)" | |
assumes m: "max_Var_floatarith fa \<le> DIM('a) + length params" | |
shows "((\<lambda>x::'a::executable_euclidean_space. | |
interpret_floatarith fa (list_of_eucl x @ params)) has_derivative | |
(\<lambda>d. interpret_floatarith | |
(FDERIV_floatarith fa [0..<DIM('a)] (map Var [length params + DIM('a)..<length params + 2*DIM('a)])) | |
(list_of_eucl x @ params @ list_of_eucl d))) (at x)" | |
proof - | |
have m_nth: "ia < max_Var_floatarith fa \<Longrightarrow> ia < DIM('a) + length params" for ia | |
using less_le_trans m by blast | |
have "((\<lambda>xa::'a. interpret_floatarith fa | |
(list_updates [0..<DIM('a)] (list_of_eucl xa) (list_of_eucl x @ params @ replicate DIM('a) 0))) has_derivative | |
(\<lambda>d. interpret_floatarith (FDERIV_floatarith fa [0..<DIM('a)] (map Var [length params + DIM('a)..<length params + 2 * DIM('a)])) | |
(list_updates [length params + DIM('a)..<length params + 2 * DIM('a)] (list_of_eucl d) | |
(list_of_eucl x @ params @ replicate DIM('a) 0)))) | |
(at (eucl_of_env [0..<DIM('a)] (list_of_eucl x @ params @ replicate DIM('a) 0)))" | |
by (rule interpret_floatarith_FDERIV_floatarith_eucl_of_env) | |
(auto intro!: iD freshs_floatarith_max_Var_floatarithI isDERIV_max_Var_floatarithI[OF iD] | |
max_Var_floatarith_le_max_Var_floatariths[THEN order_trans] m[THEN order_trans] | |
simp: nth_append add.commute less_diff_conv2 m_nth) | |
moreover have "interpret_floatarith fa (list_updates [0..<DIM('a)] (list_of_eucl xa) (list_of_eucl x @ params @ replicate DIM('a) 0)) = | |
interpret_floatarith fa (list_of_eucl xa @ params)" for xa::'a | |
apply (auto intro!: nth_equalityI interpret_floatarith_max_Var_cong simp: ) | |
apply (auto simp: list_updates_nth nth_append dest: m_nth) | |
done | |
moreover have "(list_updates [length params + DIM('a)..<length params + 2 * DIM('a)] (list_of_eucl d) (list_of_eucl x @ params @ replicate DIM('a) 0)) = | |
(list_of_eucl x @ params @ list_of_eucl d)" for d::'a | |
by (auto simp: intro!: nth_equalityI simp: list_updates_nth nth_append add.commute) | |
moreover have "(eucl_of_env [0..<DIM('a)] (list_of_eucl x @ params @ replicate DIM('a) 0)) = x" | |
by (auto intro!: euclidean_eqI[where 'a='a] simp: eucl_of_env_def eucl_of_list_inner nth_append) | |
ultimately show ?thesis by simp | |
qed | |
lemma interpret_floatarith_FDERIV_floatarith: | |
assumes iD: "\<And>i j. i < DIM('a) \<Longrightarrow> isDERIV i (fa) (list_of_eucl x)" | |
assumes m: "max_Var_floatarith fa \<le> DIM('a)" | |
shows "((\<lambda>x::'a::executable_euclidean_space. | |
interpret_floatarith fa (list_of_eucl x)) has_derivative | |
(\<lambda>d. interpret_floatarith | |
(FDERIV_floatarith fa [0..<DIM('a)] (map Var [DIM('a)..<2*DIM('a)])) | |
(list_of_eucl x @ list_of_eucl d))) (at x)" | |
using interpret_floatarith_FDERIV_floatarith_append[where params=Nil,simplified, OF assms] | |
by simp | |
lemma interpret_floatarith_eventually_isDERIV: | |
assumes iD: "\<And>i j. i < DIM('a) \<Longrightarrow> isDERIV i fa (list_of_eucl x @ params)" | |
assumes m: "max_Var_floatarith fa \<le> DIM('a::executable_euclidean_space) + length params" | |
shows "\<forall>i < DIM('a). \<forall>\<^sub>F (x::'a) in at x. isDERIV i fa (list_of_eucl x @ params)" | |
using iD m | |
proof (induction fa) | |
case (Inverse fa) | |
then have "\<forall>i<DIM('a). \<forall>\<^sub>F x in at x. isDERIV i fa (list_of_eucl x @ params)" | |
by auto | |
moreover | |
have iD: "i < DIM('a) \<Longrightarrow> isDERIV i fa (list_of_eucl x @ params)" "interpret_floatarith fa (list_of_eucl x @ params) \<noteq> 0" for i | |
using Inverse.prems(1)[OF ] by force+ | |
from Inverse have m: "max_Var_floatarith fa \<le> DIM('a) + length params" by simp | |
from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] | |
have "isCont (\<lambda>x. interpret_floatarith fa (list_of_eucl x @ params)) x" by simp | |
then have "\<forall>\<^sub>F x in at x. interpret_floatarith fa (list_of_eucl x @ params) \<noteq> 0" | |
using iD(2) tendsto_imp_eventually_ne | |
by (auto simp: isCont_def) | |
ultimately | |
show ?case | |
by (auto elim: eventually_elim2) | |
next | |
case (Sqrt fa) | |
then have "\<forall>i<DIM('a). \<forall>\<^sub>F x in at x. isDERIV i fa (list_of_eucl x @ params)" | |
by auto | |
moreover | |
have iD: "i < DIM('a) \<Longrightarrow> isDERIV i fa (list_of_eucl x @ params)" "interpret_floatarith fa (list_of_eucl x @ params) > 0" for i | |
using Sqrt.prems(1)[OF ] by force+ | |
from Sqrt have m: "max_Var_floatarith fa \<le> DIM('a) + length params" by simp | |
from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] | |
have "isCont (\<lambda>x. interpret_floatarith fa (list_of_eucl x @ params)) x" by simp | |
then have "\<forall>\<^sub>F x in at x. interpret_floatarith fa (list_of_eucl x @ params) > 0" | |
using iD(2) order_tendstoD | |
by (auto simp: isCont_def) | |
ultimately | |
show ?case | |
by (auto elim: eventually_elim2) | |
next | |
case (Powr fa1 fa2) | |
then have "\<forall>i<DIM('a). \<forall>\<^sub>F x in at x. isDERIV i fa1 (list_of_eucl x @ params)" | |
"\<forall>i<DIM('a). \<forall>\<^sub>F x in at x. isDERIV i fa2 (list_of_eucl x @ params)" | |
by auto | |
moreover | |
have iD: "i < DIM('a) \<Longrightarrow> isDERIV i fa1 (list_of_eucl x @ params)" "interpret_floatarith fa1 (list_of_eucl x @ params) > 0" | |
for i | |
using Powr.prems(1) by force+ | |
from Powr have m: "max_Var_floatarith fa1 \<le> DIM('a) + length params" by simp | |
from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] | |
have "isCont (\<lambda>x. interpret_floatarith fa1 (list_of_eucl x @ params)) x" by simp | |
then have "\<forall>\<^sub>F x in at x. interpret_floatarith fa1 (list_of_eucl x @ params) > 0" | |
using iD(2) order_tendstoD | |
by (auto simp: isCont_def) | |
ultimately | |
show ?case | |
apply safe | |
subgoal for i | |
apply (safe dest!: spec[of _ i]) | |
subgoal premises prems | |
using prems(1,3,4) | |
by eventually_elim auto | |
done | |
done | |
next | |
case (Ln fa) | |
then have "\<forall>i<DIM('a). \<forall>\<^sub>F x in at x. isDERIV i fa (list_of_eucl x @ params)" | |
by auto | |
moreover | |
have iD: "i < DIM('a) \<Longrightarrow> isDERIV i fa (list_of_eucl x @ params)" "interpret_floatarith fa (list_of_eucl x @ params) > 0" for i | |
using Ln.prems(1)[OF ] by force+ | |
from Ln have m: "max_Var_floatarith fa \<le> DIM('a) + length params" by simp | |
from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] | |
have "isCont (\<lambda>x. interpret_floatarith fa (list_of_eucl x @ params)) x" by simp | |
then have "\<forall>\<^sub>F x in at x. interpret_floatarith fa (list_of_eucl x @ params) > 0" | |
using iD(2) order_tendstoD | |
by (auto simp: isCont_def) | |
ultimately | |
show ?case | |
by (auto elim: eventually_elim2) | |
next | |
case (Power fa m) then show ?case by (cases m) auto | |
next | |
case (Floor fa) | |
then have "\<forall>i<DIM('a). \<forall>\<^sub>F x in at x. isDERIV i fa (list_of_eucl x @ params)" | |
by auto | |
moreover | |
have iD: "i < DIM('a) \<Longrightarrow> isDERIV i fa (list_of_eucl x @ params)" | |
"interpret_floatarith fa (list_of_eucl x @ params) \<notin> \<int>" for i | |
using Floor.prems(1)[OF ] by force+ | |
from Floor have m: "max_Var_floatarith fa \<le> DIM('a) + length params" by simp | |
from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] | |
have cont: "isCont (\<lambda>x. interpret_floatarith fa (list_of_eucl x @ params)) x" by simp | |
let ?i = "\<lambda>x. interpret_floatarith fa (list_of_eucl x @ params)" | |
have "\<forall>\<^sub>F y in at x. ?i y > floor (?i x)" "\<forall>\<^sub>F y in at x. ?i y < ceiling (?i x)" | |
using cont | |
by (auto simp: isCont_def eventually_floor_less eventually_less_ceiling iD(2)) | |
then have "\<forall>\<^sub>F x in at x. ?i x \<notin> \<int>" | |
apply eventually_elim | |
apply (auto simp: Ints_def) | |
by linarith | |
ultimately | |
show ?case | |
by (auto elim: eventually_elim2) | |
qed (fastforce intro: DIM_positive elim: eventually_elim2)+ | |
lemma eventually_isFDERIV: | |
assumes iD: "isFDERIV DIM('a) [0..<DIM('a)] fas (list_of_eucl x@params)" | |
assumes m: "max_Var_floatariths fas \<le> DIM('a::executable_euclidean_space) + length params" | |
shows "\<forall>\<^sub>F (x::'a) in at x. isFDERIV DIM('a) [0..<DIM('a)] fas (list_of_eucl x @ params)" | |
by (auto simp: isFDERIV_def all_nat_less_eq eventually_ball_finite_distrib isFDERIV_lengthD[OF iD] | |
intro!: interpret_floatarith_eventually_isDERIV[OF isFDERIV_uptD[OF iD], rule_format] | |
max_Var_floatarith_le_max_Var_floatariths[THEN order_trans] m) | |
lemma isFDERIV_eventually_isFDERIV: | |
assumes iD: "isFDERIV DIM('a) [0..<DIM('a)] fas (list_of_eucl x@params)" | |
assumes m: "max_Var_floatariths fas \<le> DIM('a::executable_euclidean_space) + length params" | |
shows "\<forall>\<^sub>F (x::'a) in at x. isFDERIV DIM('a) [0..<DIM('a)] fas (list_of_eucl x @ params)" | |
by (rule eventually_isFDERIV) (use assms in \<open>auto simp: isFDERIV_def\<close>) | |
lemma interpret_floatarith_FDERIV_floatariths_eucl_of_env: | |
assumes iD: "isFDERIV DIM('a) xs fas vs" | |
assumes fresh: "freshs_floatariths (fas) ds" | |
assumes [simp]: "length ds = DIM ('a)" | |
"\<And>i. i \<in> set xs \<Longrightarrow> i < length vs" "distinct xs" | |
"\<And>i. i \<in> set ds \<Longrightarrow> i < length vs" "distinct ds" | |
shows "((\<lambda>x::'a::executable_euclidean_space. | |
eucl_of_list | |
(interpret_floatariths fas (list_updates xs (list_of_eucl x) vs))::'a) has_derivative | |
(\<lambda>d. eucl_of_list (interpret_floatariths | |
(FDERIV_floatariths fas xs (map Var ds)) | |
(list_updates ds (list_of_eucl d) vs)))) (at (eucl_of_env xs vs))" | |
by (subst has_derivative_componentwise_within) | |
(auto simp add: eucl_of_list_inner isFDERIV_lengthD[OF iD] | |
intro!: interpret_floatarith_FDERIV_floatarith_eucl_of_env iD[THEN isFDERIV_isDERIV_D] | |
fresh_floatariths_fresh_floatarithI fresh) | |
lemma interpret_floatarith_FDERIV_floatariths_append: | |
assumes iD: "isFDERIV DIM('a) [0..<DIM('a)] fas (list_of_eucl x @ ramsch)" | |
assumes m: "max_Var_floatariths fas \<le> DIM('a) + length ramsch" | |
assumes [simp]: "length fas = DIM('a)" | |
shows "((\<lambda>x::'a::executable_euclidean_space. | |
eucl_of_list | |
(interpret_floatariths fas (list_of_eucl x@ramsch))::'a) has_derivative | |
(\<lambda>d. eucl_of_list (interpret_floatariths | |
(FDERIV_floatariths fas [0..<DIM('a)] (map Var [DIM('a)+length ramsch..<2*DIM('a) + length ramsch])) | |
(list_of_eucl x @ ramsch @ list_of_eucl d)))) (at x)" | |
proof - | |
have m_nth: "ia < max_Var_floatariths fas \<Longrightarrow> ia < DIM('a) + length ramsch" for ia | |
using m by simp | |
have m_nth': "ia < max_Var_floatarith (fas ! j) \<Longrightarrow> ia < DIM('a) + length ramsch" if "j < DIM('a)" for j ia | |
using m_nth max_Var_floatariths_lessI that by auto | |
have "((\<lambda>xa::'a. eucl_of_list | |
(interpret_floatariths fas | |
(list_updates [0..<DIM('a)] (list_of_eucl xa) | |
(list_of_eucl x @ ramsch @ replicate DIM('a) 0)))::'a) has_derivative | |
(\<lambda>d. eucl_of_list | |
(interpret_floatariths | |
(FDERIV_floatariths fas [0..<DIM('a)] (map Var [length ramsch + DIM('a)..<length ramsch + 2 * DIM('a)])) | |
(list_updates [length ramsch + DIM('a)..<length ramsch + 2 * DIM('a)] (list_of_eucl d) | |
(list_of_eucl x @ ramsch @ replicate DIM('a) 0))))) | |
(at (eucl_of_env [0..<DIM('a)] (list_of_eucl x @ ramsch @ replicate DIM('a) 0)))" | |
by (rule interpret_floatarith_FDERIV_floatariths_eucl_of_env[of | |
"[0..<DIM('a)]" fas "list_of_eucl x@ramsch@replicate DIM('a) 0" "[length ramsch+DIM('a)..<length ramsch+2*DIM('a)]"]) | |
(auto intro!: iD[THEN isFDERIV_uptD] freshs_floatarith_max_Var_floatarithI isFDERIV_max_Var_congI[OF iD] | |
max_Var_floatarith_le_max_Var_floatariths[THEN order_trans] m[THEN order_trans] | |
freshs_floatariths_max_Var_floatarithsI simp: nth_append m add.commute less_diff_conv2 m_nth) | |
moreover have "interpret_floatariths fas (list_updates [0..<DIM('a)] (list_of_eucl xa) (list_of_eucl x @ ramsch @ replicate DIM('a) 0)) = | |
interpret_floatariths fas (list_of_eucl xa @ ramsch)" for xa::'a | |
apply (auto intro!: nth_equalityI interpret_floatarith_max_Var_cong simp: ) | |
apply (auto simp: list_updates_nth nth_append dest: m_nth') | |
done | |
moreover have | |
"(list_updates [DIM('a) + length ramsch..<length ramsch + 2 * DIM('a)] | |
(list_of_eucl d) | |
(list_of_eucl x @ ramsch @ replicate DIM('a) 0)) = | |
(list_of_eucl x @ ramsch @ list_of_eucl d)" for d::'a | |
by (auto simp: intro!: nth_equalityI simp: list_updates_nth nth_append) | |
moreover have "(eucl_of_env [0..<DIM('a)] (list_of_eucl x @ ramsch @ replicate DIM('a) 0)) = x" | |
by (auto intro!: euclidean_eqI[where 'a='a] simp: eucl_of_env_def eucl_of_list_inner nth_append) | |
ultimately show ?thesis by (simp add: add.commute) | |
qed | |
lemma interpret_floatarith_FDERIV_floatariths: | |
assumes iD: "isFDERIV DIM('a) [0..<DIM('a)] fas (list_of_eucl x)" | |
assumes m: "max_Var_floatariths fas \<le> DIM('a)" | |
assumes [simp]: "length fas = DIM('a)" | |
shows "((\<lambda>x::'a::executable_euclidean_space. | |
eucl_of_list | |
(interpret_floatariths fas (list_of_eucl x))::'a) has_derivative | |
(\<lambda>d. eucl_of_list (interpret_floatariths | |
(FDERIV_floatariths fas [0..<DIM('a)] (map Var [DIM('a)..<2*DIM('a)])) | |
(list_of_eucl x @ list_of_eucl d)))) (at x)" | |
using interpret_floatarith_FDERIV_floatariths_append[where ramsch=Nil, simplified, OF assms] | |
by simp | |
lemma continuous_on_min[continuous_intros]: | |
fixes f g :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" | |
shows "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. min (f x) (g x))" | |
by (auto simp: continuous_on_def intro!: tendsto_min) | |
lemmas [continuous_intros] = continuous_on_max | |
lemma continuous_on_if_const[continuous_intros]: | |
"continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. if p then f x else g x)" | |
by (cases p) auto | |
lemma continuous_on_floatarith: | |
assumes "continuous_on_floatarith fa" "length xs = DIM('a)" "distinct xs" | |
shows "continuous_on UNIV (\<lambda>x. interpret_floatarith fa (list_updates xs (list_of_eucl (x::'a::executable_euclidean_space)) vs))" | |
using assms | |
by (induction fa) | |
(auto intro!: continuous_intros split: if_splits simp: list_updates_nth list_of_eucl_nth_if) | |
fun open_form :: "form \<Rightarrow> bool" where | |
"open_form (Bound x a b f) = False" | | |
"open_form (Assign x a f) = False" | | |
"open_form (Less a b) \<longleftrightarrow> continuous_on_floatarith a \<and> continuous_on_floatarith b" | | |
"open_form (LessEqual a b) = False" | | |
"open_form (AtLeastAtMost x a b) = False" | | |
"open_form (Conj f g) \<longleftrightarrow> open_form f \<and> open_form g" | | |
"open_form (Disj f g) \<longleftrightarrow> open_form f \<and> open_form g" | |
lemma open_form: | |
assumes "open_form f" "length xs = DIM('a::executable_euclidean_space)" "distinct xs" | |
shows "open (Collect (\<lambda>x::'a. interpret_form f (list_updates xs (list_of_eucl x) vs)))" | |
using assms | |
by (induction f) (auto intro!: open_Collect_less continuous_on_floatarith open_Collect_conj open_Collect_disj) | |
primrec isnFDERIV where | |
"isnFDERIV N fas xs ds vs 0 = True" | |
| "isnFDERIV N fas xs ds vs (Suc n) \<longleftrightarrow> | |
isFDERIV N xs (FDERIV_n_floatariths fas xs (map Var ds) n) vs \<and> | |
isnFDERIV N fas xs ds vs n" | |
lemma one_add_square_eq_0: "1 + (x)\<^sup>2 \<noteq> (0::real)" | |
by (sos "((R<1 + (([~1] * A=0) + (R<1 * (R<1 * [x]^2)))))") | |
lemma isDERIV_fold_const_fa[intro]: | |
assumes "isDERIV x fa vs" | |
shows "isDERIV x (fold_const_fa fa) vs" | |
using assms | |
apply (induction fa) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal for fa n | |
by (cases n) (auto simp: fold_const_fa.simps split: floatarith.splits nat.splits) | |
subgoal | |
by (auto simp: fold_const_fa.simps split: floatarith.splits) (subst (asm) fold_const_fa[symmetric], force)+ | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
done | |
lemma isDERIV_fold_const_fa_minus[intro!]: | |
assumes "isDERIV x (fold_const_fa fa) vs" | |
shows "isDERIV x (fold_const_fa (Minus fa)) vs" | |
using assms | |
by (induction fa) (auto simp: fold_const_fa.simps split: floatarith.splits) | |
lemma isDERIV_fold_const_fa_plus[intro!]: | |
assumes "isDERIV x (fold_const_fa fa) vs" | |
assumes "isDERIV x (fold_const_fa fb) vs" | |
shows "isDERIV x (fold_const_fa (Add fa fb)) vs" | |
using assms | |
by (induction fa) | |
(auto simp: fold_const_fa.simps | |
split: floatarith.splits option.splits) | |
lemma isDERIV_fold_const_fa_mult[intro!]: | |
assumes "isDERIV x (fold_const_fa fa) vs" | |
assumes "isDERIV x (fold_const_fa fb) vs" | |
shows "isDERIV x (fold_const_fa (Mult fa fb)) vs" | |
using assms | |
by (induction fa) | |
(auto simp: fold_const_fa.simps | |
split: floatarith.splits option.splits) | |
lemma isDERIV_fold_const_fa_power[intro!]: | |
assumes "isDERIV x (fold_const_fa fa) vs" | |
shows "isDERIV x (fold_const_fa (fa ^\<^sub>e n)) vs" | |
apply (cases n, simp add: fold_const_fa.simps split: floatarith.splits) | |
using assms | |
by (induction fa) | |
(auto simp: fold_const_fa.simps split: floatarith.splits option.splits) | |
lemma isDERIV_fold_const_fa_inverse[intro!]: | |
assumes "isDERIV x (fold_const_fa fa) vs" | |
assumes "interpret_floatarith fa vs \<noteq> 0" | |
shows "isDERIV x (fold_const_fa (Inverse fa)) vs" | |
using assms | |
by (simp add: fold_const_fa.simps) | |
lemma add_square_ne_zero[simp]: "(y::'a::linordered_idom) > 0 \<Longrightarrow> y + x\<^sup>2 \<noteq> 0" | |
by auto (metis less_add_same_cancel2 power2_less_0) | |
lemma isDERIV_FDERIV_floatarith: | |
assumes "isDERIV x fa vs" "\<And>i. i < length ds \<Longrightarrow> isDERIV x (ds ! i) vs" | |
assumes [simp]: "length xs = length ds" | |
shows "isDERIV x (FDERIV_floatarith fa xs ds) vs" | |
using assms | |
apply (induction fa) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal for fa n by (cases n) (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
done | |
lemma isDERIV_FDERIV_floatariths: | |
assumes "isFDERIV N xs fas vs" "isFDERIV N xs ds vs" and [simp]: "length fas = length ds" | |
shows "isFDERIV N xs (FDERIV_floatariths fas xs ds) vs" | |
using assms | |
by (auto simp: isFDERIV_def FDERIV_floatariths_def intro!: isDERIV_FDERIV_floatarith) | |
lemma isFDERIV_imp_isFDERIV_FDERIV_n: | |
assumes "length fas = length ds" | |
shows "isFDERIV N xs fas vs \<Longrightarrow> isFDERIV N xs ds vs \<Longrightarrow> | |
isFDERIV N xs (FDERIV_n_floatariths fas xs ds n) vs" | |
using assms | |
by (induction n) (auto intro!: isDERIV_FDERIV_floatariths) | |
lemma isFDERIV_map_Var: | |
assumes [simp]: "length ds = N" "length xs = N" | |
shows "isFDERIV N xs (map Var ds) vs" | |
by (auto simp: isFDERIV_def) | |
theorem isFDERIV_imp_isnFDERIV: | |
assumes "isFDERIV N xs fas vs" and [simp]: "length fas = N" "length xs = N" "length ds = N" | |
shows "isnFDERIV N fas xs ds vs n" | |
using assms | |
by (induction n) (auto intro!: isFDERIV_imp_isFDERIV_FDERIV_n isFDERIV_map_Var) | |
lemma eventually_isnFDERIV: | |
assumes iD: "isnFDERIV DIM('a) fas [0..<DIM('a)] [DIM('a)..<2*DIM('a)] (list_of_eucl x @ list_of_eucl (d::'a)) n" | |
assumes m: "max_Var_floatariths fas \<le> 2 * DIM('a::executable_euclidean_space)" | |
shows "\<forall>\<^sub>F (x::'a) in at x. isnFDERIV DIM('a) fas [0..<DIM('a)] [DIM('a)..<2*DIM('a)] (list_of_eucl x @ list_of_eucl d) n" | |
using iD | |
proof (induction n) | |
case (Suc n) | |
then have 1: "\<forall>\<^sub>F x in at x. isnFDERIV DIM('a) fas [0..<DIM('a)] [DIM('a)..<2 * DIM('a)] (list_of_eucl x @ list_of_eucl d) n" | |
and 2: "isFDERIV DIM('a) [0..<DIM('a)] (FDERIV_n_floatariths fas [0..<DIM('a)] (map Var [DIM('a)..<2 * DIM('a)]) n) | |
(list_of_eucl x @ list_of_eucl d)" | |
by simp_all | |
have "max_Var_floatariths (FDERIV_n_floatariths fas [0..<DIM('a)] (map Var [DIM('a)..<2 * DIM('a)]) n) \<le> | |
DIM('a) + length (list_of_eucl d)" | |
by (auto intro!: max_Var_floatarith_FDERIV_n_floatariths[THEN order_trans] m[THEN order_trans]) | |
from eventually_isFDERIV[OF 2 this] 1 | |
show ?case | |
by eventually_elim simp | |
qed simp | |
lemma isFDERIV_open: | |
assumes "max_Var_floatariths fas \<le> DIM('a)" | |
shows "open {x::'a. isFDERIV DIM('a::executable_euclidean_space) [0..<DIM('a)] fas (list_of_eucl x)}" | |
(is "open (Collect ?s)") | |
proof (safe intro!: topological_space_class.openI) | |
fix x::'a assume x: "?s x" | |
with eventually_isFDERIV[where 'a='a, of fas x Nil] | |
have "\<forall>\<^sub>F x in at x. x \<in> Collect ?s" | |
by (auto simp: assms) | |
then obtain S where "open S" "x \<in> S" | |
"(\<forall>xa\<in>S. xa \<noteq> x \<longrightarrow> ?s xa)" | |
unfolding eventually_at_topological | |
by auto | |
with x show "\<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> Collect ?s" | |
by (auto intro!: exI[where x=S]) | |
qed | |
lemma interpret_floatarith_FDERIV_floatarith_eq: | |
assumes [simp]: "length xs = DIM('a::executable_euclidean_space)" "length ds = DIM('a)" | |
shows "interpret_floatarith (FDERIV_floatarith fa xs ds) vs = | |
einterpret (map (\<lambda>x. DERIV_floatarith x fa) xs) vs \<bullet> (einterpret ds vs::'a)" | |
by (auto simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths) | |
lemma | |
interpret_floatariths_FDERIV_floatariths_cong: | |
assumes [simp]: "length d1s = DIM('a::executable_euclidean_space)" "length d2s = DIM('a)" "length fas1 = length fas2" | |
assumes fresh1: "freshs_floatariths fas1 d1s" | |
assumes fresh2: "freshs_floatariths fas2 d2s" | |
assumes eq1: "\<And>i. i < length fas1 \<Longrightarrow> interpret_floatariths (map (\<lambda>x. DERIV_floatarith x (fas1 ! i)) [0..<DIM('a)]) xs1 = | |
interpret_floatariths (map (\<lambda>x. DERIV_floatarith x (fas2 ! i)) [0..<DIM('a)]) xs2" | |
assumes eq2: "\<And>i. i < DIM('a) \<Longrightarrow> xs1 ! (d1s ! i) = xs2 ! (d2s ! i)" | |
shows "interpret_floatariths (FDERIV_floatariths fas1 [0..<DIM('a)] (map floatarith.Var d1s)) xs1 = | |
interpret_floatariths (FDERIV_floatariths fas2 [0..<DIM('a)] (map floatarith.Var d2s)) xs2" | |
proof - | |
note eq1 | |
moreover have "interpret_floatariths (map Var d1s) (xs1) = | |
interpret_floatariths (map Var d2s) (xs2)" | |
by (auto intro!: nth_equalityI eq2) | |
ultimately | |
show ?thesis | |
by (auto intro!: nth_equalityI simp: interpret_floatarith_FDERIV_floatarith_eq) | |
qed | |
lemma subst_floatarith_Var_DERIV_floatarith: | |
assumes "\<And>x. x = n \<longleftrightarrow> s x = n" | |
shows "subst_floatarith (\<lambda>x. Var (s x)) (DERIV_floatarith n fa) = | |
DERIV_floatarith n (subst_floatarith (\<lambda>x. Var (s x)) fa)" | |
using assms | |
proof (induction fa) | |
case (Power fa n) | |
then show ?case by (cases n) auto | |
qed force+ | |
lemma subst_floatarith_inner_floatariths[simp]: | |
assumes "length fs = length gs" | |
shows "subst_floatarith s (inner_floatariths fs gs) = | |
inner_floatariths (map (subst_floatarith s) fs) (map (subst_floatarith s) gs)" | |
using assms | |
by (induction rule: list_induct2) auto | |
fun_cases subst_floatarith_Num: "subst_floatarith s fa = Num y" | |
and subst_floatarith_Add: "subst_floatarith s fa = Add x y" | |
and subst_floatarith_Minus: "subst_floatarith s fa = Minus y" | |
lemma Num_eq_subst_Var[simp]: "Num x = subst_floatarith (\<lambda>x. Var (s x)) fa \<longleftrightarrow> fa = Num x" | |
by (cases fa) auto | |
lemma Add_eq_subst_VarE: | |
assumes "Add fa1 fa2 = subst_floatarith (\<lambda>x. Var (s x)) fa" | |
obtains a1 a2 where "fa = Add a1 a2" "fa1 = subst_floatarith (\<lambda>x. Var (s x)) a1" | |
"fa2 = subst_floatarith (\<lambda>x. Var (s x)) a2" | |
using assms | |
by (cases fa) auto | |
lemma subst_floatarith_eq_self[simp]: "subst_floatarith s f = f" if "max_Var_floatarith f = 0" | |
using that by (induction f) auto | |
lemma fold_const_fa_unique: "False" if "(\<And>x. f = Num x)" | |
using that[of 0] that[of 1] | |
by auto | |
lemma zero_unique: False if "(\<And>x::float. x = 0)" | |
using that[of 0] that[of 1] | |
by auto | |
lemma fold_const_fa_Mult_eq_NumE: | |
assumes "fold_const_fa (Mult a b) = Num x" | |
obtains y z where "fold_const_fa a = Num y" "fold_const_fa b = Num z" "x = y * z" | |
| y where "fold_const_fa a = Num 0" "x = 0" | |
| y where "fold_const_fa b = Num 0" "x = 0" | |
using assms | |
by atomize_elim (auto simp: fold_const_fa.simps split!: option.splits if_splits | |
elim!: dest_Num_fa_Some dest_Num_fa_None) | |
lemma fold_const_fa_Add_eq_NumE: | |
assumes "fold_const_fa (Add a b) = Num x" | |
obtains y z where "fold_const_fa a = Num y" "fold_const_fa b = Num z" "x = y + z" | |
using assms | |
by atomize_elim (auto simp: fold_const_fa.simps split!: option.splits if_splits | |
elim!: dest_Num_fa_Some dest_Num_fa_None) | |
lemma subst_floatarith_Var_fold_const_fa[symmetric]: | |
"fold_const_fa (subst_floatarith (\<lambda>x. Var (s x)) fa) = | |
subst_floatarith (\<lambda>x. Var (s x)) (fold_const_fa fa)" | |
proof (induction fa) | |
case (Add fa1 fa2) | |
then show ?case | |
apply (auto simp: fold_const_fa.simps | |
split!: floatarith.splits option.splits if_splits | |
elim!: dest_Num_fa_Some) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
done | |
next | |
case (Mult fa1 fa2) | |
then show ?case | |
apply (auto simp: fold_const_fa.simps | |
split!: floatarith.splits option.splits if_splits | |
elim!: dest_Num_fa_Some) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) | |
done | |
next | |
case (Min) | |
then show ?case | |
by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
next | |
case (Max) | |
then show ?case | |
by (auto simp: fold_const_fa.simps split: floatarith.splits) | |
qed (auto simp: fold_const_fa.simps | |
split!: floatarith.splits option.splits if_splits | |
elim!: dest_Num_fa_Some) | |
lemma subst_floatarith_eq_Num[simp]: "(subst_floatarith (\<lambda>x. Var (s x)) fa = Num x) \<longleftrightarrow> fa = Num x" | |
by (induction fa) (auto simp: ) | |
lemma fold_const_fa_subst_eq_Num0_iff[simp]: | |
"fold_const_fa (subst_floatarith (\<lambda>x. Var (s x)) fa) = Num x \<longleftrightarrow> fold_const_fa fa = Num x" | |
unfolding subst_floatarith_Var_fold_const_fa[symmetric] | |
by simp | |
lemma subst_floatarith_Var_FDERIV_floatarith: | |
assumes len: "length xs = DIM('a::executable_euclidean_space)" and [simp]: "length ds = DIM('a)" | |
assumes eq: "\<And>x y. x \<in> set xs \<Longrightarrow> (y = x) = (s y = x)" | |
shows "subst_floatarith (\<lambda>x. Var (s x)) (FDERIV_floatarith fa xs ds) = | |
(FDERIV_floatarith (subst_floatarith (\<lambda>x. Var (s x)) fa) xs (map (subst_floatarith (\<lambda>x. Var (s x))) ds))" | |
proof - | |
have [simp]: "\<And>x. x \<in> set xs \<Longrightarrow> subst_floatarith (\<lambda>x. Var (s x)) (DERIV_floatarith x fa1) = | |
(DERIV_floatarith x (subst_floatarith (\<lambda>x. Var (s x)) fa1))" | |
for fa1 | |
by (rule subst_floatarith_Var_DERIV_floatarith) (rule eq) | |
have map_eq: "(map (\<lambda>xa. if xa = s x then Num 1 else Num 0) xs) = | |
(map (\<lambda>xa. if xa = x then Num 1 else Num 0) xs)" | |
for x | |
apply (subst map_eq_conv) | |
using eq[of x x] eq[of "s x"] | |
by (auto simp: ) | |
show ?thesis | |
using len | |
by (induction fa) | |
(auto simp: FDERIV_floatarith_def o_def if_distrib | |
subst_floatarith_Var_fold_const_fa fold_const_fa.simps(18) map_eq | |
cong: map_cong if_cong) | |
qed | |
lemma subst_floatarith_Var_FDERIV_n_nth: | |
assumes len: "length xs = DIM('a::executable_euclidean_space)" and [simp]: "length ds = DIM('a)" | |
assumes eq: "\<And>x y. x \<in> set xs \<Longrightarrow> (y = x) = (s y = x)" | |
assumes [simp]: "i < length fas" | |
shows "subst_floatarith (\<lambda>x. Var (s x)) (FDERIV_n_floatariths fas xs ds n ! i) = | |
(FDERIV_n_floatariths (map (subst_floatarith (\<lambda>x. Var (s x))) fas) xs (map (subst_floatarith (\<lambda>x. Var (s x))) ds) n ! i)" | |
proof (induction n) | |
case (Suc n) | |
show ?case | |
by (simp add: subst_floatarith_Var_FDERIV_floatarith[OF len _ eq] Suc.IH[symmetric]) | |
qed simp | |
lemma subst_floatarith_Var_max_Var_floatarith: | |
assumes "\<And>i. i < max_Var_floatarith fa \<Longrightarrow> s i = i" | |
shows "subst_floatarith (\<lambda>i. Var (s i)) fa = fa" | |
using assms | |
by (induction fa) auto | |
lemma interpret_floatarith_subst_floatarith_idem: | |
assumes mv: "max_Var_floatarith fa \<le> length vs" | |
assumes idem: "\<And>j. j < max_Var_floatarith fa \<Longrightarrow> vs ! s j = vs ! j" | |
shows "interpret_floatarith (subst_floatarith (\<lambda>i. Var (s i)) fa) vs = interpret_floatarith fa vs" | |
using assms | |
by (induction fa) auto | |
lemma isDERIV_subst_Var_floatarith: | |
assumes mv: "max_Var_floatarith fa \<le> length vs" | |
assumes idem: "\<And>j. j < max_Var_floatarith fa \<Longrightarrow> vs ! s j = vs ! j" | |
assumes "\<And>j. s j = i \<longleftrightarrow> j = i" | |
shows "isDERIV i (subst_floatarith (\<lambda>i. Var (s i)) fa) vs = isDERIV i fa vs" | |
using mv idem | |
proof (induction fa) | |
case (Power fa n) | |
then show ?case by (cases n) auto | |
qed (auto simp: interpret_floatarith_subst_floatarith_idem) | |
lemma isFDERIV_subst_Var_floatarith: | |
assumes mv: "max_Var_floatariths fas \<le> length vs" | |
assumes idem: "\<And>j. j < max_Var_floatariths fas \<Longrightarrow> vs ! (s j) = vs ! j" | |
assumes "\<And>i j. i \<in> set xs \<Longrightarrow> s j = i \<longleftrightarrow> j = i" | |
shows "isFDERIV n xs (map (subst_floatarith (\<lambda>i. Var (s i))) fas) vs = isFDERIV n xs fas vs" | |
proof - | |
have mv: "\<And>i. i < length fas \<Longrightarrow> max_Var_floatarith (fas ! i) \<le> length vs" | |
apply (rule order_trans[OF _ mv]) | |
by (intro max_Var_floatarith_le_max_Var_floatariths_nth) | |
have idem: "\<And>i j. i < length fas \<Longrightarrow> j < max_Var_floatarith (fas ! i) \<Longrightarrow> vs ! s j = vs ! j" | |
using idem | |
by (auto simp: dest!: max_Var_floatariths_lessI) | |
show ?thesis | |
unfolding isFDERIV_def | |
using mv idem assms(3) | |
by (auto simp: isDERIV_subst_Var_floatarith) | |
qed | |
lemma interpret_floatariths_append[simp]: | |
"interpret_floatariths (xs @ ys) vs = interpret_floatariths xs vs @ interpret_floatariths ys vs" | |
by (induction xs) auto | |
lemma not_fresh_inner_floatariths: | |
assumes "length xs = length ys" | |
shows "\<not> fresh_floatarith (inner_floatariths xs ys) i \<longleftrightarrow> \<not>fresh_floatariths xs i \<or> \<not>fresh_floatariths ys i" | |
using assms | |
by (induction xs ys rule: list_induct2) auto | |
lemma fresh_inner_floatariths: | |
assumes "length xs = length ys" | |
shows "fresh_floatarith (inner_floatariths xs ys) i \<longleftrightarrow> fresh_floatariths xs i \<and> fresh_floatariths ys i" | |
using not_fresh_inner_floatariths assms by auto | |
lemma not_fresh_floatariths_map: | |
" \<not> fresh_floatariths (map f xs) i \<longleftrightarrow> (\<exists>x \<in> set xs. \<not>fresh_floatarith (f x) i)" | |
by (induction xs) auto | |
lemma fresh_floatariths_map: | |
" fresh_floatariths (map f xs) i \<longleftrightarrow> (\<forall>x \<in> set xs. fresh_floatarith (f x) i)" | |
by (induction xs) auto | |
lemma fresh_floatarith_fold_const_fa: "fresh_floatarith fa i \<Longrightarrow> fresh_floatarith (fold_const_fa fa) i" | |
by (induction fa) (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) | |
lemma fresh_floatarith_fold_const_fa_Add[intro!]: | |
assumes "fresh_floatarith (fold_const_fa a) i" "fresh_floatarith (fold_const_fa b) i" | |
shows "fresh_floatarith (fold_const_fa (Add a b)) i" | |
using assms | |
by (auto simp: fold_const_fa.simps split!: floatarith.splits option.splits) | |
lemma fresh_floatarith_fold_const_fa_Mult[intro!]: | |
assumes "fresh_floatarith (fold_const_fa a) i" "fresh_floatarith (fold_const_fa b) i" | |
shows "fresh_floatarith (fold_const_fa (Mult a b)) i" | |
using assms | |
by (auto simp: fold_const_fa.simps split!: floatarith.splits option.splits) | |
lemma fresh_floatarith_fold_const_fa_Minus[intro!]: | |
assumes "fresh_floatarith (fold_const_fa b) i" | |
shows "fresh_floatarith (fold_const_fa (Minus b)) i" | |
using assms | |
by (auto simp: fold_const_fa.simps split!: floatarith.splits) | |
lemma fresh_FDERIV_floatarith: | |
"fresh_floatarith ode_e i \<Longrightarrow> fresh_floatariths ds i | |
\<Longrightarrow> length ds = DIM('a) | |
\<Longrightarrow> fresh_floatarith (FDERIV_floatarith ode_e [0..<DIM('a::executable_euclidean_space)] ds) i" | |
proof (induction ode_e) | |
case (Power ode_e n) | |
then show ?case by (cases n) (auto simp: FDERIV_floatarith_def fresh_inner_floatariths fresh_floatariths_map fresh_floatarith_fold_const_fa) | |
qed (auto simp: FDERIV_floatarith_def fresh_inner_floatariths fresh_floatariths_map fresh_floatarith_fold_const_fa) | |
lemma not_fresh_FDERIV_floatarith: | |
"\<not> fresh_floatarith (FDERIV_floatarith ode_e [0..<DIM('a::executable_euclidean_space)] ds) i | |
\<Longrightarrow> length ds = DIM('a) | |
\<Longrightarrow> \<not>fresh_floatarith ode_e i \<or> \<not>fresh_floatariths ds i" | |
using fresh_FDERIV_floatarith by auto | |
lemma not_fresh_FDERIV_floatariths: | |
"\<not> fresh_floatariths (FDERIV_floatariths ode_e [0..<DIM('a::executable_euclidean_space)] ds) i \<Longrightarrow> | |
length ds = DIM('a) \<Longrightarrow> \<not>fresh_floatariths ode_e i \<or> \<not>fresh_floatariths ds i" | |
by (induction ode_e) (auto simp: FDERIV_floatariths_def dest!: not_fresh_FDERIV_floatarith) | |
lemma isDERIV_FDERIV_floatarith_linear: | |
fixes x h::"'a::executable_euclidean_space" | |
assumes "\<And>k. k < DIM('a) \<Longrightarrow> isDERIV i (DERIV_floatarith k fa) xs" | |
assumes "max_Var_floatarith fa \<le> DIM('a)" | |
assumes [simp]: "length xs = DIM('a)" "length hs = DIM('a)" | |
shows "isDERIV i (FDERIV_floatarith fa [0..<DIM('a)] (map Var [DIM('a)..<2 * DIM('a)])) | |
(xs @ hs)" | |
using assms | |
apply (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) | |
apply (rule isDERIV_max_Var_floatarithI) apply force | |
apply (auto simp: nth_append) | |
by (metis add_diff_inverse_nat leD max_Var_floatarith_DERIV_floatarith | |
max_Var_floatarith_fold_const_fa trans_le_add1) | |
lemma | |
isFDERIV_FDERIV_floatariths_linear: | |
fixes x h::"'a::executable_euclidean_space" | |
assumes "\<And>i j k. | |
i < DIM('a) \<Longrightarrow> | |
j < DIM('a) \<Longrightarrow> k < DIM('a) \<Longrightarrow> isDERIV i (DERIV_floatarith k (fas ! j)) (xs)" | |
assumes [simp]: "length fas = DIM('a::executable_euclidean_space)" | |
assumes [simp]: "length xs = DIM('a)" "length hs = DIM('a)" | |
assumes "max_Var_floatariths fas \<le> DIM('a)" | |
shows "isFDERIV DIM('a) [0..<DIM('a::executable_euclidean_space)] | |
(FDERIV_floatariths fas [0..<DIM('a)] (map floatarith.Var [DIM('a)..<2 * DIM('a)])) | |
(xs @ hs)" | |
apply (auto simp: isFDERIV_def intro!: isDERIV_FDERIV_floatarith_linear assms) | |
using assms(5) max_Var_floatariths_lessI not_le_imp_less by fastforce | |
definition isFDERIV_approx where | |
"isFDERIV_approx p n xs fas vs = | |
((\<forall>i<n. \<forall>j<n. isDERIV_approx p (xs ! i) (fas ! j) vs) \<and> length fas = n \<and> length xs = n)" | |
lemma isFDERIV_approx: | |
"bounded_by vs VS \<Longrightarrow> isFDERIV_approx prec n xs fas VS \<Longrightarrow> isFDERIV n xs fas vs" | |
by (auto simp: isFDERIV_approx_def isFDERIV_def intro!: isDERIV_approx) | |
primrec isnFDERIV_approx where | |
"isnFDERIV_approx p N fas xs ds vs 0 = True" | |
| "isnFDERIV_approx p N fas xs ds vs (Suc n) \<longleftrightarrow> | |
isFDERIV_approx p N xs (FDERIV_n_floatariths fas xs (map Var ds) n) vs \<and> | |
isnFDERIV_approx p N fas xs ds vs n" | |
lemma isnFDERIV_approx: | |
"bounded_by vs VS \<Longrightarrow> isnFDERIV_approx prec N fas xs ds VS n \<Longrightarrow> isnFDERIV N fas xs ds vs n" | |
by (induction n) (auto intro!: isFDERIV_approx) | |
fun plain_floatarith::"nat \<Rightarrow> floatarith \<Rightarrow> bool" where | |
"plain_floatarith N (floatarith.Add a b) \<longleftrightarrow> plain_floatarith N a \<and> plain_floatarith N b" | |
| "plain_floatarith N (floatarith.Mult a b) \<longleftrightarrow> plain_floatarith N a \<and> plain_floatarith N b" | |
| "plain_floatarith N (floatarith.Minus a) \<longleftrightarrow> plain_floatarith N a" | |
| "plain_floatarith N (floatarith.Pi) \<longleftrightarrow> True" | |
| "plain_floatarith N (floatarith.Num n) \<longleftrightarrow> True" | |
| "plain_floatarith N (floatarith.Var i) \<longleftrightarrow> i < N" | |
| "plain_floatarith N (floatarith.Max a b) \<longleftrightarrow> plain_floatarith N a \<and> plain_floatarith N b" | |
| "plain_floatarith N (floatarith.Min a b) \<longleftrightarrow> plain_floatarith N a \<and> plain_floatarith N b" | |
| "plain_floatarith N (floatarith.Power a n) \<longleftrightarrow> plain_floatarith N a" | |
| "plain_floatarith N (floatarith.Cos a) \<longleftrightarrow> False" \<comment> \<open>TODO: should be plain!\<close> | |
| "plain_floatarith N (floatarith.Arctan a) \<longleftrightarrow> False" \<comment> \<open>TODO: should be plain!\<close> | |
| "plain_floatarith N (floatarith.Abs a) \<longleftrightarrow> plain_floatarith N a" | |
| "plain_floatarith N (floatarith.Exp a) \<longleftrightarrow> False" \<comment> \<open>TODO: should be plain!\<close> | |
| "plain_floatarith N (floatarith.Sqrt a) \<longleftrightarrow> False" \<comment> \<open>TODO: should be plain!\<close> | |
| "plain_floatarith N (floatarith.Floor a) \<longleftrightarrow> plain_floatarith N a" | |
| "plain_floatarith N (floatarith.Powr a b) \<longleftrightarrow> False" | |
| "plain_floatarith N (floatarith.Inverse a) \<longleftrightarrow> False" | |
| "plain_floatarith N (floatarith.Ln a) \<longleftrightarrow> False" | |
lemma plain_floatarith_approx_not_None: | |
assumes "plain_floatarith N fa" "N \<le> length XS" "\<And>i. i < N \<Longrightarrow> XS ! i \<noteq> None" | |
shows "approx p fa XS \<noteq> None" | |
using assms | |
by (induction fa) | |
(auto simp: Let_def split_beta' prod_eq_iff approx.simps) | |
definition "Rad_of w = w * (Pi / Num 180)" | |
lemma interpret_Rad_of[simp]: "interpret_floatarith (Rad_of w) xs = rad_of (interpret_floatarith w xs)" | |
by (auto simp: Rad_of_def rad_of_def) | |
definition "Deg_of w = Num 180 * w / Pi" | |
lemma interpret_Deg_of[simp]: "interpret_floatarith (Deg_of w) xs = deg_of (interpret_floatarith w xs)" | |
by (auto simp: Deg_of_def deg_of_def inverse_eq_divide) | |
unbundle no_floatarith_notation | |
end | |