Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Lemmas_log | |
imports Complex_Main | |
begin | |
lemma ld_sum_inequality: | |
assumes "x > 0" "y > 0" | |
shows "log 2 x + log 2 y + 2 \<le> 2 * log 2 (x + y)" | |
proof - | |
have 0: "0 \<le> (x-y)^2" using assms by(simp) | |
have "2 powr (2 + log 2 x + log 2 y) = 4 * x * y" using assms | |
by(simp add: powr_add) | |
also have "4*x*y \<le> (x+y)^2" using 0 by(simp add: algebra_simps numeral_eq_Suc) | |
also have "\<dots> = 2 powr (log 2 (x + y) * 2)" using assms | |
by(simp add: powr_powr[symmetric] powr_numeral) | |
finally show ?thesis by (simp add: mult_ac) | |
qed | |
lemma ld_ld_1_less: | |
"\<lbrakk>x > 0; y > 0 \<rbrakk> \<Longrightarrow> 1 + log 2 x + log 2 y < 2 * log 2 (x+y)" | |
using ld_sum_inequality[of x y] by linarith | |
(* | |
proof - | |
have 1: "2*x*y < (x+y)^2" using assms | |
by(simp add: numeral_eq_Suc algebra_simps add_pos_pos) | |
show ?thesis | |
apply(rule powr_less_cancel_iff[of 2, THEN iffD1]) | |
apply simp | |
using assms 1 by(simp add: powr_add log_powr[symmetric] powr_numeral) | |
qed | |
*) | |
lemma ld_le_2ld: | |
assumes "x \<ge> 0" "y \<ge> 0" shows "log 2 (1+x+y) \<le> 1 + log 2 (1+x) + log 2 (1+y)" | |
proof - | |
have 1: "1+x+y \<le> (x+1)*(y+1)" using assms | |
by(simp add: algebra_simps) | |
show ?thesis | |
apply(rule powr_le_cancel_iff[of 2, THEN iffD1]) | |
apply simp | |
using assms 1 by(simp add: powr_add algebra_simps) | |
qed | |
lemma ld_ld_less2: assumes "x \<ge> 2" "y \<ge> 2" | |
shows "1 + log 2 x + log 2 y \<le> 2 * log 2 (x + y - 1)" | |
proof- | |
from assms have "2*x \<le> x*x" "2*y \<le> y*y" by simp_all | |
hence 1: "2 * x * y \<le> (x + y - 1)^2" | |
by(simp add: numeral_eq_Suc algebra_simps) | |
show ?thesis | |
apply(rule powr_le_cancel_iff[of 2, THEN iffD1]) | |
apply simp | |
using assms 1 by(simp add: powr_add log_powr[symmetric] powr_numeral) | |
qed | |
end | |