Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Title: Singleton.thy | |
Author: Diego Marmsoler | |
*) | |
section "A Theory of Singletons" | |
text\<open> | |
In the following, we formalize the specification of the singleton pattern as described in~\cite{Marmsoler2018c}. | |
\<close> | |
theory Singleton | |
imports DynamicArchitectures.Dynamic_Architecture_Calculus | |
begin | |
subsection Singletons | |
text \<open> | |
In the following we formalize a variant of the Singleton pattern. | |
\<close> | |
locale singleton = dynamic_component cmp active | |
for active :: "'id \<Rightarrow> cnf \<Rightarrow> bool" ("\<parallel>_\<parallel>\<^bsub>_\<^esub>" [0,110]60) | |
and cmp :: "'id \<Rightarrow> cnf \<Rightarrow> 'cmp" ("\<sigma>\<^bsub>_\<^esub>(_)" [0,110]60) + | |
assumes alwaysActive: "\<And>k. \<exists>id. \<parallel>id\<parallel>\<^bsub>k\<^esub>" | |
and unique: "\<exists>id. \<forall>k. \<forall>id'. (\<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id = id')" | |
begin | |
subsubsection "Calculus Interpretation" | |
text \<open> | |
\noindent | |
@{thm[source] baIA}: @{thm baIA [no_vars]} | |
\<close> | |
text \<open> | |
\noindent | |
@{thm[source] baIN1}: @{thm baIN1 [no_vars]} | |
\<close> | |
text \<open> | |
\noindent | |
@{thm[source] baIN2}: @{thm baIN2 [no_vars]} | |
\<close> | |
subsubsection "Architectural Guarantees" | |
definition "the_singleton \<equiv> THE id. \<forall>k. \<forall>id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id" | |
theorem ts_prop: | |
fixes k::cnf | |
shows "\<And>id. \<parallel>id\<parallel>\<^bsub>k\<^esub> \<Longrightarrow> id = the_singleton" | |
and "\<parallel>the_singleton\<parallel>\<^bsub>k\<^esub>" | |
proof - | |
{ fix id | |
assume a1: "\<parallel>id\<parallel>\<^bsub>k\<^esub>" | |
have "(THE id. \<forall>k. \<forall>id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id) = id" | |
proof (rule the_equality) | |
show "\<forall>k id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id" | |
proof | |
fix k show "\<forall>id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id" | |
proof | |
fix id' show "\<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = id" | |
proof | |
assume "\<parallel>id'\<parallel>\<^bsub>k\<^esub>" | |
from unique have "\<exists>id. \<forall>k. \<forall>id'. (\<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id = id')" . | |
then obtain i'' where "\<forall>k. \<forall>id'. (\<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> i'' = id')" by auto | |
with \<open>\<parallel>id'\<parallel>\<^bsub>k\<^esub>\<close> have "id=i''" and "id'=i''" using a1 by auto | |
thus "id' = id" by simp | |
qed | |
qed | |
qed | |
next | |
fix i'' show "\<forall>k id'. \<parallel>id'\<parallel>\<^bsub>k\<^esub> \<longrightarrow> id' = i'' \<Longrightarrow> i'' = id" using a1 by auto | |
qed | |
hence "\<parallel>id\<parallel>\<^bsub>k\<^esub> \<Longrightarrow> id = the_singleton" by (simp add: the_singleton_def) | |
} note g1 = this | |
thus "\<And>id. \<parallel>id\<parallel>\<^bsub>k\<^esub> \<Longrightarrow> id = the_singleton" by simp | |
from alwaysActive obtain id where "\<parallel>id\<parallel>\<^bsub>k\<^esub>" by blast | |
with g1 have "id = the_singleton" by simp | |
with \<open>\<parallel>id\<parallel>\<^bsub>k\<^esub>\<close> show "\<parallel>the_singleton\<parallel>\<^bsub>k\<^esub>" by simp | |
qed | |
declare ts_prop(2)[simp] | |
lemma lNact_active[simp]: | |
fixes cid t n | |
shows "\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub> = n" | |
using lNact_active ts_prop(2) by auto | |
lemma lNxt_active[simp]: | |
fixes cid t n | |
shows "\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub> = n" | |
by (simp add: nxtAct_active) | |
lemma baI[intro]: | |
fixes t n a | |
assumes "\<phi> (\<sigma>\<^bsub>the_singleton\<^esub>(t n))" | |
shows "eval the_singleton t t' n [\<phi>]\<^sub>b" using assms by (simp add: baIANow) | |
lemma baE[elim]: | |
fixes t n a | |
assumes "eval the_singleton t t' n [\<phi>]\<^sub>b" | |
shows "\<phi> (\<sigma>\<^bsub>the_singleton\<^esub>(t n))" using assms by (simp add: baEANow) | |
lemma evtE[elim]: | |
fixes t id n a | |
assumes "eval the_singleton t t' n (\<diamond>\<^sub>b \<gamma>)" | |
shows "\<exists>n'\<ge>n. eval the_singleton t t' n' \<gamma>" | |
proof - | |
have "\<parallel>the_singleton\<parallel>\<^bsub>t n\<^esub>" by simp | |
with assms obtain n' where "n'\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" and "(\<exists>i\<ge>n'. \<parallel>the_singleton\<parallel>\<^bsub>t i\<^esub> \<and> | |
(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>)) \<or> | |
\<not> (\<exists>i\<ge>n'. \<parallel>the_singleton\<parallel>\<^bsub>t i\<^esub>) \<and> eval the_singleton t t' n' \<gamma>" using evtEA[of n "the_singleton" t] by blast | |
moreover have "\<parallel>the_singleton\<parallel>\<^bsub>t n'\<^esub>" by simp | |
ultimately have | |
"\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>" by auto | |
hence "eval the_singleton t t' n' \<gamma>" by simp | |
moreover from \<open>n'\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<close> have "n'\<ge>n" by (simp add: nxtAct_active) | |
ultimately show ?thesis by auto | |
qed | |
lemma globE[elim]: | |
fixes t id n a | |
assumes "eval the_singleton t t' n (\<box>\<^sub>b \<gamma>)" | |
shows "\<forall>n'\<ge>n. eval the_singleton t t' n' \<gamma>" | |
proof | |
fix n' show "n \<le> n' \<longrightarrow> eval the_singleton t t' n' \<gamma>" | |
proof | |
assume "n\<le>n'" | |
hence "\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> n'" by simp | |
moreover have "\<parallel>the_singleton\<parallel>\<^bsub>t n\<^esub>" by simp | |
ultimately show "eval the_singleton t t' n' \<gamma>" | |
using \<open>eval the_singleton t t' n (\<box>\<^sub>b \<gamma>)\<close> globEA by blast | |
qed | |
qed | |
lemma untilI[intro]: | |
fixes t::"nat \<Rightarrow> cnf" | |
and t'::"nat \<Rightarrow> 'cmp" | |
and n::nat | |
and n'::nat | |
assumes "n'\<ge>n" | |
and "eval the_singleton t t' n' \<gamma>" | |
and "\<And>n''. \<lbrakk>n\<le>n''; n''<n'\<rbrakk> \<Longrightarrow> eval the_singleton t t' n'' \<gamma>'" | |
shows "eval the_singleton t t' n (\<gamma>' \<UU>\<^sub>b \<gamma>)" | |
proof - | |
have "\<parallel>the_singleton\<parallel>\<^bsub>t n\<^esub>" by simp | |
moreover from \<open>n'\<ge>n\<close> have "\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub> \<le> n'" by simp | |
moreover have "\<parallel>the_singleton\<parallel>\<^bsub>t n'\<^esub>" by simp | |
moreover have | |
"\<exists>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<and> eval the_singleton t t' n'' \<gamma> \<and> | |
(\<forall>n'''\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>. n''' < \<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n''\<^esub> \<longrightarrow> | |
(\<exists>n''''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'''\<^esub>. n'''' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'''\<^esub> \<and> eval the_singleton t t' n'''' \<gamma>'))" | |
proof - | |
have "n'\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>" by simp | |
moreover have "n' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>" by simp | |
moreover from assms(3) have "(\<forall>n''\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>. n'' < \<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> | |
(\<exists>n'''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n''\<^esub>. n''' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n''\<^esub> \<and> eval the_singleton t t' n''' \<gamma>'))" | |
by auto | |
ultimately show ?thesis using \<open>eval the_singleton t t' n' \<gamma>\<close> by auto | |
qed | |
ultimately show ?thesis using untilIA[of n "the_singleton" t n' t' \<gamma> \<gamma>'] by blast | |
qed | |
lemma untilE[elim]: | |
fixes t id n \<gamma>' \<gamma> | |
assumes "eval the_singleton t t' n (\<gamma>' \<UU>\<^sub>b \<gamma>)" | |
shows "\<exists>n'\<ge>n. eval the_singleton t t' n' \<gamma> \<and> (\<forall>n''\<ge>n. n'' < n' \<longrightarrow> eval the_singleton t t' n'' \<gamma>')" | |
proof - | |
have "\<parallel>the_singleton\<parallel>\<^bsub>t n\<^esub>" by simp | |
with \<open>eval the_singleton t t' n (\<gamma>' \<UU>\<^sub>b \<gamma>)\<close> obtain n' where "n'\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>" and | |
"(\<exists>i\<ge>n'. \<parallel>the_singleton\<parallel>\<^bsub>t i\<^esub>) \<and> | |
(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>) \<and> | |
(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'' < \<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>') \<or> | |
\<not> (\<exists>i\<ge>n'. \<parallel>the_singleton\<parallel>\<^bsub>t i\<^esub>) \<and> | |
eval the_singleton t t' n' \<gamma> \<and> (\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'' < n' \<longrightarrow> eval the_singleton t t' n'' \<gamma>')" | |
using untilEA[of n "the_singleton" t t' \<gamma>' \<gamma>] by auto | |
moreover have "\<parallel>the_singleton\<parallel>\<^bsub>t n'\<^esub>" by simp | |
ultimately have | |
"(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>) \<and> | |
(\<forall>n''\<ge>\<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n\<^esub>. n'' < \<langle>the_singleton \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub> \<longrightarrow> eval the_singleton t t' n'' \<gamma>')" by auto | |
hence "eval the_singleton t t' n' \<gamma>" and "(\<forall>n''\<ge>n. n'' < n' \<longrightarrow> eval the_singleton t t' n'' \<gamma>')" by auto | |
with \<open>eval the_singleton t t' n' \<gamma>\<close> \<open>n'\<ge>\<langle>the_singleton \<rightarrow> t\<rangle>\<^bsub>n\<^esub>\<close> show ?thesis by auto | |
qed | |
end | |
end | |