Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: BST.thy | |
Author: Bohua Zhan | |
*) | |
section \<open>Binary search tree\<close> | |
theory BST | |
imports Lists_Ex | |
begin | |
text \<open> | |
Verification of functional programs on binary search trees. For | |
basic technique, see comments in Lists\_Ex.thy. | |
\<close> | |
subsection \<open>Definition and setup for trees\<close> | |
datatype ('a, 'b) tree = | |
Tip | Node (lsub: "('a, 'b) tree") (key: 'a) (nval: 'b) (rsub: "('a, 'b) tree") | |
setup \<open>add_resolve_prfstep @{thm tree.distinct(1)}\<close> | |
setup \<open>fold add_rewrite_rule @{thms tree.sel}\<close> | |
setup \<open>add_forward_prfstep @{thm tree.collapse}\<close> | |
setup \<open>add_var_induct_rule @{thm tree.induct}\<close> | |
subsection \<open>Inorder traversal, and set of elements of a tree\<close> | |
fun in_traverse :: "('a, 'b) tree \<Rightarrow> 'a list" where | |
"in_traverse Tip = []" | |
| "in_traverse (Node l k v r) = in_traverse l @ k # in_traverse r" | |
setup \<open>fold add_rewrite_rule @{thms in_traverse.simps}\<close> | |
fun tree_set :: "('a, 'b) tree \<Rightarrow> 'a set" where | |
"tree_set Tip = {}" | |
| "tree_set (Node l k v r) = {k} \<union> tree_set l \<union> tree_set r" | |
setup \<open>fold add_rewrite_rule @{thms tree_set.simps}\<close> | |
fun in_traverse_pairs :: "('a, 'b) tree \<Rightarrow> ('a \<times> 'b) list" where | |
"in_traverse_pairs Tip = []" | |
| "in_traverse_pairs (Node l k v r) = in_traverse_pairs l @ (k, v) # in_traverse_pairs r" | |
setup \<open>fold add_rewrite_rule @{thms in_traverse_pairs.simps}\<close> | |
lemma in_traverse_fst [rewrite]: | |
"map fst (in_traverse_pairs t) = in_traverse t" | |
@proof @induct t @qed | |
definition tree_map :: "('a, 'b) tree \<Rightarrow> ('a, 'b) map" where | |
"tree_map t = map_of_alist (in_traverse_pairs t)" | |
setup \<open>add_rewrite_rule @{thm tree_map_def}\<close> | |
subsection \<open>Sortedness on trees\<close> | |
fun tree_sorted :: "('a::linorder, 'b) tree \<Rightarrow> bool" where | |
"tree_sorted Tip = True" | |
| "tree_sorted (Node l k v r) = ((\<forall>x\<in>tree_set l. x < k) \<and> (\<forall>x\<in>tree_set r. k < x) | |
\<and> tree_sorted l \<and> tree_sorted r)" | |
setup \<open>fold add_rewrite_rule @{thms tree_sorted.simps}\<close> | |
lemma tree_sorted_lr [forward]: | |
"tree_sorted (Node l k v r) \<Longrightarrow> tree_sorted l \<and> tree_sorted r" by auto2 | |
lemma inorder_preserve_set [rewrite]: | |
"tree_set t = set (in_traverse t)" | |
@proof @induct t @qed | |
lemma inorder_pairs_sorted [rewrite]: | |
"tree_sorted t \<longleftrightarrow> strict_sorted (map fst (in_traverse_pairs t))" | |
@proof @induct t @qed | |
text \<open>Use definition in terms of in\_traverse from now on.\<close> | |
setup \<open>fold del_prfstep_thm (@{thms tree_set.simps} @ @{thms tree_sorted.simps})\<close> | |
subsection \<open>Rotation on trees\<close> | |
definition rotateL :: "('a, 'b) tree \<Rightarrow> ('a, 'b) tree" where [rewrite]: | |
"rotateL t = (if t = Tip then t else if rsub t = Tip then t else | |
(let rt = rsub t in | |
Node (Node (lsub t) (key t) (nval t) (lsub rt)) (key rt) (nval rt) (rsub rt)))" | |
definition rotateR :: "('a, 'b) tree \<Rightarrow> ('a, 'b) tree" where [rewrite]: | |
"rotateR t = (if t = Tip then t else if lsub t = Tip then t else | |
(let lt = lsub t in | |
Node (lsub lt) (key lt) (nval lt) (Node (rsub lt) (key t) (nval t) (rsub t))))" | |
lemma rotateL_in_trav [rewrite]: "in_traverse (rotateL t) = in_traverse t" by auto2 | |
lemma rotateR_in_trav [rewrite]: "in_traverse (rotateR t) = in_traverse t" by auto2 | |
lemma rotateL_sorted [forward]: "tree_sorted t \<Longrightarrow> tree_sorted (rotateL t)" by auto2 | |
lemma rotateR_sorted [forward]: "tree_sorted t \<Longrightarrow> tree_sorted (rotateR t)" by auto2 | |
subsection \<open>Insertion on trees\<close> | |
fun tree_insert :: "'a::ord \<Rightarrow> 'b \<Rightarrow> ('a, 'b) tree \<Rightarrow> ('a, 'b) tree" where | |
"tree_insert x v Tip = Node Tip x v Tip" | |
| "tree_insert x v (Node l y w r) = | |
(if x = y then Node l x v r | |
else if x < y then Node (tree_insert x v l) y w r | |
else Node l y w (tree_insert x v r))" | |
setup \<open>fold add_rewrite_rule @{thms tree_insert.simps}\<close> | |
lemma insert_in_traverse_pairs [rewrite]: | |
"tree_sorted t \<Longrightarrow> in_traverse_pairs (tree_insert x v t) = ordered_insert_pairs x v (in_traverse_pairs t)" | |
@proof @induct t @qed | |
text \<open>Correctness results for insertion.\<close> | |
theorem insert_sorted [forward]: | |
"tree_sorted t \<Longrightarrow> tree_sorted (tree_insert x v t)" by auto2 | |
theorem insert_on_map: | |
"tree_sorted t \<Longrightarrow> tree_map (tree_insert x v t) = (tree_map t) {x \<rightarrow> v}" by auto2 | |
subsection \<open>Deletion on trees\<close> | |
fun del_min :: "('a, 'b) tree \<Rightarrow> ('a \<times> 'b) \<times> ('a, 'b) tree" where | |
"del_min Tip = undefined" | |
| "del_min (Node lt x v rt) = | |
(if lt = Tip then ((x, v), rt) else | |
(fst (del_min lt), Node (snd (del_min lt)) x v rt))" | |
setup \<open>add_rewrite_rule @{thm del_min.simps(2)}\<close> | |
lemma delete_min_del_hd_pairs [rewrite]: | |
"t \<noteq> Tip \<Longrightarrow> fst (del_min t) # in_traverse_pairs (snd (del_min t)) = in_traverse_pairs t" | |
@proof @induct t @qed | |
fun delete_elt_tree :: "('a, 'b) tree \<Rightarrow> ('a, 'b) tree" where | |
"delete_elt_tree Tip = undefined" | |
| "delete_elt_tree (Node lt x v rt) = | |
(if lt = Tip then rt else if rt = Tip then lt else | |
Node lt (fst (fst (del_min rt))) (snd (fst (del_min rt))) (snd (del_min rt)))" | |
setup \<open>add_rewrite_rule @{thm delete_elt_tree.simps(2)}\<close> | |
lemma delete_elt_in_traverse_pairs [rewrite]: | |
"in_traverse_pairs (delete_elt_tree (Node lt x v rt)) = in_traverse_pairs lt @ in_traverse_pairs rt" by auto2 | |
fun tree_delete :: "'a::ord \<Rightarrow> ('a, 'b) tree \<Rightarrow> ('a, 'b) tree" where | |
"tree_delete x Tip = Tip" | |
| "tree_delete x (Node l y w r) = | |
(if x = y then delete_elt_tree (Node l y w r) | |
else if x < y then Node (tree_delete x l) y w r | |
else Node l y w (tree_delete x r))" | |
setup \<open>fold add_rewrite_rule @{thms tree_delete.simps}\<close> | |
lemma tree_delete_in_traverse_pairs [rewrite]: | |
"tree_sorted t \<Longrightarrow> in_traverse_pairs (tree_delete x t) = remove_elt_pairs x (in_traverse_pairs t)" | |
@proof @induct t @qed | |
text \<open>Correctness results for deletion.\<close> | |
theorem tree_delete_sorted [forward]: | |
"tree_sorted t \<Longrightarrow> tree_sorted (tree_delete x t)" by auto2 | |
theorem tree_delete_map [rewrite]: | |
"tree_sorted t \<Longrightarrow> tree_map (tree_delete x t) = delete_map x (tree_map t)" by auto2 | |
subsection \<open>Search on sorted trees\<close> | |
fun tree_search :: "('a::ord, 'b) tree \<Rightarrow> 'a \<Rightarrow> 'b option" where | |
"tree_search Tip x = None" | |
| "tree_search (Node l k v r) x = | |
(if x = k then Some v | |
else if x < k then tree_search l x | |
else tree_search r x)" | |
setup \<open>fold add_rewrite_rule @{thms tree_search.simps}\<close> | |
text \<open>Correctness of search.\<close> | |
theorem tree_search_correct [rewrite]: | |
"tree_sorted t \<Longrightarrow> tree_search t x = (tree_map t)\<langle>x\<rangle>" | |
@proof @induct t @qed | |
end | |